1
|
Zhou Z, Cong W, Wang M, Zhou H, Zhang J. PEX3 gene knockout influences recombinant xylanase expression by Komagataella phaffii. Synth Syst Biotechnol 2025; 10:764-773. [PMID: 40248486 PMCID: PMC12000700 DOI: 10.1016/j.synbio.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/28/2025] [Accepted: 03/27/2025] [Indexed: 04/19/2025] Open
Abstract
Komagataella phaffii is a methylotrophic yeast harboring a tightly regulated alcohol oxidase promoter (P AOX1 ), which is now widely used for recombinant protein production. During P AOX1 expression phase by methanol induction, a methanol metabolism organelle peroxisome enlarged and occupied 80 % of K. phaffii cell through peroxins functions of matrix protein import and organelle division. Using a K. phaffii expressing xylanase in this study, each of all 23 PEX genes of K. phaffii, encoding peroxin, was knockout to influence the peroxisome size, leading to changes of K. phaffii physiological status and recombinant xylanase expression. It was observed that PEX3 knockout reduced peroxisome size by 54.3 %, increased xylanase expression by 29 %, decreased apoptosis ratio by 70.6 %. Transcriptome analysis revealed that PEX3 gene knockout decreased 18 other PEX genes of all three steps of peroxisome propagation, biogenesis, matrix protein import, and peroxisome fission. PEX3 gene knockout influenced expression of ribosomal subunit-related and protein transportation significantly based on gene function annotation and enrichment analysis. Additionally, Therefore, PEX3 gene knockout promoted xylanase folding correctly via Sec63 complex, and PDI1 significantly. In a summary, PEX3 gene knockout provided a novel strategy to enhance recombinant xylanase by K. phaffii.
Collapse
Affiliation(s)
- Ziwei Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenjie Cong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mingxuan Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hualan Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianguo Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Bustos C, Berrios J, Fickers P. Formate from THF-C1 metabolism induces the AOX1 promoter in formate dehydrogenase-deficient Komagataella phaffii. Microb Biotechnol 2024; 17:e70022. [PMID: 39374140 PMCID: PMC11457876 DOI: 10.1111/1751-7915.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
In Komagataella phaffii (Pichia pastoris), formate is a recognized alternative inducer to methanol for expression systems based on the AOX1 promoter (pAOX1). By disrupting the formate dehydrogenase encoding FDH1 gene, we converted such a system into a self-induced one, as adding any inducer in the culture medium is no longer requested for pAOX1 induction. In cells, formate is generated from serine through the THF-C1 metabolism, and it cannot be converted into carbon dioxide in a FdhKO strain. Under non-repressive culture conditions, such as on sorbitol, the intracellular formate generated from the THF-C1 metabolism is sufficient to induce pAOX1 and initiate protein synthesis. This was evidenced for two model proteins, namely intracellular eGFP and secreted CalB lipase from C. antarctica. Similar protein productivities were obtained for a FdhKO strain on sorbitol and a non-disrupted strain on sorbitol-methanol. Considering a K. Phaffii FdhKO strain as a workhorse for recombinant protein synthesis paves the way for the further development of methanol-free processes in K. phaffii.
Collapse
Affiliation(s)
- Cristina Bustos
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro‐Bio TechUniversity of LiegeGemblouxBelgium
- School of Biochemical EngineeringPontificia Universidad Católica de ValparaísoValparaisoChile
| | - Julio Berrios
- School of Biochemical EngineeringPontificia Universidad Católica de ValparaísoValparaisoChile
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro‐Bio TechUniversity of LiegeGemblouxBelgium
| |
Collapse
|
3
|
Düzel A, Bora B, Özgen GÖ, Evran S. Selection of DNA aptamers for the aptamer-assisted magnetic capture of the purified xylanase from Aspergillus niger. Int J Biol Macromol 2024; 257:128540. [PMID: 38061523 DOI: 10.1016/j.ijbiomac.2023.128540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/12/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Xylanases are a group of enzymes that catalyze the hydrolysis of xylan. Xylanases have wide industrial applications, and they can produced by various organisms. In this study, we aimed to develop aptamers for the capture of xylanase produced by a wild-type Aspergillus niger strain. Xylanase was produced by Aspergillus niger in a 5-liter stirred-tank bioreactor and then purified by column chromatography. Magnetic bead-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment) was performed to select DNA aptamers specific to the purified xylanase. After nine rounds of selection, next-generation sequencing (NGS) analysis was performed. Four aptamers, namely AXYL-1, AXYL-2, AXYL-3, and AXYL-4, were identified for further characterization. The binding properties of the selected aptamers were characterized by fluorescence quenching (FQ) analysis and an enzyme-linked aptamer assay (ELAA). The Kd values were found to be in the low μM range. Then, each aptamer was immobilized on streptavidin-coated magnetic particles, and the recovery ratio of xylanase was determined. Although AXYL-1 wasn't effective, AXYL-2, AXYL-3, and AXYL-4 were proven to capture the xylanase. The maximum recovery rate of xylanase was found to be approximately 54 %.
Collapse
Affiliation(s)
- Ahmet Düzel
- Department of Bioengineering, Faculty of Engineering and Architecture, Sinop University, 57000 Sinop, Türkiye.
| | - Burhan Bora
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Türkiye
| | - Gaye Öngen Özgen
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Türkiye
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Türkiye
| |
Collapse
|
4
|
Akentyev P, Sokolova D, Korzhenkov A, Gubaidullin I, Kozlov D. Expression level of SOR1 is a bottleneck for efficient sorbitol utilization by yeast Komagataella kurtzmanii. Yeast 2023; 40:414-424. [PMID: 37272406 DOI: 10.1002/yea.3884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023] Open
Abstract
The yeast strain Komagataella kurtzmanii VKPM Y-727 shows a significant defect in sorbitol utilization compared to closely related yeast K. phaffii (including strains formerly identified as Pichia pastoris). Our aim was to investigate the factors that determine the phenotype of the wild-type strain and to obtain a K. kurtzmanii strain with an improved ability to utilize sorbitol. We sequenced and annotated the genome of K. kurtzmanii VKPM Y-727 and compared it with that of K. phaffii GS115. Five K. phaffii GS115 genes that might be involved in sorbitol metabolism were selected and transferred into K. kurtzmanii Y-727. The transfer of the modified SOR1 gene resulted in an increased growth rate of K. kurtzmanii in sorbitol, despite the fact that Y-727 already contains its own SOR1 gene without any apparent mutations. The enzymes encoded by the SOR1 genes were analyzed in vitro and found to have similar properties. Differences in promoter activity were assessed using lacZ as a reporter gene, and the PSDH727 (promoter of SOR1 (SDH727) from K. kurtzmanii Y-727) promoter was shown to be 1.5-2.0 times weaker than PSDH115 (promoter of SOR1 (SDH115) from K. phaffii GS115). Moreover, both promoters were less active in K. kurtzmanii than in K. phaffii when evaluated in cells grown in synthetic complete media with glucose or sorbitol. Thus, SOR1 gene expression was identified as a bottleneck in sorbitol metabolism in K. kurtzmanii. Also, the positive effect of additional modified SOR1 gene copies was observed in both yeasts, as K. kurtzmanii and K. phaffii could grow on synthetic complete media with sorbitol three times faster than the original K. phaffii GS115 strain.
Collapse
Affiliation(s)
- Philipp Akentyev
- National Research Center "Kurchatov Institute"-GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- National Research Center "Kurchatov Institute", Moscow, Russia
| | - Daria Sokolova
- National Research Center "Kurchatov Institute"-GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
| | | | - Irek Gubaidullin
- National Research Center "Kurchatov Institute"-GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
| | - Dmitry Kozlov
- National Research Center "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
5
|
Liu B, Cong W, Zhao Y, Zhou H, Zhang J. An inducible Komagataella phaffii system for protein expression using sorbitol dehydrogenase promoter. Biotechnol Lett 2023; 45:667-677. [PMID: 37074552 DOI: 10.1007/s10529-023-03370-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/16/2023] [Accepted: 03/31/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVES The aim of the present work was to develop a methanol-independent Komagataella phaffii (K. phaffii) strain using a non-methanol promoter. RESULTS In this study, the food grade enzyme xylanase from Aspergillus niger ATCC 1015 was used as the reporter protein, a recombinant K. phaffii containing a cascade gene circus was designed and constructed using sorbitol as inducer. Sorbitol induced PSDH leading to MIT1 expression firstly, and heterologous protein xylanase expression finally. This system showed 1.7 fold of xylanase activity at the condition of single copy number of extra MIT1, and 2.1 fold of xylanase activity at condition of multi-copy extra MIT1 gene. CONCLUSIONS This sorbitol-induced expression system of K. phaffii avoided toxic and explosive methanol. It was a novel cascade gene expression and a food safety system.
Collapse
Affiliation(s)
- Bing Liu
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Wenjie Cong
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yixin Zhao
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hualan Zhou
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Jianguo Zhang
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
| |
Collapse
|
6
|
Singh A, Narang A. P AOX1 expression in mixed-substrate continuous cultures of Komagataella phaffii ( Pichia pastoris) is completely determined by methanol consumption regardless of the secondary carbon source. Front Bioeng Biotechnol 2023; 11:1123703. [PMID: 37091330 PMCID: PMC10113526 DOI: 10.3389/fbioe.2023.1123703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
The expression of recombinant proteins by the AOX1 promoter of Komagataella phaffii is typically induced by adding methanol to the cultivation medium. Since growth on methanol imposes a high oxygen demand, the medium is often supplemented with an additional secondary carbon source which serves to reduce the consumption of methanol, and hence, oxygen. Early research recommended the use of glycerol as the secondary carbon source, but more recent studies recommend the use of sorbitol because glycerol represses P AOX1 expression. To assess the validity of this recommendation, we measured the steady state concentrations of biomass, residual methanol, and LacZ expressed from P AOX1 over a wide range of dilution rates (0.02-0.20 h-1) in continuous cultures of the Mut+ strain fed with methanol + glycerol (repressing) and methanol + sorbitol (non-repressing). We find that under these conditions, the specific P AOX1 expression rate (measured as either specific LacZ productivity or specific AOX productivity) is completely determined by the specific methanol consumption rate regardless of the type (repressing/non-repressing) of the secondary carbon source. In both cultures, the specific P AOX1 expression rate is proportional to the specific methanol consumption rate, provided that the latter is below 0.15 g/(gdw-h); beyond this threshold consumption rate, the specific P AOX1 expression rate of both cultures saturates to the same value. Analysis of the data in the literature shows that the same phenomenon also occurs in continuous cultures of Escherichia coli fed with mixtures of lactose plus repressing/non-repressing carbon sources. The specific P lac expression rate is completely determined by the specific lactose consumption rate, regardless of the type of secondary carbon source, glycerol or glucose.
Collapse
Affiliation(s)
| | - Atul Narang
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
7
|
Liu B, Li H, Zhou H, Zhang J. Enhancing xylanase expression by Komagataella phaffii by formate as carbon source and inducer. Appl Microbiol Biotechnol 2022; 106:7819-7829. [DOI: 10.1007/s00253-022-12249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022]
|