1
|
Engin A. Bariatric Surgery in Obesity: Metabolic Quality Analysis and Comparison of Surgical Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:697-726. [PMID: 39287870 DOI: 10.1007/978-3-031-63657-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity is a constantly growing health problem which reduces quality of life and life expectancy. Bariatric surgery (BS) for obesity is considered when all other conservative treatment modalities have failed. Comparison of the multidisciplinary programs with BS regarding to the weight loss showed that substantial and durable weight reduction have been achieved only with bariatric surgical treatments. Although laparoscopic sleeve gastrectomy is the most popular BS, it has high long-term failure rates, and it is claimed that one of every three patients will undergo another bariatric procedure within a 10-year period. Although BS provides weight loss and improvement of metabolic comorbidities, in long-term follow-up, weight gain is observed in half of the patients, while decrease in bone mass and nutritional deficiencies occur in up to 90%. Moreover, despite significant weight loss, several psychological aspects of patients are worsened in comparison to preoperative levels. Nearly one-fifth of postoperative patients with "Loss-of-eating control" meet food addiction criteria. Therefore, the benefits of weight loss following bariatric procedures alone are still debated in terms of the proinflammatory and metabolic profile of obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
2
|
Phillips CL, Grayson BE. The immune remodel: Weight loss-mediated inflammatory changes to obesity. Exp Biol Med (Maywood) 2020; 245:109-121. [PMID: 31955604 PMCID: PMC7016415 DOI: 10.1177/1535370219900185] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity is an escalating world problem that contributes to the complexity and cost of treatment of metabolic disorders. Obesity is the result of increased storage of energy in the form of adipose tissue, reducing the quality of daily life, and interfering with longevity. Obesity is also a chronic, low-grade inflammatory disorder. The inflammatory processes affect many organ systems with expanded numbers of immune cells and increased cytokine production. Long-term weight loss is difficult to achieve and maintain. Lifestyle modifications, pharmacologic treatments, and surgical methods are increasingly utilized to ameliorate excess body weight and the comorbidities of obesity, such as diabetes, cardiovascular disease, dyslipidemia, and cancers. Weight loss is also touted to reduce inflammation. Here we review the current literature on human obesity-related systemic and local changes to the immune system and circulating inflammatory mediators. Further, we consider the impact of weight loss to reduce the burden of inflammation, bearing in mind the different methods of weight loss—behavioral change vs. surgical intervention.
Collapse
Affiliation(s)
- Charles L Phillips
- Program in Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bernadette E Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
3
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
4
|
BALTIERI L, CHAIM EA, CHAIM FDM, UTRINI MP, GESTIC MA, CAZZO E. CORRELATION BETWEEN NONALCOHOLIC FATTY LIVER DISEASE FEATURES AND LEVELS OF ADIPOKINES AND INFLAMMATORY CYTOKINES AMONG MORBIDLY OBESE INDIVIDUALS. ARQUIVOS DE GASTROENTEROLOGIA 2018; 55:247-251. [PMID: 30540086 DOI: 10.1590/s0004-2803.201800000-62] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/28/2018] [Indexed: 01/01/2023]
Abstract
ABSTRACT BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the commonest hepatopathy worldwide. OBJECTIVE: To investigate the correlations between NAFLD histopathological features and the levels of adipokines (adiponectin, leptin, and resistin) and circulating inflammatory markers (interleukin-6 [IL-6], interleukin-8 [IL-8], tumor necrosis factor alpha [TNF-α], and C-reactive protein [CRP]). METHODS: This is an exploratory cross-sectional study, which enrolled 19 women with obesity who underwent bariatric surgery. Biochemical characteristics evaluated included the levels of adiponectin, leptin, resistin, IL-6, IL-8, TNF-α, and CRP. NAFLD was assessed through histological examination of liver biopsies carried out during the surgical procedures. RESULTS: The mean age of the study group was 37.3±8.2 years old; mean BMI was 36.2±2.5 kg/m2. Among individuals with liver fibrosis, the levels of IL-8 were significantly higher (24.4 ± 9.7 versus 12.7 ± 6.6; P=0.016726). The intensity of fibrosis presented a significant negative correlation with the levels of adiponectin (R= -0.49379; P=0.03166); i.e. the higher the levels of adiponectin, the lower the intensity of fibrosis. The intensity of steatohepatitis presented a significant negative correlation with the levels of adiponectin (R= -0.562321; P=0.01221); this means that the higher the levels of adiponectin, the lower the intensity of steatohepatitis. CONCLUSION: Adiponectin levels were inversely correlated with the severity of fibrosis and steatohepatitis, whereas IL-8 levels were higher in individuals with liver fibrosis among individuals with obesity and NAFLD undergoing bariatric surgery. The use of these markers to assess NAFLD may bring significant information within similar populations.
Collapse
|
5
|
Noumi Y, Kawamura R, Tabara Y, Maruyama K, Takata Y, Nishida W, Okamoto A, Nishimiya T, Onuma H, Saito I, Tanigawa T, Osawa H. An inverse association between serum resistin levels and n-3 polyunsaturated fatty acids intake was strongest in the SNP-420 G/G genotype in the Japanese cohort: The Toon Genome Study. Clin Endocrinol (Oxf) 2018; 88:51-57. [PMID: 29044636 DOI: 10.1111/cen.13500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Resistin is secreted by monocytes/macrophages and is associated with insulin resistance, inflammation and cardiovascular diseases. In the Japanese cohort, serum resistin is tightly associated with a single-nucleotide polymorphism (SNP) at -420 (rs1862513) in the promoter region of the human resistin gene. However, interactions between SNP-420 and environmental factors remain to be elucidated. The aim of this study was to investigate the association between serum resistin levels and nutrient intake, and the effect of SNP-420 on this association. DESIGN, PARTICIPANTS AND MEASUREMENTS The Toon Genome Study is a cohort study of Japanese community-dwelling subjects. A total of 1981 participants were cross-sectionally analysed. Each nutrient intake was assessed using the semiquantitative food frequency questionnaire and categorized into the quartiles (Q1-Q4). Serum resistin was measured by ELISA. RESULTS Serum resistin tended to be inversely associated with fish intake and positively associated with meat intake after adjustment for age, sex, BMI and energy intake. Serum resistin was inversely associated with n-3 polyunsaturated fatty acids (PUFA) intake after adjustment for age, sex, BMI and energy intake (Q1 12.5, Q2 12.5, Q3 12.2, Q4 11.5 ng/mL; P for trend = .007). This inverse association was strongest in the G/G genotype of SNP-420, followed by C/G and C/C (G/G, Q1 18.9, Q2 19.5, Q3 18.4, Q4 14.5 ng/mL, P = .001; C/G, 14.4, 13.3, 13.1, 12.9, P = .015; C/C, 9.5, 9.5, 9.2, 8.8, P = .020; P for interaction = .004). CONCLUSIONS The inverse association between serum resistin and n-3 PUFA intake was strongest in SNP-420 G/G genotype in the Japanese cohort.
Collapse
Affiliation(s)
- Yukinobu Noumi
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ryoichi Kawamura
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koutatsu Maruyama
- Department of Public Health, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasunori Takata
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Wataru Nishida
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ai Okamoto
- Department of Clinical Laboratory, Ehime University Hospital, Ehime, Japan
| | - Tatsuya Nishimiya
- Department of Clinical Laboratory, Ehime University Hospital, Ehime, Japan
| | - Hiroshi Onuma
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Isao Saito
- Department of Community Health Systems Nursing, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takeshi Tanigawa
- Department of Public Health, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruhiko Osawa
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
6
|
MiR-34a regulates mitochondrial content and fat ectopic deposition induced by resistin through the AMPK/PPARα pathway in HepG2 cells. Int J Biochem Cell Biol 2017; 94:133-145. [PMID: 29197627 DOI: 10.1016/j.biocel.2017.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/20/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Resistin is an adipocyte-derived cytokine and was named for its role in the development of insulin resistance. Increased serum resistin levels are also associated with steatohepatitis and non-alcoholic fatty liver disease. In a previous study, resistin was observed to reduce mitochondrial content and upregulate miR-34a significantly in the liver. In this study, male C57BL/6 mice were injected with agomir-34a or control agomir, and HepG2 cells were transfected with miR-34a mimics or inhibitors to assess their role in resistin-induced fat deposition. The overexpression of miR-34a increased liver and HepG2 cell TAG content, decreased mitochondrial content, changed mitochondrial morphology and impaired mitochondrial function. In contrast, a miR-34a inhibitor significantly restored the TAG content and mitochondrial transmembrane potential. A study of transcriptional regulation revealed that C/EBPβ is essential for upregulating miR-34a by resistin. Furthermore, miR-34a inhibited the PPARα signaling pathway by binding to sites in the 3'UTR of AdipoR2 genes and the AMPK pathway. Consequently, this increased the fat content and decreased the mitochondrial content in HepG2 cells. This paper reveals a novel mechanism for mitochondrial regulation, which suggests that normal mitochondrial content and function is crucial for lipid metabolism in the liver.
Collapse
|
7
|
Does Bariatric Surgery Improve Obesity Associated Comorbid Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:545-570. [PMID: 28585216 DOI: 10.1007/978-3-319-48382-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Obesity is a constantly growing health problem which reduces quality of life and life expectancy. Bariatric surgery for obesity is taken into account when all other conservative treatment modalities have failed. Comparison of the multidisciplinary programs with bariatric surgery regarding to weight loss showed that substantial and durable weight reduction have been achieved only with bariatric surgical treatments. However, the benefits of weight loss following bariatric procedures are still debated regarding the pro-inflammatory and metabolic profile of obesity.
Collapse
|
8
|
Polyzos SA, Kountouras J, Mantzoros CS. Adipokines in nonalcoholic fatty liver disease. Metabolism 2016; 65:1062-79. [PMID: 26725002 DOI: 10.1016/j.metabol.2015.11.006] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/13/2022]
Abstract
Since the discovery of adipose tissue as a higly active endocrine tissue, adipokines, peptides produced by adipose tissue and exerting autocrine, paracrine and endocrine function, have gained increasing interest in various obesity-related diseases, including nonalcoholic fatty liver disease (NAFLD). Data regarding the association between NAFLD and circulating leptin and adiponectin levels are generally well documented: leptin levels increase, whereas adiponectin levels decrease, by increasing the severity of NAFLD. Data regarding other adipokines in histologically confirmed NAFLD populations are inconclusive (e.g., resistin, visfatin, retinol-binding protein-4, chemerin) or limited (e.g., adipsin, obestatin, omentin, vaspin etc.). This review summarizes evidence on the association between adipokines and NAFLD. The first part of the review provides general consideration on the interplay between adipokines and NAFLD, and the second part provides evidence on specific adipokines possibly involved in NAFLD pathogenesis. A thorough insight into the pathophysiologic mechanisms linking adipokines with NAFLD may result in the design of studies investigating the combined adipokine use as noninvasive diagnostic markers of NAFLD and new clinical trials targeting the treatment of NAFLD.
Collapse
Affiliation(s)
- Stergios A Polyzos
- Second Medical Clinic, Department of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece.
| | - Jannis Kountouras
- Second Medical Clinic, Department of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Wen F, Li B, Huang C, Wei Z, Zhou Y, Liu J, Zhang H. MiR-34a is Involved in the Decrease of ATP Contents Induced by Resistin Through Target on ATP5S in HepG2 Cells. Biochem Genet 2015; 53:301-9. [PMID: 26385595 DOI: 10.1007/s10528-015-9693-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/05/2015] [Indexed: 01/22/2023]
Abstract
Resistin is associated with metabolic syndrome and deciphering its developmental and molecular mechanisms may help the development of new treatments. MiRNAs serve as negative regulators in many physiological and pathological processes. Here, miRNA microarrays were used to detect differences in expression between resistin-treated and control mice, and results showed miR-34a to be upregulated by resistin. The purpose of this study was to determine whether miR-34a played a role in resistin-induced decrease of ATP contents. Transient transfection of miR-34a mimics was used to overexpress miR-34a and quantitative RT-PCR was used to detect its expression. Western blot analysis was used to determine the rate of expression at the protein level. ATP content was measured using an ATP assay kit. The target gene of miR-34a was analyzed using bioinformatics and confirmed with dual-luciferase report system. MiR-34a was upregulated by resistin in HepG2 cells, and overexpression of miR-34a was found to diminish ATP levels significantly. This study is the first to show that ATP5S is one of the target genes of miR-34a. Resistin diminishes ATP content through the targeting of ATP5S mRNA 3'UTR by miR-34a.
Collapse
Affiliation(s)
- Fengyun Wen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China.
| | - Bin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Chunyan Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhiguo Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Yingying Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Jianyu Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Haiwei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| |
Collapse
|
10
|
Wen F, Zhang H, Bao C, Yang M, Wang N, Zhang J, Hu Y, Yang X, Geng J, Yang Z. Resistin Increases Ectopic Deposition of Lipids Through miR-696 in C2C12 Cells. Biochem Genet 2015; 53:63-71. [DOI: 10.1007/s10528-015-9672-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 04/04/2015] [Indexed: 12/19/2022]
|
11
|
Mells JE, Fu PP, Kumar P, Smith T, Karpen SJ, Anania FA. Saturated fat and cholesterol are critical to inducing murine metabolic syndrome with robust nonalcoholic steatohepatitis. J Nutr Biochem 2014; 26:285-92. [PMID: 25577467 DOI: 10.1016/j.jnutbio.2014.11.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome (MetS). Up to a third of NAFLD subjects are at risk for developing nonalcoholic steatohepatitis (NASH). Many rodent models fail to replicate both MetS and NASH. The purpose of this study was to develop a reliable mouse model of NASH and MetS using a diet containing cholesterol, saturated fat and carbohydrate that is reflective of Western diets of North Americans. EXPERIMENTAL DESIGN We used adult male C57BL/6 J 4- to 5-week-old mice and administered a solid diet containing 0.2% cholesterol, 45% of its calories from fat, with 30% of the fat in the form of partially hydrogenated vegetable oil. We also provided carbohydrate largely as high-fructose corn syrup equivalent in water. In a separate cohort, we gave the identical diet in the absence of cholesterol. Glucose and insulin tolerance testing was conducted throughout the feeding period. The feeding was conducted for 16 weeks, and the mice were sacrificed for histological analysis, markers of MetS, liver inflammation, circulating lipids, as well as liver staining for fibrosis and alpha smooth muscle actin (α-SMA). RESULTS We found that cholesterol significantly increased serum leptin, interleukin-6, liver weight and liver weight/body weight ratio, fibrosis and liver α-SMA. CONCLUSIONS Mice administered a diet accurately reflecting patterns associated with humans afflicted with MetS can reliably replicate features of MetS, NASH and significant liver fibrosis. The model we describe significantly reduces the time by several months for development of stage 3 hepatic fibrosis.
Collapse
Affiliation(s)
- Jamie E Mells
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ping P Fu
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Saul J Karpen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
12
|
Wen F, Yang Y, Jin D, Sun J, Yu X, Yang Z. MiRNA-145 is involved in the development of resistin-induced insulin resistance in HepG2 cells. Biochem Biophys Res Commun 2014; 445:517-23. [PMID: 24548410 DOI: 10.1016/j.bbrc.2014.02.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND Resistin is associated with insulin resistance, and determining its developmental and molecular mechanisms may help the development of novel treatments. MicroRNAs (miRNAs) are involved in many physiological and pathological processes as negative regulators. However, it remains unclear whether miRNAs play a role in resistin-induced insulin resistance. We performed mouse liver miRNA microarrays to analyze the differences in expression between resistin-treated and control mice. Resistin upregulated miR-145 both in vivo and in vitro. Therefore, we aimed to study whether miR-145 played a role in resistin-induced insulin resistance. METHODS AND RESULTS We transfected HepG2 cells, and used miR-145 mimics and inhibitors to assess the role of miR-145 in resistin-induced insulin resistance. The overexpression of miR-145 inhibited glucose uptake in HepG2 cells, diminished the phosphorylation of Akt and IRS-1, and induced insulin resistance in hepatocytes. Next, a study of transcriptional regulation revealed that p65 was essential for the upregulation of miR-145 by resistin, and chromatin immunoprecipitation (ChIP) confirmed that p65 could bind to the promoter region of miR-145. CONCLUSION miR-145 plays a role in the development of resistin-induced insulin resistance via the p65 pathway.
Collapse
Affiliation(s)
- Fengyun Wen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Yi Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Dan Jin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Jun Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Xiaoling Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Zaiqing Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
13
|
Rizvi AA, Nikolic D, Sallam HS, Montalto G, Rizzo M, Abate N. Adipokines and Lipoproteins: Modulation by Antihyperglycemic and Hypolipidemic Agents. Metab Syndr Relat Disord 2014; 12:1-10. [DOI: 10.1089/met.2013.0090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Ali A. Rizvi
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Dragana Nikolic
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Hanaa S. Sallam
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Internal Medicine, Division of Endocrinology, University of Texas Medical Branch, Galveston, Texas
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Manfredi Rizzo
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, South Carolina
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Nicola Abate
- Department of Internal Medicine, Division of Endocrinology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
14
|
Dong ZX, Su L, Brymora J, Bird C, Xie Q, George J, Wang JH. Resistin mediates the hepatic stellate cell phenotype. World J Gastroenterol 2013; 19:4475-4485. [PMID: 23901222 PMCID: PMC3725371 DOI: 10.3748/wjg.v19.i28.4475] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/13/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To describe the role of resistin in liver fibrosis.
METHODS: For the in vivo animal study, Sprague Dawley rats were subjected to bile duct ligation (BDL) for 4 wk. Rat liver, adipose tissue (epididymal fat) and serum were analyzed for resistin expression. For the in vitro experiment, rat primary hepatic stellate cells (HSCs) and Kupffer cells (KCs) were used. HSCs were exposed to recombinant resistin, and collagen I, transforming growth factor β1, α smooth muscle actin, tissue inhibitor of metalloproteinase 1 and connective tissue growth factor expression were analyzed. Resistin gene and protein expression was quantified as was the expression of pro-inflammatory cytokines including tumor necrosis factor α (TNFα), interleukin (IL)-1, IL-6, IL-8 and monocyte chemotactic protein-1 (MCP-1). The effects of resistin on HSC proliferation, migration and apoptosis were determined. The effects of resistin on KCs were also investigated.
RESULTS: Following BDL, rat epididymal fat and serum rather than liver showed higher resistin expression compared to control rats. In liver, resistin was expressed in quiescent HSCs and KCs. Resistin treatment resulted in enhancement of TNFα, IL-6, IL-8 and MCP-1 gene expression and increased IL-6 and MCP-1 protein in HSCs. Resistin activated HSC phospho-MAPK/p38, and p38 inhibition diminished IL-6 and MCP-1 expression. Furthermore, resistin facilitated HSC proliferation and migration, but decreased apoptosis which was via an IL-6 and MCP-1 mechanism. Finally, resistin-induced transforming growth factor β1 from KCs enhanced HSC collagen Iexpression.
CONCLUSION: Resistin directly and indirectly modulates HSC behavior towards a more pro-fibrogenic phenotype.
Collapse
|