1
|
Di H, Wang Q, Liang D, Zhang J, Gao E, Zheng C, Yu X, Liu Z. Genetic features and kidney morphological changes in women with X-linked Alport syndrome. J Med Genet 2023; 60:1169-1176. [PMID: 37225412 DOI: 10.1136/jmg-2023-109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND X-linked Alport syndrome (XLAS) caused by COL4A5 pathogenic variants usually has heterogeneous phenotypes in female patients. The genetic characteristics and glomerular basement membrane (GBM) morphological changes in women with XLAS need to been further investigated. METHODS A total of 83 women and 187 men with causative COL4A5 variants were enrolled for comparative analysis. RESULTS Women were more frequently carrying de novo COL4A5 variants compared with men (47% vs 8%, p=0.001). The clinical manifestations in women were variable, and no genotype-phenotype correlation was observed. Coinherited podocyte-related genes, including TRPC6, TBC1D8B, INF2 and MYH9, were identified in two women and five men, and the modifying effects of coinherited genes contributed to the heterogeneous phenotypes in these patients. X-chromosome inactivation (XCI) analysis of 16 women showed that 25% were skewed XCI. One patient preferentially expressing the mutant COL4A5 gene developed moderate proteinuria, and two patients preferentially expressing the wild-type COL4A5 gene presented with haematuria only. GBM ultrastructural evaluation demonstrated that the degree of GBM lesions was associated with the decline in kidney function for both genders, but more severe GBM changes were found in men compared with women. CONCLUSIONS The high frequency of de novo variants carried by women indicates that the lack of family history tends to make them susceptible to be underdiagnosed. Coinherited podocyte-related genes are potential contributors to the heterogeneous phenotype of some women. Furthermore, the association between the degree of GBM lesions and decline in kidney function is valuable in evaluating the prognosis for patients with XLAS.
Collapse
Affiliation(s)
- Hongling Di
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qing Wang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Department of Nephrology, General Hospital of Eastern Theater Command, Naval Medical University, Shanghai, Shanghai, China
| | - Dandan Liang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jiahui Zhang
- The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaomin Yu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Deltas C, Papagregoriou G, Louka SF, Malatras A, Flinter F, Gale DP, Gear S, Gross O, Hoefele J, Lennon R, Miner JH, Renieri A, Savige J, Turner AN. Genetic Modifiers of Mendelian Monogenic Collagen IV Nephropathies in Humans and Mice. Genes (Basel) 2023; 14:1686. [PMID: 37761826 PMCID: PMC10530214 DOI: 10.3390/genes14091686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Familial hematuria is a clinical sign of a genetically heterogeneous group of conditions, accompanied by broad inter- and intrafamilial variable expressivity. The most frequent condition is caused by pathogenic (or likely pathogenic) variants in the collagen-IV genes, COL4A3/A4/A5. Pathogenic variants in COL4A5 are responsible for the severe X-linked glomerulopathy, Alport syndrome (AS), while homozygous or compound heterozygous variants in the COL4A3 or the COL4A4 gene cause autosomal recessive AS. AS usually leads to progressive kidney failure before the age of 40-years when left untreated. People who inherit heterozygous COL4A3/A4 variants are at-risk of a slowly progressive form of the disease, starting with microscopic hematuria in early childhood, developing Alport spectrum nephropathy. Sometimes, they are diagnosed with benign familial hematuria, and sometimes with autosomal dominant AS. At diagnosis, they often show thin basement membrane nephropathy, reflecting the uniform thin glomerular basement membrane lesion, inherited as an autosomal dominant condition. On a long follow-up, most patients will retain normal or mildly affected kidney function, while a substantial proportion will develop chronic kidney disease (CKD), even kidney failure at an average age of 55-years. A question that remains unanswered is how to distinguish those patients with AS or with heterozygous COL4A3/A4 variants who will manifest a more aggressive kidney function decline, requiring prompt medical intervention. The hypothesis that a subgroup of patients coinherit additional genetic modifiers that exacerbate their clinical course has been investigated by several researchers. Here, we review all publications that describe the potential role of candidate genetic modifiers in patients and include a summary of studies in AS mouse models.
Collapse
Affiliation(s)
- Constantinos Deltas
- School of Medicine, University of Cyprus, Nicosia 2109, Cyprus
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Gregory Papagregoriou
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Stavroula F. Louka
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Apostolos Malatras
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Frances Flinter
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | | | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum Rechts der Isar, School of Medicine & Health, Technical University Munich, 81675 Munich, Germany
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9WU, UK
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, VIC 3052, Australia
| | - A. Neil Turner
- Renal Medicine, Royal Infirmary, University of Edinburgh, Edinburgh EH16 4UX, UK
| |
Collapse
|
3
|
Groen In 't Woud S, Rood IM, Steenbergen E, Willemsen B, Dijkman HB, van Geel M, Schoots J, Wetzels JFM, Lugtenberg D, Deegens JKJ, Bongers EMHF. Kidney Disease Associated With Mono-allelic COL4A3 and COL4A4 Variants: A Case Series of 17 Families. Kidney Med 2023; 5:100607. [PMID: 36925663 PMCID: PMC10011433 DOI: 10.1016/j.xkme.2023.100607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rationale & Objective Mono-allelic variants in COL4A3 and COL4A4 (COL4A3/COL4A4) have been identified in a spectrum of glomerular basement membrane nephropathies, including thin basement membrane nephropathy and autosomal dominant Alport syndrome. With the increasing use of next generation sequencing, mono-allelic COL4A3/COL4A4 variants are detected more frequently, but phenotypic heterogeneity impedes counseling. We aimed to investigate the phenotypic spectrum, kidney biopsy results, and segregation patterns of patients with mono-allelic COL4A3/COL4A4 variants identified by whole exome sequencing. Study Design Case series. Setting & Participants We evaluated clinical and pathologic characteristics of 17 Dutch index patients with mono-allelic variants in COL4A3/COL4A4 detected by diagnostic whole exome sequencing and 25 affected family members with variants confirmed by Sanger sequencing. Results Eight different mono-allelic COL4A3/COL4A4 variants were identified across members of 11 families, comprising 7 glycine substituted missense variants and 1 frameshift variant. All index patients had microscopic hematuria at clinical presentation (median age 43 years) and 14 had (micro)albuminuria/proteinuria. All family members showed co-segregation of the variant with at least hematuria. At end of follow-up of all 42 individuals (median age 54 years), 16/42 patients had kidney function impairment, of whom 6 had kidney failure. Reports of kidney biopsies of 14 patients described thin basement membrane nephropathy, focal segmental glomerulosclerosis, minimal change lesions, and Alport syndrome. Electron microscopy images of 7 patients showed a significantly thinner glomerular basement membrane compared with images of patients with idiopathic focal segmental glomerulosclerosis and other hereditary glomerular diseases. No genotype-phenotype correlations could be established. Limitations Retrospective design, ascertainment bias toward severe kidney phenotypes, and familial hematuria. Conclusions This study confirms the wide phenotypic spectrum associated with mono-allelic COL4A3/COL4A4 variants, extending from isolated microscopic hematuria to kidney failure with high intra- and interfamilial variability.
Collapse
Affiliation(s)
- Sander Groen In 't Woud
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilse M Rood
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric Steenbergen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brigith Willemsen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henry B Dijkman
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michel van Geel
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jeroen Schoots
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack F M Wetzels
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorien Lugtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen K J Deegens
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ernie M H F Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Matthaiou A, Poulli T, Deltas C. Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by COL4A3 or COL4A4 mutations: a systematic review. Clin Kidney J 2020; 13:1025-1036. [PMID: 33391746 PMCID: PMC7769542 DOI: 10.1093/ckj/sfz176] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patients heterozygous for COL4A3 or COL4A4 mutations show a wide spectrum of disease, extending from familial isolated microscopic haematuria, as a result of thin basement membranes (TBMs), to autosomal dominant Alport syndrome (ADAS) and end-stage renal disease (ESRD). Many patients are mentioned in the literature under the descriptive diagnosis of TBM nephropathy (TBMN), in which case it actually describes a histological finding that represents the carriers of autosomal recessive Alport syndrome (ARAS), a severe glomerulopathy, as most patients reach ESRD at a mean age of 25 years. METHODS We performed a systematic literature review for patients with heterozygous COL4A3/A4 mutations with the aim of recording the spectrum and frequency of pathological features. We searched three databases (PubMed, Embase and Scopus) using the keywords 'Autosomal Dominant Alport Syndrome' OR 'Thin Basement Membrane Disease' OR 'Thin Basement Membrane Nephropathy'. We identified 48 publications reporting on 777 patients from 258 families. RESULTS In total, 29% of the patients developed chronic kidney disease (CKD) and 15.1% reached ESRD at a mean age of 52.8 years. Extrarenal features and typical Alport syndrome (AS) findings had a low prevalence in patients as follows: hearing loss, 16%; ocular lesions, 3%; basement membrane thickening, 18.4%; and podocyte foot process effacement, 6.9%. Data for 76 patients from 54 families emphasize extensive inter- and intrafamilial heterogeneity, with age at onset of ESRD ranging between 21 and 84 years (mean 52.8). CONCLUSIONS The analysis enabled a comparison of the clinical course of patients with typical ARAS or X-linked AS with those with heterozygous COL4A mutations diagnosed with TBMN or ADAS. Despite the consequence of a potential ascertainment bias, an important outcome is that TBM poses a global high risk of developing severe CKD, over a long follow-up, with a variable spectrum of other findings. The results are useful to practicing nephrologists for better evaluation of patients.
Collapse
Affiliation(s)
| | | | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
5
|
Mutations in Collagen Genes in the Context of an Isolated Population. Genes (Basel) 2020; 11:genes11111377. [PMID: 33233744 PMCID: PMC7699876 DOI: 10.3390/genes11111377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/16/2023] Open
Abstract
Genetic studies of population isolates have great potential to provide a unique insight into genetic differentiation and phenotypic expressions. Galičnik village is a population isolate located in the northwest region of the Republic of North Macedonia, established around the 10th century. Alport syndrome-linked nephropathy with a complex inheritance pattern has been described historically among individuals in the village. In order to determine the genetic basis of the nephropathies and to characterize the genetic structure of the population, 23 samples were genotyped using a custom-made next generation sequencing panel and 111 samples using population genetic markers. We compared the newly obtained population data with fifteen European population data sets. NGS analysis revealed four different mutations in three different collagen genes in twelve individuals within the Galičnik population. The genetic isolation and small effective population size of Galičnik village have resulted in a high level of genomic homogeneity, with domination of R1a-M458 and R1b-U106* haplogroups. The study explains complex autosomal in cis digenic and X-linked inheritance patterns of nephropathy in the isolated population of Galičnik and describes the first case of Alport syndrome family with three different collagen gene mutations.
Collapse
|
6
|
Kim JJ, Fornoni A. Bedside to bench Alport syndrome research: are human urine-derived podocytes the answer? †. J Pathol 2020; 253:11-13. [PMID: 33009821 DOI: 10.1002/path.5564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 11/08/2022]
Abstract
In a recent issue of The Journal of Pathology, Iampietro et al isolated and characterized several clones of urine-derived podocytes from three patients with Alport syndrome (AS) and proteinuria and one age-matched non-proteinuric control. They reported differential expression of genes involved in cell motility, adhesion, survival, and angiogenesis. The authors found AS podocytes to be less motile and to have significantly higher permeability to albumin compared to control podocytes, highlighting that AS podocytes may retain their phenotype even when losing contact with the glomerular basement membrane. The establishment of urine-derived podocyte cell lines from patients with different genetic forms of AS may represent a valuable and minimally invasive tool to investigate the cellular mechanisms contributing to kidney disease progression in AS and may allow for the establishment of patient-specific drug screening opportunities. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension/Peggy and Harold Katz Drug Discovery Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension/Peggy and Harold Katz Drug Discovery Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
7
|
Horinouchi T, Yamamura T, Nagano C, Sakakibara N, Ishiko S, Aoto Y, Rossanti R, Nakanishi K, Shima Y, Morisada N, Iijima K, Nozu K. Heterozygous Urinary Abnormality-Causing Variants of COL4A3 and COL4A4 Affect Severity of Autosomal Recessive Alport Syndrome. KIDNEY360 2020; 1:936-942. [PMID: 35369551 DOI: 10.34067/kid.0000372019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 07/15/2020] [Indexed: 11/27/2022]
Abstract
Background Autosomal recessive Alport syndrome (ARAS) is an inherited renal disorder caused by homozygous and compound heterozygous mutations in COL4A3 or COL4A4, but the prognostic predictors for this disorder are not yet fully understood. Recently, the magnitude of the clinical spectrum of the COL4A3 and COL4A4 heterozygous state has attracted attention. This spectrum includes asymptomatic carriers of ARAS, benign familial hematuria, thin basement membrane disease, and autosomal dominant Alport syndrome. Methods We retrospectively analyzed 49 patients with ARAS from 41 families with a median age of 19 years to examine the clinical features and prognostic factors of ARAS, including the associated genotypes. Results The median age of patients with ARAS at ESKD onset was 27 years. There was no significant association between the presence or absence of hearing loss or truncating mutations and renal prognosis. However, there was a statistically significant correlation between renal prognosis and heterozygous variants that cause urinary abnormalities. Where the urinary abnormality-causing variant was absent or present in only one allele, the median age of ESKD onset was 45 years, whereas the same variant present on both alleles was associated with an age of onset of 15 years (P<0.001). Conclusions This study was the first to demonstrate the clinical importance in ARAS of focusing on variants in COL4A3 or COL4A4 that cause urinary abnormalities in both the homozygous or heterozygous state. Although heterozygous mutation carriers of COL4A3 and COL4A4 comprise a broad clinical spectrum, clinical information regarding each variant is important for predicting ARAS prognosis.
Collapse
Affiliation(s)
- Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Uehara, Nishihara-cho, Tyutou, Okinawa, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Kimiidera, Wakayama, Wakayama Prefecture, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| |
Collapse
|
8
|
Kashtan CE. Alport Syndrome: Achieving Early Diagnosis and Treatment. Am J Kidney Dis 2020; 77:272-279. [PMID: 32712016 DOI: 10.1053/j.ajkd.2020.03.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Alport syndrome is a genetically and phenotypically heterogeneous disorder of glomerular, cochlear, and ocular basement membranes resulting from mutations in the collagen IV genes COL4A3, COL4A4, and COL4A5. Alport syndrome can be transmitted as an X-linked, autosomal recessive, or autosomal dominant disorder. Individuals with Alport syndrome have a significant lifetime risk for kidney failure, as well as sensorineural deafness and ocular abnormalities. The availability of effective intervention for Alport syndrome-related kidney disease makes early diagnosis crucial, but this can be impeded by the genotypic and phenotypic complexity of the disorder. This review presents an approach to enhancing early diagnosis and achieving optimal outcomes.
Collapse
Affiliation(s)
- Clifford E Kashtan
- Pediatric Nephrology, University of Minnesota Medical School, Minneapolis, MN.
| |
Collapse
|
9
|
Demir E, Caliskan Y. Variations of type IV collagen-encoding genes in patients with histological diagnosis of focal segmental glomerulosclerosis. Pediatr Nephrol 2020; 35:927-936. [PMID: 31254113 DOI: 10.1007/s00467-019-04282-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/01/2019] [Accepted: 05/31/2019] [Indexed: 01/07/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS), an important cause of end-stage kidney disease (ESKD), covers a spectrum of clinicopathological syndromes sharing a common glomerular lesion, based on an injury of podocytes caused by diverse insults to glomeruli. Although it is well expressed in many reports that the term FSGS is not useful and applicable to a single disease, particularly in genetic studies, FSGS continues to be used as a single clinical diagnosis. Distinguishing genetic forms of FSGS is important for the treatment and overall prognosis because secondary forms of FSGS, produced by rare pathogenic variations in podocyte genes, are not good candidates for immunosuppressive treatment. Over the past decade, several next generation sequencing (NGS) methods have been used to investigate the patients with steroid resistance nephrotic syndrome (SRNS) or FSGS. Pathogenic variants in COL4A3, COL4A4, or COL4A5 genes have been frequently identified in patients with histologic diagnosis of FSGS. The contribution of these mostly heterozygous genetic variations in FSGS pathogenesis and the clinical course of patients with these variations have not been well characterized. This review emphasizes the importance of appropriate approach in selection and diagnosis of cases and interpretation of the genetic data in these studies and suggests a detailed review of existing clinical variant databases using newly available population genetic data.
Collapse
Affiliation(s)
- Erol Demir
- Division of Nephrology, Department of Internal Medicine, Istanbul School of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| | - Yasar Caliskan
- Division of Nephrology, Department of Internal Medicine, Istanbul School of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey.
| |
Collapse
|
10
|
Savige J. Alport syndrome: deducing the mode of inheritance from the presence of haematuria in family members. Pediatr Nephrol 2020; 35:59-66. [PMID: 30506145 DOI: 10.1007/s00467-018-4121-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 11/24/2022]
Abstract
The diagnosis of Alport syndrome is suspected when an individual has haematuria or renal failure, together with a hearing loss; haematuria or renal failure, and a family history of Alport syndrome; or a pathognomonic Alport feature, such as lenticonus, fleck retinopathy, a lamellated glomerular basement membrane (GBM), or a GBM that lacks the collagen IV α3α4α5 network. The diagnosis of Alport syndrome is optimally confirmed by the demonstration of a mutation in the COL4A5 gene or two mutations in trans in the COL4A3 or COL4A4 genes. In practice, genetic testing for Alport syndrome is not widely available, and even with testing, causative mutations are not demonstrated in 5% of cases. Often, haematuria is only known in some family members, and the other characteristic features are not present or have not been sought. Where Alport syndrome remains likely, it is important to distinguish between X-linked inheritance, which occurs in 85% of families, and autosomal recessive inheritance, in the remaining 15%. This distinction is important because different modes of inheritance mean that different family members are at risk of being affected. Clinicians generally rely on the presence of haematuria to identify affected individuals in families with suspected Alport syndrome and on the information from three-generational family trees to assess the likely mode of inheritance. While often helpful, this strategy can also be misleading. The major sources of error are families with few members or where few members are tested; families comprising mainly women, where the typical Alport features are absent; families where the father is not available for testing for haematuria; and families with a coincidental renal disease. These difficulties emphasise the helpfulness of genetic testing in distinguishing between X-linked and autosomal recessively inherited forms of Alport syndrome.
Collapse
Affiliation(s)
- Judy Savige
- Department of Medicine, Melbourne Health and Northern Health, The University of Melbourne, Parkville, 3050, Australia.
| |
Collapse
|
11
|
Rheault MN, Savige J, Randles MJ, Weinstock A, Stepney M, Turner AN, Parziale G, Gross O, Flinter FA, Miner JH, Lagas S, Gear S, Lennon R. The importance of clinician, patient and researcher collaborations in Alport syndrome. Pediatr Nephrol 2020; 35:733-742. [PMID: 31044288 PMCID: PMC7096363 DOI: 10.1007/s00467-019-04241-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
Alport syndrome is caused by mutations in the genes COL4A3, COL4A4 or COL4A5 and is characterised by progressive glomerular disease, sensorineural hearing loss and ocular defects. Occurring in less than 1:5000, Alport syndrome is a rare genetic disorder but still accounts for > 1% of the prevalent population receiving renal replacement therapy. There is also increasing awareness about the risk of chronic kidney disease in individuals with heterozygous mutations in Alport syndrome genes. The mainstay of current therapy is the use of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, yet potential new therapies are now entering clinical trials. The 2017 International Workshop on Alport Syndrome in Glasgow was a pre-conference workshop ahead of the 50th anniversary meeting of the European Society for Pediatric Nephrology. It focussed on updates in clinical practice, genetics and basic science and also incorporated patient perspectives. More than 80 international experts including clinicians, geneticists, researchers from academia and industry, and patient representatives took part in panel discussions and breakout groups. This report summarises the workshop proceedings and the relevant contemporary literature. It highlights the unique clinician, patient and researcher collaborations achieved by regular engagement between the groups.
Collapse
Affiliation(s)
- Michelle N. Rheault
- Department of Pediatrics, University of Minnesota Masonic Children’s Hospital, Minneapolis, MN USA
| | - Judith Savige
- Department of Medicine, Royal Melbourne Hospital, Victoria, Australia
| | - Michael J. Randles
- Wellcome Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | | | - Melissa Stepney
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - A Neil Turner
- Renal Medicine, Royal Infirmary, University of Edinburgh, Edinburgh, UK
| | | | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University Medicine Goettingen, Goettingen, Germany
| | - Frances A Flinter
- Department of Clinical Genetics, Guy’s & St Thomas’ NHS Foundation Trust, London, UK
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St Louis, MO USA
| | | | | | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK. .,Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
12
|
Yamamura T, Nozu K, Minamikawa S, Horinouchi T, Sakakibara N, Nagano C, Aoto Y, Ishiko S, Nakanishi K, Shima Y, Nagase H, Rossanti R, Ye MJ, Nozu Y, Ishimori S, Morisada N, Kaito H, Iijima K. Comparison between conventional and comprehensive sequencing approaches for genetic diagnosis of Alport syndrome. Mol Genet Genomic Med 2019; 7:e883. [PMID: 31364286 PMCID: PMC6732293 DOI: 10.1002/mgg3.883] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/05/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Background Alport syndrome (AS) is a hereditary disease caused by mutations in COL4A3‐5 genes. Recently, comprehensive genetic analysis has become the first‐line diagnostic tool for AS. However, no reports comparing mutation identification rates between conventional sequencing and comprehensive screening have been published. Methods In this study, 441 patients clinically suspected of having AS were divided into two groups and compared. The initial mutational analysis method involved targeted exome sequencing using next‐generation sequencing (NGS) (n = 147, NGS group) or Sanger sequencing for COL4A3/COL4A4/COL4A5 (n = 294, Sanger group). Results In the NGS group, 126 patients (86%) were diagnosed with AS by NGS, while two had pathogenic mutations in other genes, NPHS1 and EYA1. Further, 239 patients (81%) were diagnosed with AS by initial analysis in the Sanger group. Thirteen patients who were negative for mutation detection in the Sanger group were analyzed by NGS; three were diagnosed with AS. Two had mutations in CLCN5 or LAMB2. The final variant detection rate was 90%. Discussion Our results reveal that Sanger sequencing and targeted exome sequencing have high diagnostic ability. NGS also has the advantage of detecting other inherited kidney diseases and pathogenic mutations missed by Sanger sequencing.
Collapse
Affiliation(s)
- Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shogo Minamikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ming J Ye
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshimi Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shingo Ishimori
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroshi Kaito
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
13
|
Savige J, Ariani F, Mari F, Bruttini M, Renieri A, Gross O, Deltas C, Flinter F, Ding J, Gale DP, Nagel M, Yau M, Shagam L, Torra R, Ars E, Hoefele J, Garosi G, Storey H. Expert consensus guidelines for the genetic diagnosis of Alport syndrome. Pediatr Nephrol 2019; 34:1175-1189. [PMID: 29987460 DOI: 10.1007/s00467-018-3985-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/22/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022]
Abstract
Recent expert guidelines recommend genetic testing for the diagnosis of Alport syndrome. Here, we describe current best practice and likely future developments. In individuals with suspected Alport syndrome, all three COL4A5, COL4A3 and COL4A4 genes should be examined for pathogenic variants, probably by high throughput-targeted next generation sequencing (NGS) technologies, with a customised panel for simultaneous testing of the three Alport genes. These techniques identify up to 95% of pathogenic COL4A variants. Where causative pathogenic variants cannot be demonstrated, the DNA should be examined for deletions or insertions by re-examining the NGS sequencing data or with multiplex ligation-dependent probe amplification (MLPA). These techniques identify a further 5% of variants, and the remaining few changes include deep intronic splicing variants or cases of somatic mosaicism. Where no pathogenic variants are found, the basis for the clinical diagnosis should be reviewed. Genes in which mutations produce similar clinical features to Alport syndrome (resulting in focal and segmental glomerulosclerosis, complement pathway disorders, MYH9-related disorders, etc.) should be examined. NGS approaches have identified novel combinations of pathogenic variants in Alport syndrome. Two variants, with one in COL4A3 and another in COL4A4, produce a more severe phenotype than an uncomplicated heterozygous change. NGS may also identify further coincidental pathogenic variants in genes for podocyte-expressed proteins that also modify the phenotype. Our understanding of the genetics of Alport syndrome is evolving rapidly, and both genetic and non-genetic factors are likely to contribute to the observed phenotypic variability.
Collapse
Affiliation(s)
- Judy Savige
- Department of Medicine, Melbourne and Northern Health, The University of Melbourne, Parkville, VIC, 3050, Australia.
| | | | | | | | | | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University of Gottingen, Gottingen, Germany
| | | | - Frances Flinter
- Department of Clinical Genetics, Guys' and St Thomas' NHS Foundation Trust, London, UK
| | - Jie Ding
- Peking University First Hospital, Beijing, China
| | - Daniel P Gale
- Centre for Nephrology, Royal Free Hospital, University College London, London, UK
| | - Mato Nagel
- Centre for Nephrology and Metabolic Disorders, Weisswasser, Germany
| | - Michael Yau
- Genetics, Guy's Hospital, Viapath, London, UK
| | - Lev Shagam
- Institute of Pediatrics, Pirogov Russian Medical University, Moscow, Russia
| | - Roser Torra
- Inherited Kidney Disorders, Nephrology Department, Fundacio Puigvert, Instituto de Investigacion Carlos III, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundacio Puigvert, Instituto de Investigacion Carlos III, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Julia Hoefele
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Guido Garosi
- Nephrology, Dialysis and Transplantation, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | |
Collapse
|
14
|
Funk SD, Bayer RH, Miner JH. Endothelial cell-specific collagen type IV-α 3 expression does not rescue Alport syndrome in Col4a3 -/- mice. Am J Physiol Renal Physiol 2019; 316:F830-F837. [PMID: 30724107 PMCID: PMC6580247 DOI: 10.1152/ajprenal.00556.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 01/15/2023] Open
Abstract
The glomerular basement membrane (GBM) is a critical component of the kidney's blood filtration barrier. Alport syndrome, a hereditary disease leading to kidney failure, is caused by the loss or dysfunction of the GBM's major collagen type IV (COL4) isoform α3α4α5. The constituent COL4 α-chains assemble into heterotrimers in the endoplasmic reticulum before secretion into the extracellular space. If any one of the α3-, α4-, or α5-chains is lost due to mutation of one of the genes, then the entire heterotrimer is lost. Patients with Alport syndrome typically have mutations in the X-linked COL4A5 gene or uncommonly have the autosomal recessive form of the disease due to COL4A3 or COL4A4 mutations. Treatment for Alport syndrome is currently limited to angiotensin-converting enzyme inhibition or angiotensin receptor blockers. Experimental approaches in Alport mice have demonstrated that induced expression of COL4A3, either widely or specifically in podocytes of Col4a3-/- mice, can abrogate disease progression even after establishment of the abnormal GBM. While targeting podocytes in vivo for gene therapy is a significant challenge, the more accessible glomerular endothelium could be amenable for mutant gene repair. In the present study, we expressed COL4A3 in Col4a3-/- Alport mice using an endothelial cell-specific inducible transgenic system, but collagen-α3α4α5(IV) was not detected in the GBM or elsewhere, and the Alport phenotype was not rescued. Our results suggest that endothelial cells do not express the Col4a3/a4/a5 genes and should not be viewed as a target for gene therapy.
Collapse
Affiliation(s)
- Steven D Funk
- Department of Medicine, Division of Nephrology, Washington University School of Medicine , St. Louis, Missouri
| | - Raymond H Bayer
- Department of Medicine, Division of Nephrology, Washington University School of Medicine , St. Louis, Missouri
| | - Jeffrey H Miner
- Department of Medicine, Division of Nephrology, Washington University School of Medicine , St. Louis, Missouri
| |
Collapse
|
15
|
Kidney Injury by Variants in the COL4A5 Gene Aggravated by Polymorphisms in Slit Diaphragm Genes Causes Focal Segmental Glomerulosclerosis. Int J Mol Sci 2019; 20:ijms20030519. [PMID: 30691124 PMCID: PMC6386959 DOI: 10.3390/ijms20030519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/21/2022] Open
Abstract
Kidney injury due to focal segmental glomerulosclerosis (FSGS) is the most common primary glomerular disorder causing end-stage renal disease. Homozygous mutations in either glomerular basement membrane or slit diaphragm genes cause early renal failure. Heterozygous carriers develop renal symptoms late, if at all. In contrast to mutations in slit diaphragm genes, hetero- or hemizygous mutations in the X-chromosomal COL4A5 Alport gene have not yet been recognized as a major cause of kidney injury by FSGS. We identified cases of FSGS that were unexpectedly diagnosed: In addition to mutations in the X-chromosomal COL4A5 type IV collagen gene, nephrin and podocin polymorphisms aggravated kidney damage, leading to FSGS with ruptures of the basement membrane in a toddler and early renal failure in heterozygous girls. The results of our case series study suggest a synergistic role for genes encoding basement membrane and slit diaphragm proteins as a cause of kidney injury due to FSGS. Our results demonstrate that the molecular genetics of different players in the glomerular filtration barrier can be used to evaluate causes of kidney injury. Given the high frequency of X-chromosomal carriers of Alport genes, the analysis of genes involved in the organization of podocyte architecture, the glomerular basement membrane, and the slit diaphragm will further improve our understanding of the pathogenesis of FSGS and guide prognosis of and therapy for hereditary glomerular kidney diseases.
Collapse
|
16
|
Macheroux EP, Braunisch MC, Pucci Pegler S, Satanovskij R, Riedhammer KM, Günthner R, Gross O, Nagel M, Renders L, Hoefele J. The Hypomorphic Variant p.(Gly624Asp) in COL4A5 as a Possible Cause for an Unexpected Severe Phenotype in a Family With X-Linked Alport Syndrome. Front Pediatr 2019; 7:485. [PMID: 31850286 PMCID: PMC6887795 DOI: 10.3389/fped.2019.00485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 01/16/2023] Open
Abstract
Background: Alport syndrome (AS) is a progressive kidney disorder leading to end stage renal disease (ESRD). Extrarenal symptoms like hearing loss and ocular changes can be observed. Approximately 85% of the patients carry pathogenic variants in COL4A5 (X-linked inheritance). The variant c.1871G>A, p.(Gly624Asp) in COL4A5 is described in the literature as a hypomorphic variant associated with thin basement membrane nephropathy (TBMN). ESRD was only seen rarely at a median age of 50 years and extrarenal manifestations have only been described in single cases. Case report and Methods: This is a report on a family with X-linked AS. In the female index patient, microscopic hematuria, and proteinuria were observed beginning at the age of 20 years and 41 years, respectively. Microscopic hematuria was also present in the daughter (from 6th month of life), the son (from 22nd month of life), the mother and the maternal grandniece. Proteinuria was observed in the maternal aunt and paternal grandmother. The father of the index patient, a paternal uncle and a second cousin presented with ESRD at the age of 49, 34, and 70 years of life, respectively. Extrarenal manifestations were absent in the whole family. In the index patient, her children and her mother molecular diagnostics were performed using Sanger and exome sequencing. Results: In all examined family members the variant c.1871G>A, p.(Gly624Asp) in COL4A5 was identified. With the exception of the index patient, who was homozygous for this variant, all family members carried the variant heterozygously, or hemizygously. A different or additional monogenic hereditary nephropathy could not be detected by exome sequencing of the index patient. Discussion: This is the first report of a patient with the variant p.(Gly624Asp) in COL4A5 in a homozygous state. The variant was previously reported as a mild variant requiring dialysis in less than 10%. The family presented, however, with a more severe clinical course. We therefore suggest to question the term "hypomorphic" in the context of the variant p.(Gly624Asp) although molecular diagnostics could not be done in all affected family members.
Collapse
Affiliation(s)
- Eva Pauline Macheroux
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias C Braunisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Nephrology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stephanie Pucci Pegler
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Robin Satanovskij
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Nephrology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Nephrology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Roman Günthner
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Nephrology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Mato Nagel
- Center for Nephrology and Metabolic Medicine, Weisswasser, Germany
| | - Lutz Renders
- Department of Nephrology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Hoefele
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
17
|
Oda K, Katayama K, Tanoue A, Murata T, Hirota Y, Mizoguchi S, Hirabayashi Y, Ito T, Ishikawa E, Dohi K, Ito M. Acute kidney injury due to thin basement membrane disease mimicking Deferasirox nephrotoxicity: a case report. BMC Nephrol 2018; 19:363. [PMID: 30558557 PMCID: PMC6298017 DOI: 10.1186/s12882-018-1180-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the renal toxicity of Deferasirox, an oral iron chelator, has been reported to be mild, there have been reports of acute interstitial nephritis or Fanconi syndrome due to this agent. Thin basement membrane disease (TBMD) is a hereditary disease characterized primarily by hematuria, with gross hematuria also observed in about 7% of cases. We herein report a case of TBMD that presented with acute kidney injury and gross hematuria during treatment with Deferasirox. CASE PRESENTATION The patient was a 63-year-old man who had been diagnosed with myelodysplastic syndrome 6 years ago. He had started taking Deferasirox at 125 mg due to post-transfusion iron overload 6 months ago. Deferasirox was then increased to 1000 mg three months ago. When the serum creatinine level increased, Deferasirox was reduced to 500 mg three weeks before hospitalization. Although the serum creatinine level decreased once, he developed a fever and macroscopic hematuria one week before hospitalization. The serum creatinine level increased again, and Deferasirox was stopped four days before hospitalization. He was admitted for the evaluation of acute kidney injury and gross hematuria. Treatment with temporary hemodialysis was required, and a kidney biopsy was performed on the eighth day of admission. Although there was no major abnormality in the glomeruli, the leakage of red blood cells into the Bowman's space was observed. Erythrocyte cast formation was observed in the tubular lumen, which was associated with acute tubular necrosis. The results of an electron microscopic study were compatible with TBMD. CONCLUSION Although Deferasirox is known to be nephrotoxic, gross hematuria is relatively rare. When we encounter a case of acute kidney injury with gross hematuria during treatment with Deferasirox, TBMD should be considered as a possible cause of gross hematuria.
Collapse
Affiliation(s)
- Keiko Oda
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Akiko Tanoue
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Tomohiro Murata
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yumi Hirota
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shoko Mizoguchi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yosuke Hirabayashi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takayasu Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Eiji Ishikawa
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
18
|
Funk SD, Lin MH, Miner JH. Alport syndrome and Pierson syndrome: Diseases of the glomerular basement membrane. Matrix Biol 2018; 71-72:250-261. [PMID: 29673759 PMCID: PMC6146048 DOI: 10.1016/j.matbio.2018.04.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
The glomerular basement membrane (GBM) is an important component of the kidney's glomerular filtration barrier. Like all basement membranes, the GBM contains type IV collagen, laminin, nidogen, and heparan sulfate proteoglycan. It is flanked by the podocytes and glomerular endothelial cells that both synthesize it and adhere to it. Mutations that affect the GBM's collagen α3α4α5(IV) components cause Alport syndrome (kidney disease with variable ear and eye defects) and its variants, including thin basement membrane nephropathy. Mutations in LAMB2 that impact the synthesis or function of laminin α5β2γ1 (LM-521) cause Pierson syndrome (congenital nephrotic syndrome with eye and neurological defects) and its less severe variants, including isolated congenital nephrotic syndrome. The very different types of kidney diseases that result from mutations in collagen IV vs. laminin are likely due to very different pathogenic mechanisms. A better understanding of these mechanisms should lead to targeted therapeutic approaches that can help people with these rare but important diseases.
Collapse
Affiliation(s)
- Steven D Funk
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Meei-Hua Lin
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
Voskarides K, Papagregoriou G, Hadjipanagi D, Petrou I, Savva I, Elia A, Athanasiou Y, Pastelli A, Kkolou M, Hadjigavriel M, Stavrou C, Pierides A, Deltas C. COL4A5 and LAMA5 variants co-inherited in familial hematuria: digenic inheritance or genetic modifier effect? BMC Nephrol 2018; 19:114. [PMID: 29764427 PMCID: PMC5954460 DOI: 10.1186/s12882-018-0906-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/25/2017] [Accepted: 01/21/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND About 40-50% of patients with familial microscopic hematuria (FMH) caused by thin basement membrane nephropathy (TBMN) inherit heterozygous mutations in collagen IV genes (COL4A3, COL4A4). On long follow-up, the full phenotypic spectrum of these patients varies a lot, ranging from isolated MH or MH plus low-grade proteinuria to chronic renal failure of variable degree, including end-stage renal disease (ESRD). METHODS Here, we performed Whole Exome Sequencing (WES) in patients of six families, presenting with autosomal dominant FMH, with or without progression to proteinuria and loss of renal function, all previously found negative for severe collagen IV mutations. Hierarchical filtering of the WES data was performed, followed by mutation prediction analysis, Sanger sequencing and genetic segregation analysis. RESULTS In one family with four patients, we found evidence for the contribution of two co-inherited variants in two crucial genes expressed in the glomerular basement membrane (GBM); LAMA5-p.Pro1243Leu and COL4A5-p.Asp654Tyr. Mutations in COL4A5 cause classical X-linked Alport Syndrome, while rare mutations in the LAMA5 have been reported in patients with focal segmental glomerulosclerosis. The phenotypic spectrum of the patients includes hematuria, proteinuria, focal segmental glomerulosclerosis, loss of kidney function and renal cortical cysts. CONCLUSIONS A modifier role of LAMA5 on the background of a hypomorphic Alport syndrome causing mutation is a possible explanation of our findings. Digenic inheritance is another scenario, following the concept that mutations at both loci more accurately explain the spectrum of symptoms, but further investigation is needed under this concept. This is the third report linking a LAMA5 variant with human renal disease and expanding the spectrum of genes involved in glomerular pathologies accompanied by familial hematurias. The cystic phenotype overlaps with that of a mouse model, which carried a Lama5 hypomorphic mutation that caused severely reduced Lama5 protein levels and produced kidney cysts.
Collapse
Affiliation(s)
- Konstantinos Voskarides
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus. .,Medical School, University of Cyprus, Nicosia, Cyprus.
| | - Gregory Papagregoriou
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus
| | - Despina Hadjipanagi
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus
| | - Ioanelli Petrou
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus
| | - Isavella Savva
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus
| | - Avraam Elia
- Department of Pediatric Nephrology, Archbishop Makarios III Hospital, Nicosia, Cyprus
| | | | | | - Maria Kkolou
- Department of Nephrology, Larnaca General Hospital, Larnaca, Cyprus
| | | | | | - Alkis Pierides
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus.,Hippocrateon Hospital, Nicosia, Cyprus
| | - Constantinos Deltas
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus. .,College of Medicine, Qatar University, Doha, Qatar.
| |
Collapse
|
20
|
Stráner P, Balogh E, Schay G, Arrondel C, Mikó Á, L'Auné G, Benmerah A, Perczel A, K Menyhárd D, Antignac C, Mollet G, Tory K. C-terminal oligomerization of podocin mediates interallelic interactions. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2448-2457. [PMID: 29660491 DOI: 10.1016/j.bbadis.2018.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023]
Abstract
Interallelic interactions of membrane proteins are not taken into account while evaluating the pathogenicity of sequence variants in autosomal recessive disorders. Podocin, a membrane-anchored component of the slit diaphragm, is encoded by NPHS2, the major gene mutated in hereditary podocytopathies. We formerly showed that its R229Q variant is only pathogenic when trans-associated to specific 3' mutations and suggested the causal role of an abnormal C-terminal dimerization. Here we show by FRET analysis and size exclusion chromatography that podocin oligomerization occurs exclusively through the C-terminal tail (residues 283-382): principally through the first C-terminal helical region (H1, 283-313), which forms a coiled coil as shown by circular dichroism spectroscopy, and through the 332-348 region. We show the principal role of the oligomerization sites in mediating interallelic interactions: while the monomer-forming R286Tfs*17 podocin remains membranous irrespective of the coexpressed podocin variant identity, podocin variants with an intact H1 significantly influence each other's localization (r2 = 0.68, P = 9.2 × 10-32). The dominant negative effect resulting in intracellular retention of the pathogenic F344Lfs*4-R229Q heterooligomer occurs in parallel with a reduction in the FRET efficiency, suggesting the causal role of a conformational rearrangement. On the other hand, oligomerization can also promote the membrane localization: it can prevent the endocytosis of F344Lfs*4 or F344* podocin mutants induced by C-terminal truncation. In conclusion, C-terminal oligomerization of podocin can mediate both a dominant negative effect and interallelic complementation. Interallelic interactions of NPHS2 are not restricted to the R229Q variant and have to be considered in compound heterozygous individuals.
Collapse
Affiliation(s)
- Pál Stráner
- MTA-ELTE Protein Modeling Research Group and Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary
| | - Eszter Balogh
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary; Semmelweis University, Ist Department of Pediatrics, Budapest, Hungary
| | - Gusztáv Schay
- Semmelweis University, Department of Biophysics and Radiation Biology, Budapest, Hungary
| | - Christelle Arrondel
- Laboratory of Hereditary Kidney Diseases, INSERM, UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Ágnes Mikó
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary; Semmelweis University, Ist Department of Pediatrics, Budapest, Hungary
| | - Gerda L'Auné
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary; Semmelweis University, Ist Department of Pediatrics, Budapest, Hungary
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM, UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - András Perczel
- MTA-ELTE Protein Modeling Research Group and Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dóra K Menyhárd
- MTA-ELTE Protein Modeling Research Group and Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Diseases, INSERM, UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France; Assistance Publique - Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Département de Génétique, Paris, France
| | - Géraldine Mollet
- Laboratory of Hereditary Kidney Diseases, INSERM, UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Kálmán Tory
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary; Semmelweis University, Ist Department of Pediatrics, Budapest, Hungary; Laboratory of Hereditary Kidney Diseases, INSERM, UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France.
| |
Collapse
|
21
|
Feltran LS, Varela P, Silva ED, Veronez CL, Franco MC, Filho AP, Camargo MF, Koch Nogueira PC, Pesquero JB. Targeted Next-Generation Sequencing in Brazilian Children With Nephrotic Syndrome Submitted to Renal Transplant. Transplantation 2017; 101:2905-2912. [PMID: 28658201 DOI: 10.1097/tp.0000000000001846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The aims of this study were to identify the genetic mutations profile in Brazilian children with nephrotic syndrome (NS) and to determine a genotype-phenotype correlation in this disease. METHODS Next-generation sequencing and mutation analysis were performed on 24 genes related to NS in a cross-sectional study involving 95 children who underwent kidney transplantation due to NS, excluding congenital cases. RESULTS A total of 149 variants were identified in 22 of 24 sequenced genes. The mutations were classified as pathogenic, likely pathogenic, likely benign and benign per the chance of causing the disease. NPHS2 was the most common mutated gene. We identified 8 (8.4%) patients with hereditary NS and 5 (5%) patients with probably genetically caused NS. COL4A3-5 variants were found as well, but it is not clear whether they should be considered isolated FSGS or simply a misdiagnosed type of the Alport spectrum. Considering the clinical results, hereditary NS patients presented a tendency to early disease onset when compared with the other groups (P = 0.06) and time to end stage renal disease (ESRD) was longer in this group (P = 0.03). No patients from hereditary NS group had NS recurrence after transplantation. CONCLUSIONS This is the first study in children with steroid-resistant NS who underwent kidney transplantation using next-generation sequencing. Considering our results, we believe this study has shed some light to the uncertainties of genotype-phenotype correlation in NS, where several genes cooperate to produce or even to modify the course of the disease.
Collapse
Affiliation(s)
- Luciana S Feltran
- Nephrology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Patricia Varela
- Biophysics Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Elton Dias Silva
- Biophysics Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Camila Lopes Veronez
- Biophysics Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Carmo Franco
- Nephrology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Alvaro Pacheco Filho
- Nephrology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Fernanda Camargo
- Nephrology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Paulo Cesar Koch Nogueira
- Pediatrics Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Joao Bosco Pesquero
- Biophysics Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Funk SD, Bayer RH, Malone AF, McKee KK, Yurchenco PD, Miner JH. Pathogenicity of a Human Laminin β2 Mutation Revealed in Models of Alport Syndrome. J Am Soc Nephrol 2017; 29:949-960. [PMID: 29263159 DOI: 10.1681/asn.2017090997] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/19/2017] [Indexed: 01/15/2023] Open
Abstract
Pierson syndrome is a congenital nephrotic syndrome with eye and neurologic defects caused by mutations in laminin β2 (LAMB2), a major component of the glomerular basement membrane (GBM). Pathogenic missense mutations in human LAMB2 cluster in or near the laminin amino-terminal (LN) domain, a domain required for extracellular polymerization of laminin trimers and basement membrane scaffolding. Here, we investigated an LN domain missense mutation, LAMB2-S80R, which was discovered in a patient with Pierson syndrome and unusually late onset of proteinuria. Biochemical data indicated that this mutation impairs laminin polymerization, which we hypothesized to be the cause of the patient's nephrotic syndrome. Testing this hypothesis in genetically altered mice showed that the corresponding amino acid change (LAMB2-S83R) alone is not pathogenic. However, expression of LAMB2-S83R significantly increased the rate of progression to kidney failure in a Col4a3-/- mouse model of autosomal recessive Alport syndrome and increased proteinuria in Col4a5+/- females that exhibit a mild form of X-linked Alport syndrome due to mosaic deposition of collagen α3α4α5(IV) in the GBM. Collectively, these data show the pathogenicity of LAMB2-S80R and provide the first evidence of genetic modification of Alport phenotypes by variation in another GBM component. This finding could help explain the wide range of Alport syndrome onset and severity observed in patients with Alport syndrome, even for family members who share the same COL4 mutation. Our results also show the complexities of using model organisms to investigate genetic variants suspected of being pathogenic in humans.
Collapse
Affiliation(s)
- Steven D Funk
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri and
| | - Raymond H Bayer
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri and
| | - Andrew F Malone
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri and
| | - Karen K McKee
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Peter D Yurchenco
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri and
| |
Collapse
|
23
|
Papazachariou L, Papagregoriou G, Hadjipanagi D, Demosthenous P, Voskarides K, Koutsofti C, Stylianou K, Ioannou P, Xydakis D, Tzanakis I, Papadaki A, Kallivretakis N, Nikolakakis N, Perysinaki G, Gale DP, Diamantopoulos A, Goudas P, Goumenos D, Soloukides A, Boletis I, Melexopoulou C, Georgaki E, Frysira E, Komianou F, Grekas D, Paliouras C, Alivanis P, Vergoulas G, Pierides A, Daphnis E, Deltas C. Frequent COL4 mutations in familial microhematuria accompanied by later-onset Alport nephropathy due to focal segmental glomerulosclerosis. Clin Genet 2017. [PMID: 28632965 DOI: 10.1111/cge.13077] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Familial microscopic hematuria (FMH) is associated with a genetically heterogeneous group of conditions including the collagen-IV nephropathies, the heritable C3/CFHR5 nephropathy and the glomerulopathy with fibronectin deposits. The clinical course varies widely, ranging from isolated benign familial hematuria to end-stage renal disease (ESRD) later in life. We investigated 24 families using next generation sequencing (NGS) for 5 genes: COL4A3, COL4A4, COL4A5, CFHR5 and FN1. In 17 families (71%), we found 15 pathogenic mutations in COL4A3/A4/A5, 9 of them novel. In 5 families patients inherited classical AS with hemizygous X-linked COL4A5 mutations. Even more patients developed later-onset Alport-related nephropathy having inherited heterozygous COL4A3/A4 mutations that cause thin basement membranes. Amongst 62 heterozygous or hemizygous patients, 8 (13%) reached ESRD, while 25% of patients with heterozygous COL4A3/A4 mutations, aged >50-years, reached ESRD. In conclusion, COL4A mutations comprise a frequent cause of FMH. Heterozygous COL4A3/A4 mutations predispose to renal function impairment, supporting that thin basement membrane nephropathy is not always benign. The molecular diagnosis is essential for differentiating the X-linked from the autosomal recessive and dominant inheritance. Finally, NGS technology is established as the gold standard for the diagnosis of FMH and associated collagen-IV glomerulopathies, frequently averting the need for invasive renal biopsies.
Collapse
Affiliation(s)
- L Papazachariou
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - G Papagregoriou
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - D Hadjipanagi
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - P Demosthenous
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - K Voskarides
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - C Koutsofti
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - K Stylianou
- Department of Nephrology, University of Crete-Greece, Heraklion, Greece
| | - P Ioannou
- Department of Nephrology, University of Crete-Greece, Heraklion, Greece
| | - D Xydakis
- Department of Nephrology, University of Crete-Greece, Heraklion, Greece
| | - I Tzanakis
- Department of Nephrology, General Hospital of Chania, Crete, Greece
| | - A Papadaki
- Department of Nephrology, General Hospital of Chania, Crete, Greece
| | - N Kallivretakis
- Department of Nephrology, General Hospital of Chania, Crete, Greece
| | - N Nikolakakis
- Division of Nephrology, General Hospital of Rethymno, Crete, Greece
| | - G Perysinaki
- Division of Nephrology, General Hospital of Rethymno, Crete, Greece
| | - D P Gale
- UCL Division of Medicine and Centre for Nephrology, University College London, London, UK
| | | | - P Goudas
- IATOS Dialysis Unit, Patra, Greece
| | - D Goumenos
- Department of Nephrology, Medical School, University of Patras, Patra, Greece
| | - A Soloukides
- Protypo Nefrologiko Athinon Dialysis Center, Athens, Greece
| | - I Boletis
- Department of Nephrology, Laikon Hospital, Athens, Greece
| | - C Melexopoulou
- Department of Nephrology, Laikon Hospital, Athens, Greece
| | - E Georgaki
- Pediatric Nephrology Unit, "IASO" Children's Hospital, Athens, Greece
| | - E Frysira
- Department of Pediatrics, Athens University Medical School, Agia Sophia Children's Hospital, Athens, Greece
| | - F Komianou
- Department of Medical Genetics, Athens University Medical School, Agia Sophia Children's Hospital, Athens, Greece
| | - D Grekas
- University Hospital AXEPA, Thessaloniki, Greece
| | - C Paliouras
- Department of Nephrology, General Hospital of Rhodes, Rhodes, Greece
| | - P Alivanis
- Department of Nephrology, General Hospital of Rhodes, Rhodes, Greece
| | - G Vergoulas
- Organ Transplant Unit, Hippokratio General Hospital, Thessaloniki, Greece
| | - A Pierides
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.,Department of Nephrology, Hippocrateon Hospital, Nicosia, Cyprus
| | - E Daphnis
- Department of Nephrology, University of Crete-Greece, Heraklion, Greece
| | - C Deltas
- Molecular Medicine Research Center & Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
24
|
Boyer O, Dorval G, Servais A. Hereditary Podocytopathies in Adults: The Next Generation. KIDNEY DISEASES 2017; 3:50-56. [PMID: 28868292 DOI: 10.1159/000477243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/28/2017] [Indexed: 01/15/2023]
Abstract
Idiopathic nephrotic syndrome may have two underlying mechanisms: either (1) an alteration of the immune system resulting in the production of a putative circulating factor of glomerular permeability; or (2) mutations in the structural genes of the glomerular filtration barrier in which case patients are typically multidrug resistant and do not recur after transplantation. The latter forms have been recently recognized as "hereditary podocytopathies." In the past few years, positional cloning approaches that allow the identification of gene mutations underlying diseases whose pathophysiology is unknown and animal models have helped decipher the pathophysiological mechanisms of the glomerular filtration process. Recently, the advent of next-generation sequencing (NGS) techniques has greatly facilitated the identification of numerous novel causative genes in hereditary podocytopathies. Moreover, it has revealed mutations in unexpected genes and has widened the phenotypes associated with podocyte gene mutations. The list of genes mutated in hereditary podocytopathies is constantly evolving and consists to date of more than 40 genes. However, the most recently identified genes are extremely rarely mutated and may concern only a couple of families worldwide. These discoveries provided crucial insight into the pathophysiological mechanisms linking podocyte proteins to kidney function. This review will focus on monogenic podocytopathies affecting adult patients.
Collapse
Affiliation(s)
- Olivia Boyer
- Néphrologie pédiatrique, Centre de référence MARHEA, Hôpital Necker - Enfants Malades, APHP, Paris, France.,Inserm U1163, Institut Imagine, Université Paris-Descartes Sorbonne Paris Cité, Paris, France
| | - Guillaume Dorval
- Néphrologie pédiatrique, Centre de référence MARHEA, Hôpital Necker - Enfants Malades, APHP, Paris, France.,Inserm U1163, Institut Imagine, Université Paris-Descartes Sorbonne Paris Cité, Paris, France
| | - Aude Servais
- Néphrologie, Centre de référence MARHEA, Hôpital Necker - Enfants Malades, APHP, Paris, France.,Inserm U1163, Institut Imagine, Université Paris-Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
25
|
A functional variant in NEPH3 gene confers high risk of renal failure in primary hematuric glomerulopathies. Evidence for predisposition to microalbuminuria in the general population. PLoS One 2017; 12:e0174274. [PMID: 28334007 PMCID: PMC5363870 DOI: 10.1371/journal.pone.0174274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/06/2017] [Indexed: 01/06/2023] Open
Abstract
Background Recent data emphasize that thin basement membrane nephropathy (TBMN) should not be viewed as a form of benign familial hematuria since chronic renal failure (CRF) and even end-stage renal disease (ESRD), is a possible development for a subset of patients on long-term follow-up, through the onset of focal and segmental glomerulosclerosis (FSGS). We hypothesize that genetic modifiers may explain this variability of symptoms. Methods We looked in silico for potentially deleterious functional SNPs, using very strict criteria, in all the genes significantly expressed in the slit diaphragm (SD). Two variants were genotyped in a cohort of well-studied adult TBMN patients from 19 Greek-Cypriot families, with a homogeneous genetic background. Patients were categorized as “Severe” or “Mild”, based on the presence or not of proteinuria, CRF and ESRD. A larger pooled cohort (HEMATURIA) of 524 patients, including IgA nephropathy patients, was used for verification. Additionally, three large general population cohorts [Framingham Heart Study (FHS), KORAF4 and SAPHIR] were used to investigate if the NEPH3-V353M variant has any renal effect in the general population. Results and conclusions Genotyping for two high-scored variants in 103 TBMN adult patients with founder mutations who were classified as mildly or severely affected, pointed to an association with variant NEPH3-V353M (filtrin). This promising result prompted testing in the larger pooled cohort (HEMATURIA), indicating an association of the 353M variant with disease severity under the dominant model (p = 3.0x10-3, OR = 6.64 adjusting for gender/age; allelic association: p = 4.2x10-3 adjusting for patients’ kinships). Subsequently, genotyping 6,531 subjects of the Framingham Heart Study (FHS) revealed an association of the homozygous 353M/M genotype with microalbuminuria (p = 1.0x10-3). Two further general population cohorts, KORAF4 and SAPHIR confirmed the association, and a meta-analysis of all three cohorts (11,258 individuals) was highly significant (p = 1.3x10-5, OR = 7.46). Functional studies showed that Neph3 homodimerization and Neph3-Nephrin heterodimerization are disturbed by variant 353M. Additionally, 353M was associated with differential activation of the unfolded protein response pathway, when overexpressed in stressed cultured undifferentiated podocyte cells, thus attesting to its functional significance. Genetics and functional studies support a “rare variant-strong effect” role for NEPH3-V353M, by exerting a negative modifier effect on primary glomerular hematuria. Additionally, genetics studies provide evidence for a role in predisposing homozygous subjects of the general population to micro-albuminuria.
Collapse
|
26
|
Savige J. A further genetic cause of thin basement membrane nephropathy. Nephrol Dial Transplant 2016; 31:1758-1760. [DOI: 10.1093/ndt/gfw217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 01/29/2023] Open
|
27
|
Savva I, Pierides A, Deltas C. RAAS inhibition and the course of Alport syndrome. Pharmacol Res 2016; 107:205-210. [PMID: 26995302 DOI: 10.1016/j.phrs.2016.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 12/26/2022]
Abstract
Alport syndrome (AS) is a hereditary progressive glomerulonephritis with a high life-time risk for end-stage renal disease (ESRD). Most patients will reach ESRD before the age of 30 years, while a subset of them with milder mutations will do so at older ages, even after 50 years. Frequent extrarenal manifestations are hearing loss and ocular abnormalities. AS is a genetically heterogeneous collagen IV nephropathy, with 85% of the cases caused by mutations in the X-linked COL4A5 gene and the rest by homozygous or compound heterozygous mutations in either the COL4A3 or the COL4A4 gene on chromosome 2q36-37. There is no radical cure for the disease and attempts to use various stem cell therapies in animal models have been met with ambiguous success. However, effective treatment has been accomplished with pharmacological intervention at the renin-angiotensin-aldosterone system (RAAS), first in animal models of AS and more recently in humans. Angiotensin converting enzyme inhibitors (ACEis) and angiotensin receptor blockers (ARBs) have been shown to significantly delay the progression of chronic kidney disease and the onset of ESRD. Also, renin inhibitors and aldosterone blockade were used with positive results, while the combination of ACEis and ARBs was met with mixed success. An important study, the EARLY-PROTECT, aims at evaluating the efficacy of ACEis when administered very early on in children with AS. Novel therapies are also tested experimentally or are under design in animal models by several groups, including the use of amniotic fluid stem cells and synthetic chaperones.
Collapse
Affiliation(s)
- Isavella Savva
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Cyprus
| | - Alkis Pierides
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Cyprus; Department of Nephrology, Hippocrateon Hospital, Nicosia, Cyprus
| | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Cyprus.
| |
Collapse
|
28
|
Rheault MN, Gbadegesin RA. The Genetics of Nephrotic Syndrome. J Pediatr Genet 2015; 5:15-24. [PMID: 27617138 DOI: 10.1055/s-0035-1557109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022]
Abstract
Nephrotic syndrome (NS) is a common pediatric kidney disease and is defined as massive proteinuria, hypoalbuminemia, and edema. Dysfunction of the glomerular filtration barrier, which is made up of endothelial cells, glomerular basement membrane, and visceral epithelial cells known as podocytes, is evident in children with NS. While most children have steroid-responsive nephrotic syndrome (SSNS), approximately 20% have steroid-resistant nephrotic syndrome (SRNS) and are at risk for progressive kidney dysfunction. While the cause of SSNS is still not well understood, there has been an explosion of research into the genetic causes of SRNS in the past 15 years. More than 30 proteins regulating the function of the glomerular filtration barrier have been associated with SRNS including podocyte slit diaphragm proteins, podocyte actin cytoskeletal proteins, mitochondrial proteins, adhesion and glomerular basement membrane proteins, transcription factors, and others. A genetic cause of SRNS can be found in approximately 70% of infants presenting in the first 3 months of life and 50% of infants presenting between 4 and 12 months, with much lower likelihood for older patients. Identification of the underlying genetic etiology of SRNS is important in children because it allows for counseling of other family members who may be at risk, predicts risk of recurrent disease after kidney transplant, and predicts response to immunosuppressive therapy. Correlations between genetic mutation and clinical phenotype as well as genetic risk factors for SSNS and SRNS are reviewed in this article.
Collapse
Affiliation(s)
- Michelle N Rheault
- Division of Nephrology, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, United States
| | - Rasheed A Gbadegesin
- Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
29
|
Deltas C, Savva I, Voskarides K, Papazachariou L, Pierides A. Carriers of Autosomal Recessive Alport Syndrome with Thin Basement Membrane Nephropathy Presenting as Focal Segmental Glomerulosclerosis in Later Life. Nephron Clin Pract 2015. [PMID: 26201269 DOI: 10.1159/000435789] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Collagen IV nephropathies (COL4Ns) comprise benign familial microscopic hematuria, thin basement membrane nephropathy (TBMN), X-linked Alport syndrome (AS) and also autosomal recessive and dominant AS. Apart from the X-linked form of AS, which is caused by hemizygous mutations in the COL4A5 gene, the other entities are caused by mutations in the COL4A3 or COL4A4 genes. The diagnosis of these conditions used to be based on clinical and/or histological findings of renal biopsies, but it is the new molecular genetics approach that revolutionised their investigation and proved particularly instrumental, especially, in many not so clear-cut cases. More recently, the spectrum of COL4N has expanded to include late onset focal segmental glomerulosclerosis (FSGS) that develops on top of TBMN in later life. Also, other reports showed that some patients with a primary diagnosis of familial FSGS proved to have variants in COL4 genes. In the presence of a renal biopsy picture of FSGS and in the absence of either electron microscopy studies or molecular genetic studies that point to TBMN and COL4N, the patient and his family may be mistakenly diagnosed with hereditary FSGS leading to unnecessary further investigations, erroneous family counselling and improper corticosteroid treatment. TBMN is a frequent finding in the general population, and according to several recent reports, it may be the underlying cause and the explanation for many familial and sporadic cases of late-onset FSGS with non-nephrotic proteinuria. This is an important new finding that needs widespread recognition. It is anticipated that the molecular genetic analysis with next generation sequencing will certainly offer timely correct diagnosis.
Collapse
Affiliation(s)
- Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | | | | | |
Collapse
|
30
|
Stefanou C, Pieri M, Savva I, Georgiou G, Pierides A, Voskarides K, Deltas C. Co-Inheritance of Functional Podocin Variants with Heterozygous Collagen IV Mutations Predisposes to Renal Failure. Nephron Clin Pract 2015; 130:200-12. [PMID: 26138234 DOI: 10.1159/000432406] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/16/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS A subset of patients who present with proteinuria and are diagnosed with focal segmental glomerulosclerosis (FSGS) have inherited heterozygous COL4A3/A4 mutations and are also diagnosed with thin basement membrane nephropathy (TBMN-OMIM: 141200). Two studies showed that co-inheritance of NPHS2-p.Arg229Gln, a podocin variant, may increase the risk for proteinuria and renal function decline. METHODS We hypothesized that additional podocin variants may exert a similar effect. We studied genetically a well-characterized Cypriot TBMN patient cohort by re-sequencing the NPHS2 coding region. We also performed functional studies in cell culture experiments, investigating the interaction of podocin variants with itself and with nephrin. RESULTS Potentially disease-modifying podocin variants were searched for by analyzing NPHS2 in 35 'severe' TBMN patients. One non-synonymous variant, p.Glu237Gln, was detected. Both variants, p.Arg229Gln and p.Glu237Gln, were tested in a larger cohort of 122 TBMN patients, who were categorized as 'mild' or 'severe' based on the presence of microscopic hematuria alone or combined with chronic renal failure and/or proteinuria. Seven 'severe' patients carried either of the 2 variants; none was present in the 'mild' patients (p = 0.05, Pearson χ(2)). The 7 carriers belong in 2 families segregating mutation COL4A3-p.Gly1334Glu. Inheritance of the wild-type (WT) and mutant alleles correlated with the phenotype (combined concordance probability 0.003). Immunofluorescence (IF) experiments after dual co-transfection of WT and mutant podocin suggested altered co-localization of mutant homodimers. IF experiments after co-transfection of WT podocin and nephrin showed normal membrane localization, while both podocin variants interfered with normal trafficking, demonstrating perinuclear staining. Immunoprecipitation experiments showed stronger binding of mutant podocin to WT podocin or nephrin. CONCLUSION The results support the hypothesis that certain hypomorphic podocin variants may act as adverse genetic modifiers when co-inherited with COL4A3/A4 mutations, thus predisposing to FSGS and severe kidney function decline.
Collapse
Affiliation(s)
- Charalambos Stefanou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | | | | | | | | | |
Collapse
|
31
|
Papazachariou L, Demosthenous P, Pieri M, Papagregoriou G, Savva I, Stavrou C, Zavros M, Athanasiou Y, Ioannou K, Patsias C, Panagides A, Potamitis C, Demetriou K, Prikis M, Hadjigavriel M, Kkolou M, Loukaidou P, Pastelli A, Michael A, Lazarou A, Arsali M, Damianou L, Goutziamani I, Soloukides A, Yioukas L, Elia A, Zouvani I, Polycarpou P, Pierides A, Voskarides K, Deltas C. Frequency of COL4A3/COL4A4 mutations amongst families segregating glomerular microscopic hematuria and evidence for activation of the unfolded protein response. Focal and segmental glomerulosclerosis is a frequent development during ageing. PLoS One 2014; 9:e115015. [PMID: 25514610 PMCID: PMC4267773 DOI: 10.1371/journal.pone.0115015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/17/2014] [Indexed: 12/29/2022] Open
Abstract
Familial glomerular hematuria(s) comprise a genetically heterogeneous group of conditions which include Alport Syndrome (AS) and thin basement membrane nephropathy (TBMN). Here we investigated 57 Greek-Cypriot families presenting glomerular microscopic hematuria (GMH), with or without proteinuria or chronic kidney function decline, but excluded classical AS. We specifically searched the COL4A3/A4 genes and identified 8 heterozygous mutations in 16 families (28,1%). Eight non-related families featured the founder mutation COL4A3-p.(G1334E). Renal biopsies from 8 patients showed TBMN and focal segmental glomerulosclerosis (FSGS). Ten patients (11.5%) reached end-stage kidney disease (ESKD) at ages ranging from 37-69-yo (mean 50,1-yo). Next generation sequencing of the patients who progressed to ESKD failed to reveal a second mutation in any of the COL4A3/A4/A5 genes, supporting that true heterozygosity for COL4A3/A4 mutations predisposes to CRF/ESKD. Although this could be viewed as a milder and late-onset form of autosomal dominant AS, we had no evidence of ultrastructural features or extrarenal manifestations that would justify this diagnosis. Functional studies in cultured podocytes transfected with wild type or mutant COL4A3 chains showed retention of mutant collagens and differential activation of the unfolded protein response (UPR) cascade. This signifies the potential role of the UPR cascade in modulating the final phenotype in patients with collagen IV nephropathies.
Collapse
Affiliation(s)
- Louiza Papazachariou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
| | - Panayiota Demosthenous
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
| | - Myrtani Pieri
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
| | - Gregory Papagregoriou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
| | - Isavella Savva
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
| | | | - Michael Zavros
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | | | - Kyriakos Ioannou
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | | | - Alexia Panagides
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | - Costas Potamitis
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | | | - Marios Prikis
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | | | - Maria Kkolou
- Department of Nephrology, Larnaca General Hospital, Larnaca, Cyprus
| | | | | | - Aristos Michael
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus
| | - Akis Lazarou
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus
| | - Maria Arsali
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus
| | - Loukas Damianou
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus
| | | | | | - Lakis Yioukas
- Department of Nephrology, Paphos General Hospital, Paphos, Cyprus
| | - Avraam Elia
- Department of Pediatrics, Archbishop Makarios III Hospital, Nicosia, Cyprus
| | - Ioanna Zouvani
- Department of Histopathology, Nicosia General Hospital, Nicosia, Cyprus
| | | | - Alkis Pierides
- Department of Nephrology, Hippocrateon Hospital, Nicosia, Cyprus
- * E-mail: (CD); (A. Pierides)
| | - Konstantinos Voskarides
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
| | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
- * E-mail: (CD); (A. Pierides)
| |
Collapse
|
32
|
Bullich G, Trujillano D, Santín S, Ossowski S, Mendizábal S, Fraga G, Madrid Á, Ariceta G, Ballarín J, Torra R, Estivill X, Ars E. Targeted next-generation sequencing in steroid-resistant nephrotic syndrome: mutations in multiple glomerular genes may influence disease severity. Eur J Hum Genet 2014; 23:1192-9. [PMID: 25407002 PMCID: PMC4538209 DOI: 10.1038/ejhg.2014.252] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 01/26/2023] Open
Abstract
Genetic diagnosis of steroid-resistant nephrotic syndrome (SRNS) using Sanger sequencing is complicated by the high genetic heterogeneity and phenotypic variability of this disease. We aimed to improve the genetic diagnosis of SRNS by simultaneously sequencing 26 glomerular genes using massive parallel sequencing and to study whether mutations in multiple genes increase disease severity. High-throughput mutation analysis was performed in 50 SRNS and/or focal segmental glomerulosclerosis (FSGS) patients, a validation cohort of 25 patients with known pathogenic mutations, and a discovery cohort of 25 uncharacterized patients with probable genetic etiology. In the validation cohort, we identified the 42 previously known pathogenic mutations across NPHS1, NPHS2, WT1, TRPC6, and INF2 genes. In the discovery cohort, disease-causing mutations in SRNS/FSGS genes were found in nine patients. We detected three patients with mutations in an SRNS/FSGS gene and COL4A3. Two of them were familial cases and presented a more severe phenotype than family members with mutation in only one gene. In conclusion, our results show that massive parallel sequencing is feasible and robust for genetic diagnosis of SRNS/FSGS. Our results indicate that patients carrying mutations in an SRNS/FSGS gene and also in COL4A3 gene have increased disease severity.
Collapse
Affiliation(s)
- Gemma Bullich
- 1] Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain [2] Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Daniel Trujillano
- 1] Genomics and Disease Group, Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain [2] Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain [3] Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain [4] CIBER in Epidemiology and Public Health (CIBERESP), Barcelona, Catalonia, Spain
| | - Sheila Santín
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Stephan Ossowski
- 1] Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain [2] Genomic and Epigenomic Variation in Disease Group, Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain
| | - Santiago Mendizábal
- Pediatric Nephrology Department, Hospital Universitario La Fe, Valencia, Spain
| | - Gloria Fraga
- Pediatric Nephrology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Álvaro Madrid
- Pediatric Nephrology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Gema Ariceta
- Pediatric Nephrology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - José Ballarín
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Roser Torra
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Xavier Estivill
- 1] Genomics and Disease Group, Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain [2] Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain [3] Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain [4] CIBER in Epidemiology and Public Health (CIBERESP), Barcelona, Catalonia, Spain
| | - Elisabet Ars
- 1] Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain [2] Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| |
Collapse
|
33
|
Lin F, Bian F, Zou J, Wu X, Shan J, Lu W, Yao Y, Jiang G, Gale DP. Whole exome sequencing reveals novel COL4A3 and COL4A4 mutations and resolves diagnosis in Chinese families with kidney disease. BMC Nephrol 2014; 15:175. [PMID: 25381091 PMCID: PMC4233041 DOI: 10.1186/1471-2369-15-175] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/28/2014] [Indexed: 01/01/2023] Open
Abstract
Background Collagen IV-related nephropathies, including thin basement membrane nephropathy and Alport Syndrome (AS), are caused by defects in the genes COL4A3, COL4A4 and COL4A5. Diagnosis of these conditions can be hindered by variable penetrance and the presence of non-specific clinical or pathological features. Methods Three families with unexplained inherited kidney disease were recruited from Shanghai, China. Whole exome sequencing (WES) was performed in the index case from each family and co-segregation of candidate pathogenic mutations was tested by Sanger sequencing. Results We identified COL4A4 missense variants [c.G2636A (p.Gly879Glu) and c.C4715T (p.Pro1572Leu)] in the 21-year-old male proband from family 1, who had been diagnosed with mesangial proliferative nephropathy at age 14. COL4A4 c.G2636A, a novel variant, co-segregated with renal disease among maternal relatives. COL4A4 c.C4715T has previously been associated with autosomal recessive AS and was inherited from his clinically unaffected father. In family 2, a novel COL4A3 missense mutation c.G2290A (p.Gly997Glu) was identified in a 45-year-old male diagnosed with focal segmental glomerulosclerosis and was present in all his affected family members, who exhibited disease ranging from isolated microscopic hematuria to end stage renal disease (ESRD). In family 3, ESRD occurred in both male and females who were found to harbor a known AS-causing COL4A5 donor splice site mutation (c.687 + 1G > A). None of these variants were detected among 100 healthy Chinese individuals. Conclusion WES identified 2 novel and 2 known pathogenic COL4A3/COL4A4/COL4A5 mutations in 3 families with previously unexplained inherited kidney disease. These findings highlight the clinical range of collagen IV-related nephropathies and resolved diagnostic confusion arising from atypical or incomplete clinical/histological findings, allowing appropriate counselling and treatment advice to be given. Electronic supplementary material The online version of this article (doi:10.1186/1471-2369-15-175) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gengru Jiang
- Department of Nephrology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | | |
Collapse
|
34
|
Savige J. Alport syndrome: its effects on the glomerular filtration barrier and implications for future treatment. J Physiol 2014; 592:4013-23. [PMID: 25107927 DOI: 10.1113/jphysiol.2014.274449] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The glomerular filtration barrier comprises a fenestrated capillary endothelium, glomerular basement membrane and podocyte slit diaphragm. Over the past decade we have come to realise that permselectivity depends on size and not necessarily charge, that the molecular sieve depends on the podocyte contractile apparatus and is highly dynamic, and that protein uptake by proximal tubular epithelial cells stimulates signalling and the production of transcription factors and inflammatory mediators. Alport syndrome is the second commonest monogenic cause of renal failure after autosomal dominant polycystic kidney disease. Eighty per cent of patients have X-linked disease caused by mutations in the COL4A5 gene. Most of these result in the replacement of the collagen IV α3α4α5 network with the α1α1α2 heterotrimer. Affected membranes also have ectopic laminin and increased matrix metalloproteinase levels, which makes them more susceptible to proteolysis. Mechanical stress, due to the less elastic membrane and hypertension, interferes with integrin-mediated podocyte-GBM adhesion. Proteinuria occurs when urinary levels exceed tubular reabsorption rates, and initiates tubulointerstitial fibrosis. The glomerular mesangial cells produce increased TGFβ and CTGF which also contribute to glomerulosclerosis. Currently there is no specific therapy for Alport syndrome. However treatment with angiotensin converting enzyme (ACE) inhibitors delays renal failure progression by reducing intraglomerular hypertension, proteinuria, and fibrosis. Our greater understanding of the mechanisms underlying the GBM changes and their consequences in Alport syndrome have provided us with further novel therapeutic targets.
Collapse
Affiliation(s)
- Judy Savige
- University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| |
Collapse
|
35
|
Sevillano AM, Gutierrez E, Morales E, Hernandez E, Molina M, Gonzalez E, Praga M. Multiple kidney cysts in thin basement membrane disease with proteinuria and kidney function impairment. Clin Kidney J 2014; 7:251-6. [PMID: 25852885 PMCID: PMC4377753 DOI: 10.1093/ckj/sfu033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 03/19/2014] [Indexed: 01/18/2023] Open
Abstract
Background Some patients with thin basement membrane disease (TBMD) develop proteinuria, hypertension and different degrees of CKD, besides the persistent microhaematuria characteristic of the disease. Little is known about factors associated with this unfavourable outcome. Methods We reviewed clinical, pathological and radiological features of 32 patients with biopsy-proven TBMD. Patients were divided in two groups: those with persistent normal kidney function and negative or minimal proteinuria (n = 16) and those with persistent proteinuria >0.5 g/day (n = 16). Results Patients with proteinuria had a worse kidney function at baseline than those with negative proteinuria. Global or segmental glomerulosclerosis, together with interstitial fibrosis, was found in 37% of patients with proteinuria. All proteinuric patients were treated with renin–angiotensin system blockers. At the end of follow-up (198 months in proteinuric patients and 210 months in patients with negative proteinuria) the prevalence of hypertension was 68% in proteinuric patients (12% at baseline), compared with 12 and 6%, respectively, in non-proteinuric patients. A slow decline of renal function was observed in proteinuric patients, although no patient developed end-stage kidney disease. Ultrasound studies showed bilateral kidney cysts in nine patients (56%) with proteinuria. Cysts were bilateral and countless in six patients, and bilateral but with a limited number of cysts in the three remaining patients. No cysts were found in patients with negative proteinuria. Conclusions Some patients with TBMD develop hypertension, proteinuria and CKD. Multiple bilateral kidney cysts were found in a majority (56%) of these patients. Further studies are needed to investigate the pathogenesis and the influence on long-term outcome of this TBMD-associated multiple kidney cysts.
Collapse
Affiliation(s)
- Angel M Sevillano
- Department of Nephrology , 12 de Octubre University Hospital , Madrid , Spain
| | - Eduardo Gutierrez
- Department of Nephrology , 12 de Octubre University Hospital , Madrid , Spain
| | - Enrique Morales
- Department of Nephrology , 12 de Octubre University Hospital , Madrid , Spain
| | - Eduardo Hernandez
- Department of Nephrology , 12 de Octubre University Hospital , Madrid , Spain
| | - Maria Molina
- Department of Nephrology , 12 de Octubre University Hospital , Madrid , Spain
| | - Ester Gonzalez
- Department of Nephrology , 12 de Octubre University Hospital , Madrid , Spain
| | - Manuel Praga
- Department of Nephrology , 12 de Octubre University Hospital , Madrid , Spain ; Department of Medicine , Complutense University , Madrid , Spain
| |
Collapse
|
36
|
Ishimori S, Kaito H, Hara S, Nakanishi K, Yoshikawa N, Iijima K. Nephrotic-range proteinuria in an infant with thin basement membrane nephropathy. CEN Case Rep 2013; 2:194-196. [PMID: 28509291 DOI: 10.1007/s13730-013-0063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/07/2013] [Indexed: 11/30/2022] Open
Abstract
Thin basement membrane nephropathy (TBMN) with heterozygous COL4A3/COL4A4 mutations is considered to be a cause of benign familial hematuria. The disease has been believed to have excellent prognosis and TBMN in early childhood is rarely associated with nephrotic-range proteinuria. Furthermore, the presence of proteinuria in patients with TBMN is associated with autosomal-dominant Alport syndrome, which has poorer prognosis in later life. We present an infant case of nephrotic-range proteinuria associated with TBMN caused by heterozygous COL4A4 mutation. A previously healthy 3-year-old boy developed microhematuria and nephrotic-range proteinuria. Renal pathology simply revealed thinning of the glomerular basement membrane (GBM) and mutational analysis revealed a novel heterozygous mutation in COL4A4. He was treated with lisinopril for 1.5 years, which resolved his proteinuria and hematuria. At the most recent follow-up at 6.5 years of age, urinalysis and kidney function were completely normal, without requiring medication. However, transient but repeated moderate to nephrotic-range proteinuria and microscopic hematuria occurred in association with other illnesses. This case highlights the spectrum of phenotypes that may be apparent in an infant with TBMN. Thinning of the GBM can cause transient nephrotic-range proteinuria, particularly in the early stages of TBMN.
Collapse
Affiliation(s)
- Shingo Ishimori
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyōgo, 6500017, Japan
| | - Hiroshi Kaito
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyōgo, 6500017, Japan.
| | - Shigeo Hara
- Division of Diagnostic Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koichi Nakanishi
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | | | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyōgo, 6500017, Japan
| |
Collapse
|
37
|
Deltas C, Pierides A, Voskarides K. Molecular genetics of familial hematuric diseases. Nephrol Dial Transplant 2013; 28:2946-60. [PMID: 24046192 DOI: 10.1093/ndt/gft253] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The familial hematuric diseases are a genetically heterogeneous group of monogenic conditions, caused by mutations in one of several genes. The major genes involved are the following: (i) the collagen IV genes COL4A3/A4/A5 that are expressed in the glomerular basement membranes (GBM) and are responsible for the most frequent forms of microscopic hematuria, namely Alport syndrome (X-linked or autosomal recessive) and thin basement membrane nephropathy (TBMN). (ii) The FN1 gene, expressed in the glomerulus and responsible for a rare form of glomerulopathy with fibronectin deposits (GFND). (iii) CFHR5 gene, a recently recognized regulator of the complement alternative pathway and mutated in a recently revisited form of inherited C3 glomerulonephritis (C3GN), characterized by isolated C3 deposits in the absence of immune complexes. A hallmark feature of all conditions is the age-dependent penetrance and a broad phenotypic heterogeneity in the sense that subsets of patients progress to added proteinuria or proteinuria and chronic renal failure that may or may not lead to end-stage kidney disease (ESKD) anywhere between the second and seventh decade of life. In addition to other excellent laboratory tools that assist the clinician in reaching the correct diagnosis, the molecular analysis emerges as the gold standard in establishing the diagnosis in many cases of doubt due to equivocal findings that complicate the differential diagnosis. Recent work led to the description of candidate genetic modifiers which confer a variable risk for progressing to chronic renal failure when co-inherited on the background of a primary glomerulopathy. Finally, more families are still waiting to be studied and more genes to be mapped and cloned that are responsible for other forms of heritable hematuric diseases. The study of such genes and their protein products will likely shed more light on the structure and function of the glomerular filtration barrier and other important glomerular components.
Collapse
Affiliation(s)
- Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | |
Collapse
|
38
|
Beicht S, Strobl-Wildemann G, Rath S, Wachter O, Alberer M, Kaminsky E, Weber LT, Hinrichsen T, Klein HG, Hoefele J. Next generation sequencing as a useful tool in the diagnostics of mosaicism in Alport syndrome. Gene 2013; 526:474-7. [PMID: 23732293 DOI: 10.1016/j.gene.2013.05.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
Abstract
Alport syndrome (ATS) is a progressive hereditary nephropathy characterized by hematuria and/or proteinuria with structural defects of the glomerular basement membrane. It can be associated with extrarenal manifestations (high-tone sensorineural hearing loss and ocular abnormalities). Somatic mutations in COL4A5 (X-linked), COL4A3 and COL4A4 genes (both autosomal recessive and autosomal dominant) cause Alport syndrome. Somatic mosaicism in Alport patients is very rare. The reason for this may be due to the difficulty of detection. We report the case of a boy and his mother who presented with Alport syndrome. Mutational analysis showed the novel hemizygote pathogenic mutation c.2396-1G>A (IVS29-1G>A) at the splice acceptor site of the intron 29 exon 30 boundary of the COL4A5 gene in the boy. The mutation in the mother would not have been detected by Sanger sequencing without the knowledge of the mutational analysis result of her son. Further investigation of the mother using next generation sequencing showed somatic mosaicism and implied potential germ cell mosaicism. The mutation in the mother has most likely occurred during early embryogenesis. Analysis of tissue of different embryonic origin in the mother confirmed mosaicism in both mesoderm and ectoderm. Low grade mosaicism is very difficult to detect by Sanger sequencing. Next generation sequencing is increasingly used in the diagnostics and might improve the detection of mosaicism. In the case of definite clinical symptoms of ATS and missing detection of a mutation by Sanger sequencing, mutational analysis should be performed by next generation sequencing.
Collapse
Affiliation(s)
- Sonja Beicht
- Center for Human Genetics and Laboratory Medicine Dr. Klein, Dr. Rost and Colleagues, Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Voskarides K, Demosthenous P, Papazachariou L, Arsali M, Athanasiou Y, Zavros M, Stylianou K, Xydakis D, Daphnis E, Gale DP, Maxwell PH, Elia A, Pattaro C, Pierides A, Deltas C. Epistatic role of the MYH9/APOL1 region on familial hematuria genes. PLoS One 2013; 8:e57925. [PMID: 23516419 PMCID: PMC3597641 DOI: 10.1371/journal.pone.0057925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/27/2013] [Indexed: 11/18/2022] Open
Abstract
Familial hematuria (FH) is explained by at least four different genes (see below). About 50% of patients develop late proteinuria and chronic kidney disease (CKD). We hypothesized that MYH9/APOL1, two closely linked genes associated with CKD, may be associated with adverse progression in FH. Our study included 102 thin basement membrane nephropathy (TBMN) patients with three known COL4A3/COL4A4 mutations (cohort A), 83 CFHR5/C3 glomerulopathy patients (cohort B) with a single CFHR5 mutation and 15 Alport syndrome patients (cohort C) with two known COL4A5 mild mutations, who were categorized as “Mild” (controls) or “Severe” (cases), based on renal manifestations. E1 and S1 MYH9 haplotypes and variant rs11089788 were analyzed for association with disease phenotype. Evidence for association with “Severe” progression in CFHR5 nephropathy was found with MYH9 variant rs11089788 and was confirmed in an independent FH cohort, D (cumulative p value = 0.001, odds ratio = 3.06, recessive model). No association was found with APOL1 gene. Quantitative Real time PCR did not reveal any functional significance for the rs11089788 risk allele. Our results derive additional evidence supporting previous reports according to which MYH9 is an important gene per se, predisposing to CKD, suggesting its usefulness as a prognostic marker for young hematuric patients.
Collapse
Affiliation(s)
- Konstantinos Voskarides
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Panayiota Demosthenous
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Louiza Papazachariou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Maria Arsali
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | | | - Michalis Zavros
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | - Kostas Stylianou
- Department of Nephrology, University of Crete, Heraklion, Greece
| | - Dimitris Xydakis
- Department of Nephrology, University of Crete, Heraklion, Greece
| | - Eugenios Daphnis
- Department of Nephrology, University of Crete, Heraklion, Greece
| | - Daniel P. Gale
- Centre for Nephrology, University College London, London, United Kingdom
| | | | - Avraam Elia
- Department of Pediatrics, Archbishop Makarios III Hospital, Nicosia, Cyprus
| | - Cristian Pattaro
- Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy – Affiliated Institute of the University of Lubeck, Lubeck, Germany
| | - Alkis Pierides
- Department of Nephrology, Hippocrateon Hospital, Nicosia, Cyprus
| | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
40
|
Voskarides K, Arsali M, Athanasiou Y, Elia A, Pierides A, Deltas C. Evidence that NPHS2-R229Q predisposes to proteinuria and renal failure in familial hematuria. Pediatr Nephrol 2012; 27:675-9. [PMID: 22228437 DOI: 10.1007/s00467-011-2084-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Familial hematuria (FH) is associated with at least two pathological entities: thin basement membrane nephropathy (TBMN), caused by heterozygous COL4A3/COL4A4 mutations, and C3 nephropathy caused by CFHR5 mutations. It is now known that TBMN patients develop proteinuria and changes of focal segmental glomerulosclerosis when biopsied. End-stage kidney disease (ESKD) is observed in 20% of carriers, at ages 50-70. A similar progression is observed in CFHR5 nephropathy. Recent evidence suggests that NPHS2-R229Q, a podocin polymorphism, may contribute to proteinuria in TBMN and to micro-albuminuria in the general population. CASE-DIAGNOSIS/TREATMENT NPHS2-R229Q was screened in a Cypriot FH cohort. 102 TBMN patients with three known COL4 mutations and 45 CFHR5 male patients with a single mutation were categorized as "Mild" or "Severe", based on the presence of microhematuria only, or proteinuria and chronic kidney disease. Nine R229Q carriers were found in the "Severe" category and none in the "Mild" (p=0.010 for genotypic association; p=0.043 for allelic association, adjusted for patients' relatedness), thus supporting the possible contribution of 229Q allele in disease progress. CONCLUSIONS Our results offer more evidence that in patients with FH, NPHS2-R229Q predisposes to proteinuria and ESKD. R229Q may be a good prognostic marker for young hematuric patients.
Collapse
Affiliation(s)
- Konstantinos Voskarides
- Department of Biological Sciences, Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| | | | | | | | | | | |
Collapse
|
41
|
McKnight AJ, Currie D, Maxwell AP. Unravelling the genetic basis of renal diseases; from single gene to multifactorial disorders. J Pathol 2010; 220:198-216. [PMID: 19882676 DOI: 10.1002/path.2639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic kidney disease is common with up to 5% of the adult population reported to have an estimated glomerular filtration rate of < 60 ml/min/1.73 m(2). A large number of pathogenic mutations have been identified that are responsible for 'single gene' renal disorders, such as autosomal dominant polycystic kidney disease and X-linked Alport syndrome. These single gene disorders account for < 15% of the burden of end-stage renal disease that requires dialysis or kidney transplantation. It has proved more difficult to identify the genetic susceptibility underlying common, complex, multifactorial kidney conditions, such as diabetic nephropathy and hypertensive nephrosclerosis. This review describes success to date and explores strategies currently employed in defining the genetic basis for a number of renal disorders. The complementary use of linkage studies, candidate gene and genome-wide association analyses are described and a collation of renal genetic resources highlighted.
Collapse
Affiliation(s)
- Amy J McKnight
- Nephrology Research Group, Queen's University of Belfast, Belfast BT9 7AB, Northern Ireland, UK
| | | | | |
Collapse
|
42
|
Pierides A, Voskarides K, Athanasiou Y, Ioannou K, Damianou L, Arsali M, Zavros M, Pierides M, Vargemezis V, Patsias C, Zouvani I, Elia A, Kyriacou K, Deltas C. Clinico-pathological correlations in 127 patients in 11 large pedigrees, segregating one of three heterozygous mutations in the COL4A3/ COL4A4 genes associated with familial haematuria and significant late progression to proteinuria and chronic kidney disease from focal segmental glomerulosclerosis. Nephrol Dial Transplant 2009; 24:2721-9. [PMID: 19357112 DOI: 10.1093/ndt/gfp158] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Heterozygous mutations in the COL4A3/ COL4A4 genes are currently thought to be responsible for familial benign microscopic haematuria and maintenance of normal long-term kidney function. METHODS We report on 11 large Cypriot pedigrees with three such mutations. A total of 236 at-risk family members were genetically studied, and 127 (53.8%) carried a heterozygous mutation. Clinico-pathological correlations were available in all of these patients. Renal biopsies in 21 of these patients all showed various stages of focal, segmental glomerulosclerosis (FSGS). Thirteen of these biopsies were also studied with EM and showed thinning of the glomerular basement membrane. RESULTS Mutation G1334E (COL4A3) was found in six pedigrees, mutation G871C (COL4A3) in four and mutation 3854delG (COL4A4) in one pedigree. Clinical and laboratory correlations in all 127 mutation carriers (MC) showed that microscopic haematuria was the only urinary finding in patients under age 30. The prevalence of 'haematuria alone' fell to 66% between 31 and 50 years, to 30% between 51 and 70 and to 23% over age 71. Proteinuria with CRF developed on top of haematuria in 8% of all MC between 31 and 50 years, to 25% between 51 and 70 years and to 50% over 71 years. Altogether 18 of these 127 MC (14%) developed ESRD at a mean age of 60 years. Two members with different mutations married, and two of their children inherited both mutations and developed adolescent, autosomal recessive Alport syndrome (ATS), confirming that these mutations are pathogenic. CONCLUSIONS Our data confirm for the first time a definite association of heterozygous COL4A3/COL4A4 mutations with familial microscopic haematuria, thin basement membrane nephropathy and the late development of familial proteinuria, CRF, and ESRD, due to FSGS, indicating that the term 'benign familial haematuria' is a misnomer, at least in this cohort. A strong hypothesis for a causal relationship between these mutations and FSGS is also made. Benign familial haematuria may not be so benign as commonly thought.
Collapse
Affiliation(s)
- Alkis Pierides
- Department of Nephrology, Nicosia General Hospital, University of Cyprus, Cyprus
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Deltas C. Thin basement membrane nephropathy: is there genetic predisposition to more severe disease? Pediatr Nephrol 2009; 24:877-9. [PMID: 19018577 PMCID: PMC7811520 DOI: 10.1007/s00467-008-1042-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/10/2008] [Accepted: 10/13/2008] [Indexed: 01/18/2023]
Affiliation(s)
- Constantinos Deltas
- Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| |
Collapse
|