1
|
Michelfelder S, Fischer F, Wäldin A, Hörle KV, Pohl M, Parsons J, Reski R, Decker EL, Zipfel PF, Skerka C, Häffner K. The MFHR1 Fusion Protein Is a Novel Synthetic Multitarget Complement Inhibitor with Therapeutic Potential. J Am Soc Nephrol 2018; 29:1141-1153. [PMID: 29335241 DOI: 10.1681/asn.2017070738] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
The complement system is essential for host defense, but uncontrolled complement system activation leads to severe, mostly renal pathologies, such as atypical hemolytic uremic syndrome or C3 glomerulopathy. Here, we investigated a novel combinational approach to modulate complement activation by targeting C3 and the terminal pathway simultaneously. The synthetic fusion protein MFHR1 links the regulatory domains of complement factor H (FH) with the C5 convertase/C5b-9 inhibitory fragment of the FH-related protein 1. In vitro, MFHR1 showed cofactor and decay acceleration activity and inhibited C5 convertase activation and C5b-9 assembly, which prevented C3b deposition and reduced C3a/C5a and C5b-9 generation. Furthermore, this fusion protein showed the ability to escape deregulation by FH-related proteins and form multimeric complexes with increased inhibitory activity. In addition to substantially inhibiting alternative and classic pathway activation, MFHR1 blocked hemolysis mediated by serum from a patient with aHUS expressing truncated FH. In FH-/- mice, MFHR1 administration augmented serum C3 levels, reduced abnormal glomerular C3 deposition, and ameliorated C3 glomerulopathy. Taking the unique design of MFHR1 into account, we suggest that the combination of proximal and terminal cascade inhibition together with the ability to form multimeric complexes explain the strong inhibitory capacity of MFHR1, which offers a novel basis for complement therapeutics.
Collapse
Affiliation(s)
- Stefan Michelfelder
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | - Friedericke Fischer
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | - Astrid Wäldin
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | - Kim V Hörle
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | | | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, and.,Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany; and
| | | | - Peter F Zipfel
- Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Jena, Germany
| | - Christine Skerka
- Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Jena, Germany
| | - Karsten Häffner
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine,
| |
Collapse
|
2
|
Michelfelder S, Parsons J, Bohlender LL, Hoernstein SNW, Niederkrüger H, Busch A, Krieghoff N, Koch J, Fode B, Schaaf A, Frischmuth T, Pohl M, Zipfel PF, Reski R, Decker EL, Häffner K. Moss-Produced, Glycosylation-Optimized Human Factor H for Therapeutic Application in Complement Disorders. J Am Soc Nephrol 2016; 28:1462-1474. [PMID: 27932477 DOI: 10.1681/asn.2015070745] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/07/2016] [Indexed: 01/15/2023] Open
Abstract
Genetic defects in complement regulatory proteins can lead to severe renal diseases, including atypical hemolytic uremic syndrome and C3 glomerulopathies, and age-related macular degeneration. The majority of the mutations found in patients with these diseases affect the glycoprotein complement factor H, the main regulator of the alternative pathway of complement activation. Therapeutic options are limited, and novel treatments, specifically those targeting alternative pathway activation, are highly desirable. Substitution with biologically active factor H could potentially treat a variety of diseases that involve increased alternative pathway activation, but no therapeutic factor H is commercially available. We recently reported the expression of full-length recombinant factor H in moss (Physcomitrella patens). Here, we present the production of an improved moss-derived recombinant human factor H devoid of potentially immunogenic plant-specific sugar residues on protein N-glycans, yielding approximately 1 mg purified moss-derived human factor H per liter of initial P. patens culture after a multistep purification process. This glycosylation-optimized factor H showed full in vitro complement regulatory activity similar to that of plasma-derived factor H and efficiently blocked LPS-induced alternative pathway activation and hemolysis induced by sera from patients with atypical hemolytic uremic syndrome. Furthermore, injection of moss-derived factor H reduced C3 deposition and increased serum C3 levels in a murine model of C3 glomerulopathy. Thus, we consider moss-produced recombinant human factor H a promising pharmaceutical product for therapeutic intervention in patients suffering from complement dysregulation.
Collapse
Affiliation(s)
- Stefan Michelfelder
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lennard L Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | - Jonas Koch
- Greenovation Biotech GmbH, Freiburg, Germany
| | | | | | | | - Martin Pohl
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Peter F Zipfel
- Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Jena, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany; and.,FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany;
| | - Karsten Häffner
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany;
| |
Collapse
|
3
|
Rusai K, Zaller V, Szilagyi A, Kain R, Prohaszka Z, Cook HT, Aufricht C, Arbeiter K. A rare case: childhood-onset C3 glomerulonephritis due to homozygous factor H deficiency. CEN Case Rep 2013; 2:234-238. [PMID: 28509298 DOI: 10.1007/s13730-013-0070-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/18/2013] [Indexed: 12/25/2022] Open
Abstract
C3 glomerulopathy is a recently described pathological entity including dense deposit disease and C3 glomerulonephritis (C3GN). In some cases, C3 glomerulopathy is associated with defects or even complete deficiency of factor H. However, complete factor H deficiency among patients with C3GN is rare, and paediatric cases have not yet been described. Here, we report a child with homozygous factor H deficiency who presented with haematuria and minor proteinuria, together with undetectable plasma C3 levels, at the age of 10 years. Kidney biopsy demonstrated C3GN. Detailed complement analysis revealed complete factor H deficiency due to a homozygous CFH mutation. Furthermore, there was a complete deletion of CFHR-1/-3. During follow-up, the patient has had recurrent episodes of macro-haematuria and minor proteinuria, but during 4 years of follow-up, no deterioration of renal function has been observed. Mutations of factor H in C3GN have been described; however, complete CFH deficiency is rare in these patients. Furthermore, clinical presentation usually occurs in adulthood. Therefore, this case presents a rare manifestation of the disease and might contribute to the early detection of similar cases also in childhood.
Collapse
Affiliation(s)
- Krisztina Rusai
- Department of Pediatrics and Adolescent Medicine, Pediatric Nephrology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Vera Zaller
- Department of Pediatrics and Adolescent Medicine, Pediatric Nephrology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Agnes Szilagyi
- 3rd Department of Internal Medicine, Research Laboratory, Semmelweis University, Kútvölgyi út 4, Budapest, 1125, Hungary
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Zoltan Prohaszka
- 3rd Department of Internal Medicine, Research Laboratory, Semmelweis University, Kútvölgyi út 4, Budapest, 1125, Hungary
| | - H Terence Cook
- Centre for Complement and Inflammation Research, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Christoph Aufricht
- Department of Pediatrics and Adolescent Medicine, Pediatric Nephrology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Klaus Arbeiter
- Department of Pediatrics and Adolescent Medicine, Pediatric Nephrology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
4
|
Abstract
Hemolytic uremic syndrome (HUS) is defined by the triad of mechanical hemolytic anemia, thrombocytopenia and renal impairment. Atypical HUS (aHUS) defines non Shiga-toxin-HUS and even if some authors include secondary aHUS due to Streptococcus pneumoniae or other causes, aHUS designates a primary disease due to a disorder in complement alternative pathway regulation. Atypical HUS represents 5 -10% of HUS in children, but the majority of HUS in adults. The incidence of complement-aHUS is not known precisely. However, more than 1000 aHUS patients investigated for complement abnormalities have been reported. Onset is from the neonatal period to the adult age. Most patients present with hemolytic anemia, thrombocytopenia and renal failure and 20% have extra renal manifestations. Two to 10% die and one third progress to end-stage renal failure at first episode. Half of patients have relapses. Mutations in the genes encoding complement regulatory proteins factor H, membrane cofactor protein (MCP), factor I or thrombomodulin have been demonstrated in 20-30%, 5-15%, 4-10% and 3-5% of patients respectively, and mutations in the genes of C3 convertase proteins, C3 and factor B, in 2-10% and 1-4%. In addition, 6-10% of patients have anti-factor H antibodies. Diagnosis of aHUS relies on 1) No associated disease 2) No criteria for Shigatoxin-HUS (stool culture and PCR for Shiga-toxins; serology for anti-lipopolysaccharides antibodies) 3) No criteria for thrombotic thrombocytopenic purpura (serum ADAMTS 13 activity > 10%). Investigation of the complement system is required (C3, C4, factor H and factor I plasma concentration, MCP expression on leukocytes and anti-factor H antibodies; genetic screening to identify risk factors). The disease is familial in approximately 20% of pedigrees, with an autosomal recessive or dominant mode of transmission. As penetrance of the disease is 50%, genetic counseling is difficult. Plasmatherapy has been first line treatment until presently, without unquestionable demonstration of efficiency. There is a high risk of post-transplant recurrence, except in MCP-HUS. Case reports and two phase II trials show an impressive efficacy of the complement C5 blocker eculizumab, suggesting it will be the next standard of care. Except for patients treated by intensive plasmatherapy or eculizumab, the worst prognosis is in factor H-HUS, as mortality can reach 20% and 50% of survivors do not recover renal function. Half of factor I-HUS progress to end-stage renal failure. Conversely, most patients with MCP-HUS have preserved renal function. Anti-factor H antibodies-HUS has favourable outcome if treated early.
Collapse
Affiliation(s)
- Chantal Loirat
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Université Paris VII, Pediatric Nephrology Department, Paris, France.
| | | |
Collapse
|
5
|
Abstract
Hemolytic uremic syndrome (HUS) is defined by the triad of mechanical hemolytic anemia, thrombocytopenia and renal impairment. Atypical HUS (aHUS) defines non Shiga-toxin-HUS and even if some authors include secondary aHUS due to Streptococcus pneumoniae or other causes, aHUS designates a primary disease due to a disorder in complement alternative pathway regulation. Atypical HUS represents 5 -10% of HUS in children, but the majority of HUS in adults. The incidence of complement-aHUS is not known precisely. However, more than 1000 aHUS patients investigated for complement abnormalities have been reported. Onset is from the neonatal period to the adult age. Most patients present with hemolytic anemia, thrombocytopenia and renal failure and 20% have extra renal manifestations. Two to 10% die and one third progress to end-stage renal failure at first episode. Half of patients have relapses. Mutations in the genes encoding complement regulatory proteins factor H, membrane cofactor protein (MCP), factor I or thrombomodulin have been demonstrated in 20-30%, 5-15%, 4-10% and 3-5% of patients respectively, and mutations in the genes of C3 convertase proteins, C3 and factor B, in 2-10% and 1-4%. In addition, 6-10% of patients have anti-factor H antibodies. Diagnosis of aHUS relies on 1) No associated disease 2) No criteria for Shigatoxin-HUS (stool culture and PCR for Shiga-toxins; serology for anti-lipopolysaccharides antibodies) 3) No criteria for thrombotic thrombocytopenic purpura (serum ADAMTS 13 activity > 10%). Investigation of the complement system is required (C3, C4, factor H and factor I plasma concentration, MCP expression on leukocytes and anti-factor H antibodies; genetic screening to identify risk factors). The disease is familial in approximately 20% of pedigrees, with an autosomal recessive or dominant mode of transmission. As penetrance of the disease is 50%, genetic counseling is difficult. Plasmatherapy has been first line treatment until presently, without unquestionable demonstration of efficiency. There is a high risk of post-transplant recurrence, except in MCP-HUS. Case reports and two phase II trials show an impressive efficacy of the complement C5 blocker eculizumab, suggesting it will be the next standard of care. Except for patients treated by intensive plasmatherapy or eculizumab, the worst prognosis is in factor H-HUS, as mortality can reach 20% and 50% of survivors do not recover renal function. Half of factor I-HUS progress to end-stage renal failure. Conversely, most patients with MCP-HUS have preserved renal function. Anti-factor H antibodies-HUS has favourable outcome if treated early.
Collapse
|
6
|
Waters AM, Licht C. aHUS caused by complement dysregulation: new therapies on the horizon. Pediatr Nephrol 2011; 26:41-57. [PMID: 20556434 PMCID: PMC2991208 DOI: 10.1007/s00467-010-1556-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 12/19/2022]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a heterogeneous disease that is caused by defective complement regulation in over 50% of cases. Mutations have been identified in genes encoding both complement regulators [complement factor H (CFH), complement factor I (CFI), complement factor H-related proteins (CFHR), and membrane cofactor protein (MCP)], as well as complement activators [complement factor B (CFB) and C3]. More recently, mutations have also been identified in thrombomodulin (THBD), an anticoagulant glycoprotein that plays a role in the inactivation of C3a and C5a. Inhibitory autoantibodies to CFH account for an additional 5-10% of cases and can occur in isolation or in association with mutations in CFH, CFI, CFHR 1, 3, 4, and MCP. Plasma therapies are considered the mainstay of therapy in aHUS secondary to defective complement regulation and may be administered as plasma infusions or plasma exchange. However, in certain cases, despite initiation of plasma therapy, renal function continues to deteriorate with progression to end-stage renal disease and renal transplantation. Recently, eculizumab, a humanized monoclonal antibody against C5, has been described as an effective therapeutic strategy in the management of refractory aHUS that has failed to respond to plasma therapy. Clinical trials are now underway to further evaluate the efficacy of eculizumab in the management of both plasma-sensitive and plasma-resistant aHUS.
Collapse
Affiliation(s)
- Aoife M Waters
- Department of Nephrology, Great Ormond Street Hospital, London, WC1N 3JH, UK.
| | | |
Collapse
|
7
|
Clinical practice. Today's understanding of the haemolytic uraemic syndrome. Eur J Pediatr 2010; 169:7-13. [PMID: 19707787 DOI: 10.1007/s00431-009-1039-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 07/30/2009] [Indexed: 12/19/2022]
Abstract
The haemolytic uraemic syndrome (HUS) includes the triad of haemolytic anaemia, thrombocytopenia, and acute renal failure. The classical form [D(+) HUS] is caused by infectious agents, and it is a common cause of acute renal failure in children. The enterohaemorrhagic Escherichia coli-producing Shiga toxin (Stx) is the most common infectious agent causing HUS. Other infectious agents are Shigella and Streptococcus pneumoniae. Infections by S. pneumoniae can be particularly severe and has a higher acute mortality and a higher long-term morbidity compared to HUS by Stx. Atypical HUS [D(-)Stx(-)HUS] are often used by paediatricians to indicate a presentation of HUS without preceding diarrhoea. Almost all patients with D(-)Stx(-)HUS have a defect in the alternative pathway, for example, mutations in the genes for complement factor H, factor I, and membrane co-factor protein. Mutations in the factor H gene are described more often. The majority of children with D(+) HUS develop some degree of renal insufficiency, and approximately two thirds of children with HUS will require dialysis therapy, while about one third will have milder renal involvement without the need for dialysis therapy. General management of acute renal failure includes appropriate fluid and electrolyte management, antihypertensive therapy, and the initiation of renal replacement therapy when appropriate. Specific management issues in HUS include management of the haematological complications of HUS, monitoring for extra-renal involvement, avoiding antidiarrhoeal drugs, and possibly avoiding of antibiotic therapy. In addition to the obligatory supportive treatment and tight control of hypertension, there is anecdotal evidence that plasma therapy may induce remission and, in some cases, maintain it. Fresh frozen plasma contains factor H at physiological concentrations. A new therapy for D(-)Stx(-)HUS is a humanised monoclonal antibody (Eculizumab) that blocks complement activity by cleavage of the complement protein C5. It prevents the generation of the inflammatory peptide C5a and the cytotoxic membrane-attack complex C5b-9. We have first positive results, but it is still not approved for HUS.
Collapse
|
8
|
Ariceta G, Besbas N, Johnson S, Karpman D, Landau D, Licht C, Loirat C, Pecoraro C, Taylor CM, Van de Kar N, Vandewalle J, Zimmerhackl LB. Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome. Pediatr Nephrol 2009; 24:687-96. [PMID: 18800230 DOI: 10.1007/s00467-008-0964-1] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 12/13/2022]
Abstract
This guideline for the investigation and initial treatment of atypical hemolytic uremic syndrome (HUS) is intended to offer an approach based on opinion, as evidence is lacking. It builds on the current ability to identify the etiology of specific diagnostic sub-groups of HUS. HUS in children is mostly due to infection, enterohemorrhagic Escherichia coli (EHEC), Shigella dysenteriae type 1 in some geographic regions, and invasive Streptococcus pneumoniae. These sub-groups are relatively straightforward to diagnose. Their management, which is outside the remit of this guideline, is related to control of infection where that is necessary and supportive measures for the anemia and acute renal failure. A thorough investigation of the remainder of childhood HUS cases, commonly referred to as "atypical" HUS, will reveal a risk factor for the syndrome in approximately 60% of cases. Disorders of complement regulation are, numerically, the most important. The outcome for children with atypical HUS is poor, and, because of the rarity of these disorders, clinical experience is scanty. Some cases of complement dysfunction appear to respond to plasma therapy. The therapeutic part of this guideline is the consensus of the contributing authors and is based on limited information from uncontrolled studies. The guideline proposes urgent and empirical plasmapheresis replacement with whole plasma fraction for the first month after diagnosis. This should only be undertaken in specialized pediatric nephrology centers where appropriate medical and nursing skills are available. The guideline includes defined terminology and audit points so that the early clinical effectiveness of the strategy can be evaluated.
Collapse
|
9
|
|
10
|
Saland JM, Ruggenenti P, Remuzzi G. Liver-kidney transplantation to cure atypical hemolytic uremic syndrome. J Am Soc Nephrol 2008; 20:940-9. [PMID: 19092117 DOI: 10.1681/asn.2008080906] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atypical hemolytic uremic syndrome is often associated with mutations in genes encoding complement regulatory proteins and secondary disorders of complement regulation. Progression to kidney failure and recurrence with graft loss after kidney transplantation are frequent. The most common mutation is in the gene encoding complement factor H. Combined liver-kidney transplantation may correct this complement abnormality and prevent recurrence when the defect involves genes encoding circulating proteins that are synthesized in the liver, such as factor H or I. Good outcomes have been reported when surgery is associated with intensified plasma therapy. A consensus conference to establish treatment guidelines for atypical hemolytic uremic syndrome was held in Bergamo in December 2007. The recommendations in this article are the result of combined clinical experience, shared research expertise, and a review of the literature and registry information. This statement defines groups in which isolated kidney transplantation is extremely unlikely to be successful and a combined liver-kidney transplant is recommended and also defines those for whom kidney transplant remains a viable option. Although combined liver-kidney or isolated liver transplantation is the preferred therapeutic option in many cases, the gravity of risk associated with the procedure has not been eliminated completely, and assessment of risk and benefit requires careful and individual attention.
Collapse
Affiliation(s)
- Jeffrey M Saland
- Recanati/Miller, Mount Sinai Medical Center, New York, New York, USA
| | | | | | | |
Collapse
|
11
|
Saland JM, Shneider BL, Bromberg JS, Shi PA, Ward SC, Magid MS, Benchimol C, Seikaly MG, Emre SH, Bresin E, Remuzzi G. Successful split liver-kidney transplant for factor H associated hemolytic uremic syndrome. Clin J Am Soc Nephrol 2008; 4:201-6. [PMID: 19005013 DOI: 10.2215/cjn.02170508] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES A male infant with a family history of thrombotic microangiopathy developed atypical hemolytic uremic syndrome (aHUS). DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Case report. RESULTS Genetic analysis demonstrated a heterozygous mutation (S1191L) of CFH, the gene coding complement factor H (CFH). The child suffered many episodes of HUS, each treated with plasma exchange. In time, despite initiation of a prophylactic regimen of plasma exchange, his renal function declined significantly. At the age of 4 yr he received a (split liver) combined liver-kidney transplant (LKT) with preoperative plasma exchange and enoxaparin anticoagulation. Initial function of both grafts was excellent and is maintained for nearly 2 yr. CONCLUSIONS This report adds to the small but growing number of individuals in whom LKT has provided a favorable outcome for aHUS associated with CFH mutation, expands the technique of using a split liver graft, and describes the unique histologic features of subclinical liver disease in HUS.
Collapse
Affiliation(s)
- Jeffrey M Saland
- Department of Pediatrics, The Mount Sinai Medical Center, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abarrategui-Garrido C, Melgosa M, Peña-Carrión A, de Jorge EG, de Córdoba SR, López-Trascasa M, Sánchez-Corral P. Mutations in proteins of the alternative pathway of complement and the pathogenesis of atypical hemolytic uremic syndrome. Am J Kidney Dis 2008; 52:171-80. [PMID: 18423815 DOI: 10.1053/j.ajkd.2008.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 01/02/2008] [Indexed: 11/11/2022]
Abstract
Atypical hemolytic uremic syndrome is associated with mutations in the complement proteins factor H, factor I, factor B, C3, or membrane cofactor protein in about 50% of patients. The evolution and prognosis of the disease in patients carrying mutations in factor H is particularly poor, and renal transplantation most often fails because of recurrence of the disease in the graft. The risk of rapid loss of renal function in patients with functional mutations in factor H requires that effective treatment be initiated as soon as possible, but identification of these patients relies on genetic studies that are time consuming. We describe a case in which an in vitro hemolytic assay proved useful for rapidly assessing factor H dysfunction and for testing whether this dysfunction could be corrected with fresh frozen plasma. In the context of this case, we summarize recent advances in understanding the molecular mechanisms contributing to atypical hemolytic uremic syndrome, including descriptions of DNA- and protein-based analysis. We conclude that functional analysis of factor H should help rationalize the plasma treatment of patients with atypical hemolytic uremic syndrome.
Collapse
|
13
|
Complement Factor H: Using Atomic Resolution Structure to Illuminate Disease Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [DOI: 10.1007/978-0-387-78952-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Davin JC, Strain L, Goodship THJ. Plasma therapy in atypical haemolytic uremic syndrome: lessons from a family with a factor H mutation. Pediatr Nephrol 2008; 23:1517-21. [PMID: 18483746 PMCID: PMC2459233 DOI: 10.1007/s00467-008-0833-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 02/13/2008] [Accepted: 03/06/2008] [Indexed: 11/23/2022]
Abstract
Whilst randomised control trials are undoubtedly the best way to demonstrate whether plasma exchange or infusion alone is the best first-line treatment for patients with atypical haemolytic uremic syndrome (aHUS), individual case reports can provide valuable information. To that effect, we have had the unique opportunity to follow over a 10-year period three sisters with aHUS associated with a factor H mutation (CFH). Two of the sisters are monozygotic twins. A similar natural evolution and response to treatment would be expected for the three patients, as they all presented with the same at-risk polymorphisms for CFH and CD46 and no identifiable mutation in either CD46 or CFI. Our report of different modalities of treatment of the initial episode and of three transplantations and relapses in the transplant in two of them, strongly suggest that intensive plasma exchange, both acutely and prophylactically, can maintain the long-term function of both native kidneys and allografts. In our experience, the success of plasma therapy is dependent on the use of plasma exchange as opposed to plasma infusion alone, the prolongation of daily plasma exchange after normalisation of haematological parameters followed by prophylactic plasma exchange, the use of prophylactic plasma exchange prior to transplantation and the use of prophylactic plasma exchange at least once a week posttransplant with immediate intensification of treatment if there are any signs of recurrence.
Collapse
Affiliation(s)
- Jean Claude Davin
- Pediatric Nephrology, Emma Children's Hospital/ Academic Medical Centre, 9 Meibergdreef, 1105, Amsterdam Z-O, The Netherlands.
| | - Lisa Strain
- grid.1006.70000000104627212Institute of Human Genetics, University of Newcastle Upon Tyne, Newcastle Upon Tyne, UK
| | - Tim H. J. Goodship
- grid.1006.70000000104627212Institute of Human Genetics, University of Newcastle Upon Tyne, Newcastle Upon Tyne, UK
| |
Collapse
|
15
|
Loirat C, Noris M, Fremeaux-Bacchi V. Complement and the atypical hemolytic uremic syndrome in children. Pediatr Nephrol 2008; 23:1957-72. [PMID: 18594873 PMCID: PMC6904381 DOI: 10.1007/s00467-008-0872-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/22/2008] [Accepted: 04/22/2008] [Indexed: 12/20/2022]
Abstract
Over the past decade, atypical hemolytic uremic syndrome (aHUS) has been demonstrated to be a disorder of the regulation of the complement alternative pathway. Among approximately 200 children with the disease, reported in the literature, 50% had mutations of the complement regulatory proteins factor H, membrane cofactor protein (MCP) or factor I. Mutations in factor B and C3 have also been reported recently. In addition, 10% of children have factor H dysfunction due to anti-factor H antibodies. Early age at onset appears as characteristic of factor H and factor I mutated patients, while MCP-associated HUS is not observed before age 1 year. Low C3 level may occur in patients with factor H and factor I mutation, while C3 level is generally normal in MCP-mutated patients. Normal plasma factor H and factor I levels do not preclude the presence of a mutation in these genes. The worst prognosis is for factor H-mutated patients, as 60% die or reach end-stage renal disease (ESRD) within the first year after onset of the disease. Patients with mutations in MCP have a relapsing course, but no patient has ever reached ESRD in the first year of the disease. Half of the patients with factor I mutations have a rapid evolution to ESRD, but half recover. Early intensive plasmatherapy appears to have a beneficial effect, except in MCP-mutated patients. There is a high risk of graft loss for HUS recurrence or thrombosis in all groups except the MCP-mutated group. Recent success of liver-kidney transplantation combined with plasmatherapy opens this option for patients with mutations of factors synthesized in the liver. New therapies such as factor H concentrate or complement inhibitors offer hope for the future.
Collapse
Affiliation(s)
- Chantal Loirat
- Hôpitaux de Paris, Université Paris 7, Hôpital Robert Debré, Pediatric Nephrology, Paris, France.
| | | | | |
Collapse
|
16
|
Noris M, Remuzzi G. Translational mini-review series on complement factor H: therapies of renal diseases associated with complement factor H abnormalities: atypical haemolytic uraemic syndrome and membranoproliferative glomerulonephritis. Clin Exp Immunol 2007; 151:199-209. [PMID: 18070148 DOI: 10.1111/j.1365-2249.2007.03558.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genetic and acquired abnormalities in complement factor H (CFH) have been associated with two different human renal diseases: haemolytic uraemic syndrome and membrano proliferative glomerulonephritis. The new genetic and pathogenetic findings in these diseases and their clinical implications for the management and cure of patients are reviewed in this paper.
Collapse
Affiliation(s)
- M Noris
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Mario Negri Institute for Pharmacological Research, Villa Camozzi - Ranica (BG), Italy.
| | | |
Collapse
|
17
|
Zimmerhackl LB, Scheiring J, Prüfer F, Taylor CM, Loirat C. Renal transplantation in HUS patients with disorders of complement regulation. Pediatr Nephrol 2007; 22:10-6. [PMID: 17058051 DOI: 10.1007/s00467-006-0210-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 04/20/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
Haemolytic uraemic syndrome (HUS) is the primary diagnosis of 4.5% of children on chronic renal replacement therapy. Approximately 5% of all HUS cases have an "atypical" or recurrent course. Atypical HUS is an inadequate term that applies to a heterogeneous group of conditions. We describe this group as non-diarrhoeal (D-) ), non-EHEC (EHEC - ) HUS. Patients in the non-diarrhoeal, non-EHEC, relapsing group are much more likely to exhibit severe hypertension, histological findings of arterial as well as arteriolar disease, chronic and end-stage renal failure. In general, these patients have an alarmingly high risk of graft loss from disease recurrence or thrombosis ranging from 60-100%. Family history is crucial, and where family members have relapsing disease, transplantation is a very high risk procedure (recurrence 100%). Patients with (D-)HUS need very careful consideration before transplantation, including molecular investigation of complement regulators (and von Willebrandt protease (ADAMTS13) activity, although this goes beyond the scope of this review). Guidelines are accessible under http://www.espn.ucwm.ac.uk . On no account should live related donation take place unless the risks of graft loss are understood. International collaboration to identify safer ways of transplanting these challenging patients is urgently needed.
Collapse
|
18
|
Affiliation(s)
- Hye Won Park
- Department of Pediatrics, Pochon CHA University, Sungnam, Korea
| |
Collapse
|
19
|
Abstract
Two forms of post-transplant thrombotic microangiopathy (TMA) may be recognized: recurrent TMA and de novo TMA. Recurrent TMA may occur in patients who developed a nondiarrhoeal form of haemolytic uraemic syndrome (HUS) being particularly frequent in patients with autosomal recessive or dominant HUS. The recurrence is almost the rule in patients with mutation in complement factor H gene. Most patients eventually lose the graft. Treatment with plasma infusions or plasmapheresis is often disappointing, but few cases may be rescued. Intravenous immunoglobulins and rituximab have also been successful in anedoctic cases. De novo TMA is rarer. A number of factors including viral infection may be responsible of de novo TMA, but in most cases TMA is triggered by calcineurin inhibitors or mTOR inhibitors. The clinical presentation of de novo TMA may be variable with some patients showing clinical and laboratory features of HUS while others showing only a progressive renal failure. The prognosis is less severe than with recurrent TMA. Complete withdrawal of the offending drug may lead to improvement in many cases. The addition of plasma exchange may result in graft salvage in about 80% of cases.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Department of Immunology, IRCCS, Istituto Auxologico Italiano, Milan, Italy.
| | | |
Collapse
|
20
|
Saland JM, Emre SH, Shneider BL, Benchimol C, Ames S, Bromberg JS, Remuzzi G, Strain L, Goodship THJ. Favorable long-term outcome after liver-kidney transplant for recurrent hemolytic uremic syndrome associated with a factor H mutation. Am J Transplant 2006; 6:1948-52. [PMID: 16889549 DOI: 10.1111/j.1600-6143.2006.01375.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A male child initially presented with atypical hemolytic uremic syndrome (HUS) at the age of 4 months and progressed within weeks to end stage renal disease (ESRD). At the age of 2 years he received a live-related kidney transplant from his mother, which, despite initial good function, was lost to recurrent disease after 2 weeks. Complement factor H analysis showed low serum levels and the presence of two mutations on different alleles (c.2918G > A, Cys973Tyr and c.3590T > C, Val1197Ala). His survival on dialysis was at risk because of access failure and recurrent bacteremic episodes. Therefore, at the age of 5 years he received a combined liver-kidney transplant with pre-operative plasma exchange. Initial function of both grafts was excellent and this has been maintained for over 2 years. This report suggests that despite setbacks in previous experience, combined liver-kidney transplantation offers the prospect of a favorable long-term outcome for patients with HUS associated with complement factor H mutations.
Collapse
Affiliation(s)
- J M Saland
- Department of Pediatrics, The Mount Sinai Medical Center, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zipfel PF, Heinen S, Józsi M, Skerka C. Complement and diseases: Defective alternative pathway control results in kidney and eye diseases. Mol Immunol 2006; 43:97-106. [PMID: 16026839 DOI: 10.1016/j.molimm.2005.06.015] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complement system is a central part of innate immunity and in its normal setting aimed to recognize and eliminate microbes. For elimination toxic activation products are generated locally and are reported directly of the surface of the invading microbe. A deregulation of the alternative pathway results in defective recognition and toxic activation products can be formed on the surface of host tissues and structures. Recent studies have shown that mutated or defective regulators of the alternative pathway of complement are associated with auto immune diseases of the kidney, including the atypical form of hemolytic uremic syndrome (HUS), membranoproliferative glomerulonephritis (MPGN) and also of the eye, such as age-related macular degeneration (ARMD). Current research provides clues how mutations occurring in genes coding for single complement components or the inactivation of single regulators lead to defective alternative pathway amplification, via the convertase C3bBb. These scenarios explain how defects of a single regulator lead to local, organ specific damage.
Collapse
Affiliation(s)
- Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Products Research and Infection Biology, Hans Knoell Institute, Beutenbergstr. 11a, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Recent studies have provided a better understanding of the molecular mechanisms responsible for hemolytic uremic syndromes. In this review, we summarize biochemical and genetic data that may lead to new clinical approaches. RECENT FINDINGS The structures and modes of action of Shiga toxins have been deciphered. Patients with non-Shiga-like toxin hemolytic uremic syndrome have been found to carry mutations in three genes that encode for regulators of the complement system (factor H, membrane cofactor protein, and factor I). SUMMARY Shiga-like toxin-1 and Shiga-like toxin-2 regulate genes that encode for chemokines, cytokines, cell adhesion molecules, and transcription factors involved in immune response and apoptosis. Mutations in factor H, membrane cofactor protein and factor I have recently been identified. Reduced expression of compliment regulators might prevent restriction of complement deposition on glomerular endothelial cells, leading to microvascular cell damage and tissue injury. Shiga-like toxin hemolytic uremic syndrome in children has a favorable prognosis in 90% of cases; kidney transplantation shows a good graft survival rate (80%) in children who progress to end stage renal disease. As for non-Shiga-like toxin hemolytic uremic syndrome, treatment with plasma infusion or exchange has been used with controversial effects. Kidney transplantation is not recommended in those patients with mutations in factor H and factor I; however, a kidney transplant corrects membrane cofactor protein dysfunction. These findings vividly underscore the clinical heterogeneity of outcomes depending upon the nature of the underlying cause of the disease.
Collapse
Affiliation(s)
- Jessica Caprioli
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Bergamo, Italy.
| | | | | |
Collapse
|
23
|
Licht C, Weyersberg A, Heinen S, Stapenhorst L, Devenge J, Beck B, Waldherr R, Kirschfink M, Zipfel PF, Hoppe B. Successful plasma therapy for atypical hemolytic uremic syndrome caused by factor H deficiency owing to a novel mutation in the complement cofactor protein domain 15. Am J Kidney Dis 2005; 45:415-21. [PMID: 15685522 DOI: 10.1053/j.ajkd.2004.10.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Quantitative or functional deficiency of complement factor H results in uncontrolled complement activation. This leads to thrombotic microangiopathy and finally causes renal failure (atypical hemolytic uremic syndrome [aHUS]). By regular analysis of factor H in patients with aHUS, the authors found a complete factor H deficiency in an infant in whom aHUS developed at 8 months of age. Factor H was quantified by enzyme-linked immunosorbent assay and further analyzed by Western blot using a factor H-specific antibody. Complement activation was determined by measuring total hemolytic activity of the classical (CH50) and alternative (APH50) pathways, C3 and C3d. The sequence of factor H gene was determined. Serial factor H measurements after fresh frozen plasma infusion allowed calculation of a factor H half-life. Factor H was absent in plasma (<1 mug/mL), and the complement system was highly activated (CH50, APH50, C3 decreased; C3d increased). Genetic analysis identified a novel homozygous factor H mutation (T2770A; Y899Stop) in CCP domain 15, most likely causing defective protein secretion. Time course measurements of factor H after plasma infusion established a factor H half-life of about 6 days. By repetitive plasma infusions (20 mL/kg over about 2 to 3 hours) the authors were able to interrupt the vicious circle of thrombotic microangiopathy in a factor H-deficient patient with aHUS. Based on the measured factor H half-life of about 6 days, regular plasma infusions in 2-week intervals were given, which prevented further aHUS episodes and stopped the decline of kidney function.
Collapse
Affiliation(s)
- Christoph Licht
- Division of Pediatric Nephrology, Children's Hospital of the University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Braun MC, Stablein DM, Hamiwka LA, Bell L, Bartosh SM, Strife CF. Recurrence of membranoproliferative glomerulonephritis type II in renal allografts: The North American Pediatric Renal Transplant Cooperative Study experience. J Am Soc Nephrol 2005; 16:2225-33. [PMID: 15888559 DOI: 10.1681/asn.2005020175] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Membranoproliferative glomerulonephritis type II (MPGN II) is an uncommon form of complement-dependent acquired renal disease. Although it has been recognized since the 1970s that MPGN II recurs almost universally in renal transplants, data regarding the long-term consequences of disease recurrence are limited. Therefore, a retrospective comparative analysis of 75 patients with MPGN II contained in the North American Pediatric Renal Transplant Cooperative Study transplantation database was performed. Five-year graft survival for patients with MPGN II was significantly worse (50.0 +/- 7.5%) compared with the database as a whole (74.3 +/- 0.6%; P < 0.001). Living related donor organs had a significantly better 5-yr survival (65.9 +/- 10.7%) compared with cadaveric donor organs (34.1 +/- 9.8%; P = 0.004). The primary cause of graft failure in 11 (14.7%) patients was recurrent disease. Supplemental surveys were obtained on 29 (38%) of 75 patients. Analysis of these data indicated that recurrent disease occurred in 12 (67%) of the 18 patients with posttransplantation biopsies. Although there was no correlation between pretransplantation presentation, pre- or posttransplantation C3 levels, and either disease recurrence or graft failure, there was a strong association between heavy proteinuria and disease recurrence. The presence of glomerular crescents in allograft biopsies had a significant negative correlation with graft survival. At last follow-up, patients with recurrent disease had significantly higher serum creatinine and qualitatively more proteinuria than patients without biopsy-proven disease. These data indicate that recurrent MPGN II has a significant negative impact on renal allograft function and survival.
Collapse
Affiliation(s)
- Michael C Braun
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 2121 W. Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Marina Noris
- Transplant Research Center, Chiara Cucchi de Alessandri e Gilberto Crespi, Villa Camozzi, Via Camozzi, 3 24020, Ranica (BG), Italy.
| | | |
Collapse
|
26
|
Filler G, Radhakrishnan S, Strain L, Hill A, Knoll G, Goodship TH. Challenges in the management of infantile factor H associated hemolytic uremic syndrome. Pediatr Nephrol 2004; 19:908-11. [PMID: 15206027 DOI: 10.1007/s00467-004-1526-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 04/19/2004] [Accepted: 04/21/2004] [Indexed: 10/26/2022]
Abstract
We describe a 1-year old with four episodes of recurrent hemolytic uremic syndrome (HUS). Family history suggested an autosomal dominant mode of inheritance. Factor H concentrations in the blood were normal in the affected family members. Mutation screening in the human complement factor H gene ( HF-1) revealed a novel mutation in exon 23 (c.3546_3581dup36). The HF-1 gene encodes complement factor H and the mutation leads to the insertion of 12 additional amino acids after codon 1176 in factor H. The recurrent HUS responded to plasma infusions and renal function improved from a glomerular filtration rate of 21 to 50 ml/min per 1.73 m(2). The infusions of fresh-frozen plasma were necessary at once-weekly intervals at a dose of 40-45 ml/kg in order to maintain remission and resulted in significant hyperproteinemia. This was addressed by intermittent plasma exchange through an arterio-venous fistula. The prognosis and therapeutic dilemmas are discussed.
Collapse
Affiliation(s)
- Guido Filler
- Department of Pediatrics, Children's Hospital of Eastern Ontario, The Ottawa Hospital, University of Ottawa, 401 Smyth Road, K1H 8L1, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Haemolytic uraemic syndrome (HUS) is a disease of diverse origin. The last year has witnessed the identification of a novel genetic marker of this disease, the description of the frequency of the factor H associated form of HUS in a registry of over 100 patients and a better understanding of the pathophysiology of the disease. RECENT FINDINGS In patients with atypical HUS, heterozygous mutations in the gene coding for the soluble complement regulator factor H are reported and most of the mutations cluster in the C-terminal recognition domain of the protein. A novel genetic marker for HUS has also been identified. Mutations occurring in the gene of the von Willebrand factor cleaving protease, ADAMTS13, which were previously linked to thrombotic thrombocytopenic purpura have now been identified in HUS patients. The frequency of factor H-associated HUS was established as 14% in a registry of German speaking countries and also 16 novel disease associated mutations were reported. The pathophysiology of factor H-associated HUS was analysed. Three analysed mutant proteins show normal complement regulatory activities but display defective recognition functions: reduced binding to surface attached C3b, to heparin/polyanions and to endothelial cells. SUMMARY The identification of effector molecules of the complement as well as the coagulation cascade as disease associated molecules indicate a regulatory protein network, which maintains integrity of endothelial cells during stress or infection. Defining the individual components and how their functional interaction causes microangiopathies will identify additional disease markers and will allow the design of proper diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Peter F Zipfel
- Department of Infection Biology, Hans Knoell Institute for Natural Products Research, Jena, Germany.
| | | | | |
Collapse
|