1
|
Koce M, Fakin A, Markelj Š, Debeljak M, Kovač J, Lisec A, Bertok S, Meglič A. Pathogenic variants in the IFT140 gene and an intriguing clinical presentation in two pediatric patients. Cases report and review of literature. Ophthalmic Genet 2025; 46:285-292. [PMID: 39927556 DOI: 10.1080/13816810.2025.2462987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND The IFT140 gene is one of many genes involved in the synthesis of proteins needed for cilium function. Ciliopathies are a group of disorders associated with the dysfunction of ciliary structures and express as an individual organ system disease as well as multisystem disorders. Dysfunctional cilia typically manifest as pleiotropic clinical features, reflecting their widespread distribution and varied functionality. CASES PRESENTATION We present two cases: Case 1, a male with two pathological variations in IFT140 gene, a compound heterozygote, with kidney failure, retinal dystrophy, cardiomyopathy, and situs inversus and Case 2, a female with an IFT140 pathogenic homozygous variant, presented with nephrotic range proteinuria, retinitis pigmentosa, and pseudotumor cerebri. CONCLUSIONS As cilia dysfunction is known to cause pleiotropic clinical features due to the presence of cilia in different organs in the body, the clinical picture of the IFT140 mutation is also very heterogeneous. Our cases reveal unprecedented manifestations - LVNC, situs inversus, and pseudotumor cerebri - not previously documented in IFT140 mutation. These findings underscore the importance of genetic screening in ciliopathies.
Collapse
Affiliation(s)
- Maša Koce
- Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Ana Fakin
- Department of Ophthalmology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Špela Markelj
- Department of Ophthalmology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maruša Debeljak
- Clinical Institute of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre, Ljubljana, Slovenia
| | - Jernej Kovač
- Clinical Institute of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre, Ljubljana, Slovenia
| | - Ajda Lisec
- Clinical Department of Anesthesiology and Surgical Intensive Care, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Sara Bertok
- Centre for Medical Genetics, University Medical Centre, University Children's Hospital, Ljubljana, Slovenia
| | - Anamarija Meglič
- Nephrology Department, Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Patel MM, Gerakopoulos V, Lettenmaier B, Petsouki E, Zimmerman KA, Sayer JA, Tsiokas L. SOX9-dependent fibrosis drives renal function in nephronophthisis. EMBO Mol Med 2025:10.1038/s44321-025-00233-3. [PMID: 40211043 DOI: 10.1038/s44321-025-00233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
Fibrosis is a key feature of a broad spectrum of cystic kidney diseases, especially autosomal recessive kidney disorders such as nephronophthisis (NPHP). However, its contribution to kidney function decline and the underlying molecular mechanism(s) remains unclear. Here, we show that kidney-specific deletion of Fbxw7, the recognition receptor of the SCFFBW7 E3 ubiquitin ligase, results in a juvenile-adult NPHP-like pathology characterized by slow-progressing corticomedullary cysts, tubular degeneration, severe fibrosis, and gradual loss of kidney function. Expression levels of SOX9, a known substrate of FBW7, and WNT4, a potent pro-fibrotic factor and downstream effector of SOX9, were elevated upon loss of FBW7. Heterozygous deletion of Sox9 in compound mutant mice led to the normalization of WNT4 levels, reduced fibrosis, and preservation of kidney function without significant effects on cystic dilatation and tubular degeneration. These data suggest that FBW7-SOX9-WNT4-induced fibrosis drives kidney function decline in NPHP and, possibly, other forms of autosomal recessive kidney disorders.
Collapse
Affiliation(s)
| | - Vasileios Gerakopoulos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Bryan Lettenmaier
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eleni Petsouki
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kurt A Zimmerman
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - John A Sayer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Leventoğlu E, Kavgaci A, Örün UA, Büyükkaragöz B. The interplay between the cardiovascular system and pediatric congenital or acquired kidney diseases. Pediatr Nephrol 2025:10.1007/s00467-025-06750-0. [PMID: 40137987 DOI: 10.1007/s00467-025-06750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025]
Abstract
Kidney diseases often have systemic effects, particularly affecting the cardiovascular system due to their shared embryological origins. The deterioration of kidney function can lead to significant cardiovascular complications. Many kidney disorders, especially congenital and cystic kidney diseases, are diagnosed in childhood, often coexisting with cardiovascular issues. This review focuses on the cardiovascular abnormalities associated with primary kidney diseases, exploring the genetic and pathophysiological connections between these dual conditions. Some primary kidney diseases with cardiovascular abnormalities include congenital abnormalities of the kidney and urinary tract (CAKUT), polycystic kidney diseases (ADPKD and ARPKD), and glomerular diseases (nephrotic syndrome, focal segmental glomerulosclerosis (FSGS), IgA nephropathy, and Alport syndrome). These conditions often lead to hypertension, left ventricular hypertrophy, and other cardiac complications. For instance, ADPKD and ARPKD are associated with early vascular stiffness and cardiac valvular disorders. Nephrotic syndrome, particularly steroid-resistant form, is linked to elevated cardiovascular risks due to hyperlipidemia, endothelial injury, and an increased propensity for thrombosis. IgA nephropathy and FSGS are also associated with cardiovascular risks, exacerbated by kidney failure and hyperlipidemia. Alport syndrome, while primarily a glomerular disorder, can also result in serious cardiovascular complications like aortic dissection.
Collapse
Affiliation(s)
- Emre Leventoğlu
- Department of Pediatric Nephrology, Konya City Hospital, Konya, Turkey.
| | - Akif Kavgaci
- Department of Pediatric Cardiology, Etlik City Hospital, Ankara, Turkey
| | - Utku Arman Örün
- Department of Pediatric Cardiology, Etlik City Hospital, Ankara, Turkey
| | | |
Collapse
|
4
|
Yang Y, Xue Z, Lai J, Zhang J, Pang C, Zhong J, Kuang Z, Zou B, Liu Y, Sun L. Kibra knockdown inhibits the aberrant Hippo pathway, suppresses renal cyst formation and ameliorates renal fibrosis in nphp1 KO mice. Clin Transl Med 2025; 15:e70245. [PMID: 39995111 PMCID: PMC11850762 DOI: 10.1002/ctm2.70245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/11/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
INTRODUCTION Nephronophthisis (NPH) is an autosomal recessive interstitial cystic kidney disease, which is the most common genetic cause of end-stage renal disease (ESRD) in childhood. The Hippo pathway is regulated by the cilium and has been suggested to be linked to NPH. The aim of the study was to investigate the involvement of Hippo pathway in the pathogenesis of nphp1 defect-associated NPH (NPH1). METHOD Nphp1 knockout (nphp1KO) Madin-Darby Canine Kidney (MDCK) cells and nphp1KO C57BL/6J mice were generated via CRISPR gene editing strategy. The siRNAs targeting Kibra, MST1 and LATS1 were designed. An AAV9 vector was designed for Kibra knockdown. The expression and phosphorylation of core Hippo pathway molecules were evaluated. Pathological renal changes were evaluated via light microscopy respectively with haematoxylin-eosin and Masson staining. RESULTS In nphp1KO MDCK cells, nphp1KO mice and NPH1 patients' kidneys, Kibra, p-MST1/2, p-LATS and p-YAP exhibited a notable increase in levels, with an even greater elevation observed in renal cyst cells, indicating the Hippo pathway activated in these nphp1-deficient contexts. Nphp1 re-expression reversed the Hippo pathway activation in cells, indicating that the Hippo pathway activation is related to nphp1 deficiency in vitro. Meanwhile, in vitro, MST1 knockdown downregulated LATS1 and YAP phosphorylation, LATS1 knockdown downregulated YAP phosphorylation, suggesting the activation of the canonical Hippo pathway in nphp1-deficient contexts. Knockdown of the upstream regulator Kibra inhibited the Hippo pathway activation in both nphp1KO MDCK cells and mice. Following Kibra knockdown, the organisation of nphp1KO MDCK cells became more compact, the intensity of the actin fibres increased. Besides, decreased renal fibrosis and cyst formation were observed in nphp1KO mice. CONCLUSIONS The canonical Hippo pathway is aberrantly activated in nphp1-deficient conditions. Kibra may serve as a crucial upstream regulator of nphp1 deficiency-related Hippo pathway activation. Kibra upregulation and activation of the Hippo pathway are involved in the pathogenesis of NPH1. KEY POINTS Canonical Hippo pathway activated in nphp1-deficient disease models and patients. Kibra was a key upstream molecule in regulating the activation of canonical Hippo pathway in nphp1-deficient disease models and patients and closely related to renal cyst formation and fibrosis in nphp1KO mice.
Collapse
Affiliation(s)
- Yichen Yang
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Zhihe Xue
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Jiayong Lai
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Jinglan Zhang
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Changmiao Pang
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Jinglin Zhong
- Department of PediatricsShenzhen Maternity and Child Healthcare HospitalShenzhenChina
| | - Zhanpeng Kuang
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Baojuan Zou
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yaqing Liu
- Department of PediatricsThe First Affiliated Hospital, Gannan Medical UniversityGanzhouChina
| | - Liangzhong Sun
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Sentell ZT, Mougharbel L, Nurcombe ZW, Babayeva S, Henein M, Chu LL, Akpa MM, Chung CF, Rivière JB, Pupavac M, Li R, Rosenblatt DS, Majewski J, Goodyer PR, Torban E, Kitzler TM. Use of patient-derived cell models for characterization of compound heterozygous hypomorphic C2CD3 variants in a patient with isolated nephronophthisis. Hum Mol Genet 2025; 34:368-380. [PMID: 39690811 PMCID: PMC11811416 DOI: 10.1093/hmg/ddae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Primary ciliopathies are a heterogeneous group of rare disorders predominantly caused by autosomal-recessive genetic variants that disrupt non-motile ciliary function. They often manifest as a syndromic phenotype, frequently involving the kidney. Biallelic pathogenic variants in C2CD3 disrupt ciliogenesis and Sonic Hedgehog (SHH) signaling, resulting in a severe ciliopathy (Orofaciodigital syndrome XIV, OMIM 615948). We present compound heterozygous missense variants in C2CD3 that partially disrupt ciliary function in a patient with isolated renal disease. METHODS Exome sequencing identified biallelic C2CD3 missense variants (p.Pro168Leu; p.Thr2079Met). Patient-derived fibroblasts and urinary renal epithelial cells (URECs), and human RPE-1 C2CD3 knockout (KO) cell-lines were used for in vitro studies. RESULTS Cilia length was significantly shorter in patient-derived fibroblasts compared to an unaffected sibling (2.309 vs. 2.850 μm, P < 0.0001), while URECs showed significantly shortened cilia (2.068 vs. 2.807 μm, P < 0.0001) and a 40.8% reduction in ciliation (P < 0.001). The latter was not observed in fibroblasts, suggesting a kidney-specific effect. SHH signaling was dysregulated in patient cells as expression of GLI3 activator protein and GLI1 mRNA was significantly reduced. C2CD3 localization to the basal body was significantly reduced in patient URECs. Finally, rescue experiments in C2CD3 KO RPE-1 cells corroborated these findings by demonstrating a reduced capacity to restore ciliogenesis for each variant. CONCLUSION Biallelic hypomorphic missense variants in C2CD3 may contribute to an isolated nephronophthisis phenotype with impaired ciliogenesis and SHH signaling. Our findings underscore the importance of functional testing to characterize candidate gene-disease relationships in patients with nephropathy of unknown etiology.
Collapse
Affiliation(s)
- Zachary T Sentell
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Lina Mougharbel
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Zachary W Nurcombe
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Sima Babayeva
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Marc Henein
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Lee Lee Chu
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Murielle M Akpa
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Jean-Baptiste Rivière
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Mihaela Pupavac
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Rui Li
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - David S Rosenblatt
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Departments of Human Genetics, Medicine, Pediatrics and Biology, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Divisions of Medical Genetics and Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Paul R Goodyer
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Department of Pediatrics, Division of Nephrology, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Elena Torban
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Thomas M Kitzler
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
6
|
Schott C, Arnaldi M, Baker C, Wang J, McIntyre AD, Colaiacovo S, Relouw S, Offerni GA, Campagnolo C, Van Nynatten LR, Pourtousi A, Drago-Catalfo A, Lebedeva V, Chiu M, Cowan A, Filler G, Gunaratnam L, House AA, Huang S, Iyer H, Jain AK, Jevnikar AM, Lotfy K, Moist L, Rehman F, Roshanov PS, Sharma AP, Weir MA, Kidd K, Bleyer AJ, Hegele RA, Connaughton DM. Implementation of a Kidney Genetic Service Into the Diagnostic Pathway for Patients With Chronic Kidney Disease in Canada. Kidney Int Rep 2025; 10:574-590. [PMID: 39990878 PMCID: PMC11843117 DOI: 10.1016/j.ekir.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 02/25/2025] Open
Abstract
Introduction Genetic kidney disease (GKD) accounts for 10% to 20% of chronic kidney disease (CKD). Genetic testing using gene panel or targeted exome sequencing (ES) can confirm GKD; however, integration into clinical practice has been hampered by small studies, selective populations, and data predominately derived from research settings. Using prespecified clinical referral criteria and a diagnostic pipeline, we performed a prospective cohort study describing diagnostic efficacy and clinical utility of genetic assessment in patients with CKD. Methods We analyzed a prospective cohort of 300 participants (256 families) referred to a kidney genetics clinic, between March 2020 and March 2024. Testing strategies included gene panels, and if negative or unsuitable, targeted ES analysis. Testing was performed for the detection of variants in genes known to cause CKD. Results We identified a causative variant in 33% of families (85/256). Diagnostic yield increased from 23% (n = 70/300) from gene panel alone, to 34% (n = 103/300) with comprehensive testing. The median time from first diagnosis of CKD to genetic assessment was long at 10.4 years. Following genetic assessment, the median time to receive a positive genetic result was 2.9 months. Multiple levels of clinical utility were recorded in patients receiving a genetic diagnosis, varying across CKD subtype. Conclusion Instituting referral guidelines and a standardized testing algorithm established a genetic diagnosis in one-third of participants, providing insight into the viability of integrating genetic assessment in the CKD diagnostic pathway. Considering the potential for clinical utility, strategies to reduce the time from CKD diagnosis to genetics assessment are needed.
Collapse
Affiliation(s)
- Clara Schott
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Monica Arnaldi
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
| | - Cadence Baker
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Adam D. McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Samantha Colaiacovo
- Department of Pediatrics, Division of Medical Genetics, Victoria Hospital, London Health Science Center, London, Ontario, Canada
| | - Sydney Relouw
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
| | - Gabriela Almada Offerni
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
| | - Carla Campagnolo
- Department of Pediatrics, Division of Medical Genetics, Victoria Hospital, London Health Science Center, London, Ontario, Canada
| | - Logan R. Van Nynatten
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ava Pourtousi
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Victoria Lebedeva
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
| | - Michael Chiu
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Andrea Cowan
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Guido Filler
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Pediatrics, Division of Nephrology, Victoria Hospital, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Andrew A. House
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Susan Huang
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Hariharan Iyer
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Arsh K. Jain
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Anthony M. Jevnikar
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Khaled Lotfy
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Louise Moist
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Faisal Rehman
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Pavel S. Roshanov
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
- Outcomes Research Consortium, Cleveland, Ohio, USA
| | - Ajay P. Sharma
- Department of Pediatrics, Division of Nephrology, Victoria Hospital, London, Ontario, Canada
| | - Matthew A. Weir
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Kendrah Kidd
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony J. Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Robert A. Hegele
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Dervla M. Connaughton
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Caenen-Braz C, Bouzhir L, Dupuis-Williams P. New functions of B9D2 in tight junctions and epithelial polarity. Sci Rep 2024; 14:25293. [PMID: 39455645 PMCID: PMC11512030 DOI: 10.1038/s41598-024-75577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Ciliopathies are a diverse group of disorders resulting from abnormalities in the development or function of multiple organs. While significant research has clarified the role of the primary cilium in transducing numerous signalling pathways, elucidating causes of neuronal and skeletal development disorders, the origins of other ciliopathy-related conditions, such as hepatic fibrocystic diseases, remain elusive. Additionally, attempts to correlate specific ciliary proteins with distinct phenotypes have been largely unsuccessful due to the variable and overlapping symptoms of ciliopathies. This study aims to elucidate the extraciliary roles of the protein B9D2 in the development of biliary dysgenesis, a condition present in Meckel-Gruber and Joubert syndromes caused by mutations in this protein. Traditionally, B9D2 is known for its role at the transition zone of the primary cilium in the transduction of signalling pathways notably Wingless and Hedgehog. Our work demonstrates that before ciliogenesis occurs, B9D2 is crucial for the maturation and maintenance of tight junctions ensuring epithelial barrier tightness and appropriate biliary lumen formation. This study provides new insights into the mechanisms underlying biliary dysgenesis in hepatic ciliopathies, suggesting that further exploration of the non-ciliary functions of proteins involved in ciliopathies could lead to a better understanding and treatment of these complex disorders.
Collapse
Affiliation(s)
- Chloe Caenen-Braz
- Université Paris-Saclay, Inserm, physiopathogenèse et traitement des maladies du foie, 94800, Villejuif, France
| | - Latifa Bouzhir
- Université Paris-Saclay, Inserm, physiopathogenèse et traitement des maladies du foie, 94800, Villejuif, France
| | - Pascale Dupuis-Williams
- Université Paris-Saclay, Inserm, physiopathogenèse et traitement des maladies du foie, 94800, Villejuif, France.
- ESPCI Paris, Université PSL, 75005, Paris, France.
| |
Collapse
|
8
|
Dias AP, Rehmani T, Applin BD, Salih M, Tuana B. SLMAP3 is crucial for organogenesis through mechanisms involving primary cilia formation. Open Biol 2024; 14:rsob240206. [PMID: 39417621 PMCID: PMC11484480 DOI: 10.1098/rsob.240206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
SLMAP3 is a constituent of the centrosome and is known to assemble with the striatin-interacting phosphatase and kinase (STRIPAK) complex, where it has been reported to repress Hippo signalling. The global knockout of SLMAP3 in mice results in embryonic/perinatal lethality and stunted growth without changes in the phosphorylation status of YAP. Diverse phenotypes present in the SLMAP3-/- embryos include reduced body axis, small and abnormal organs resembling defects in planar cell polarity (PCP) signalling, while also displaying the notable polycystic kidneys, a known manifestation of ciliopathies. Analysis of cell polarity in primary mouse embryonic fibroblasts (MEFs) including cell migration, orientation and mitotic spindle angle did not reveal any changes due to SLMAP3 loss in these cells, although the expression of DVL3 was significantly reduced. Furthermore, MEFs lacking FGFR1OP2 or STRN3, two other STRIPAK members, did not reveal any significant changes in any of these parameters either. Significant changes in the number of ciliated cells and primary cilium length in SLMAP3 and FGFR1OP2 deficient MEFs were evident, while a reduced primary cilium length was notable in chondrocytes of SLMAP3 deficient embryos. Our findings suggest that SLMAP3 is essential for mouse embryogenesis through novel mechanisms involving the primary cilium/PCP and protein stability independent of Hippo signalling.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| |
Collapse
|
9
|
Thuy PX, Jang TK, Moon EY. Vinblastine Resistance Is Associated with Nephronophthisis 3-Mediated Primary Cilia via Intraflagellar Transport Protein 88 and Apoptosis-Antagonizing Transcription Factor. Int J Mol Sci 2024; 25:10369. [PMID: 39408701 PMCID: PMC11477320 DOI: 10.3390/ijms251910369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Primary cilia (PC) are microtubule-based organelles that function as cellular antennae to sense and transduce extracellular signals. Nephronophthisis 3 (NPHP3) is localized in the inversin compartment of PC. Mutations in NPHP3 are associated with renal-hepatic-pancreatic dysplasia. In this study, we investigated whether vinblastine (VBL), a microtubule destabilizer, induces anticancer drug resistance through NPHP3-associated PC formation in HeLa human cervical cancer cells. A considerable increase in PC frequency was observed in HeLa cells under serum-deprived (SD) conditions, which led to the inhibition of VBL-induced cell death. VBL-resistant cells were established by repetitive treatments with VBL and showed an increase in PC frequency. NPHP3 expression was also increased by VBL treatment under serum starvation as well as in VBL-resistant cells. NPHP3 expression and PC-associated resistance were positively correlated with apoptosis-antagonizing transcription factor (AATF) and negatively correlated with inhibition of NPHP3. In addition, AATF-mediated NPHP3 expression is associated with PC formation via the regulation of intraflagellar transport protein 88 (IFT88). VBL resistance ability was reduced by treating with ciliobrevin A, a well-known ciliogenesis inhibitor. Collectively, cancer cell survival following VBL treatment is regulated by PC formation via AATF-mediated expression of IFT88 and NPHP3. Our data suggest that the activation of AATF and IFT88 could be a novel regulator to induce anticancer drug resistance through NPHP3-associated PC formation.
Collapse
Affiliation(s)
| | | | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (P.X.T.); (T.-K.J.)
| |
Collapse
|
10
|
Gomes LHF, Marques AB, Dias ICDM, Gabeira SCDO, Barcelos TR, Guimarães MDO, Ferreira IR, Guida LC, Lucena SL, Rocha AD. Validation of Gene Expression Patterns for Oral Feeding Readiness: Transcriptional Analysis of Set of Genes in Neonatal Salivary Samples. Genes (Basel) 2024; 15:936. [PMID: 39062715 PMCID: PMC11275400 DOI: 10.3390/genes15070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Neonatal health assessment is crucial for detecting and intervening in various disorders. Traditional gene expression analysis methods often require invasive procedures during sample collection, which may not be feasible or ideal for preterm infants. In recent years, saliva has emerged as a promising noninvasive biofluid for assessing gene expression. Another trend that has been growing is the use of "omics" technologies such as transcriptomics in the analysis of gene expression. The costs for carrying out these analyses and the difficulty of analysis make the detection of candidate genes necessary. These genes act as biomarkers for the maturation stages of the oral feeding issue. METHODOLOGY Salivary samples (n = 225) were prospectively collected from 45 preterm (<34 gestational age) infants from five predefined feeding stages and submitted to RT-qPCR. A better description of the targeted genes and results from RT-qPCR analyses were included. The six genes previously identified as predictive of feeding success were tested. The genes are AMPK, FOXP2, WNT3, NPHP4, NPY2R, and PLXNA1, along with two reference genes: GAPDH and 18S. RT-qPCR amplification enabled the analysis of the gene expression of AMPK, FOXP2, WNT3, NPHP4, NPY2R, and PLXNA1 in neonatal saliva. Expression results were correlated with the feeding status during sample collection. CONCLUSIONS In summary, the genes AMPK, FOXP2, WNT3, NPHP4, NPY2R, and PLXNA1 play critical roles in regulating oral feeding and the development of premature infants. Understanding the influence of these genes can provide valuable insights for improving nutritional care and support the development of these vulnerable babies. Evidence suggests that saliva-based gene expression analysis in newborns holds great promise for early detection and monitoring of disease and understanding developmental processes. More research and standardization of protocols are needed to fully explore the potential of saliva as a noninvasive biomarker in neonatal care.
Collapse
Affiliation(s)
- Leonardo Henrique Ferreira Gomes
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Andressa Brito Marques
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Isabel Cristina de Meireles Dias
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Sanny Cerqueira de O. Gabeira
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Tamara Rosa Barcelos
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Mariana de Oliveira Guimarães
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Igor Ribeiro Ferreira
- Rural and Remote Support Services, Department of Health, Integrated Cardiovascular Clinical Network SA, Adelaide, SA 5042, Australia
| | - Letícia Cunha Guida
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Sabrina Lopes Lucena
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Adriana Duarte Rocha
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| |
Collapse
|
11
|
Bhimma R, Jembere E, Hariparshad S. Case report of a child with nephronophthisis from South Africa. BMC Pediatr 2024; 24:431. [PMID: 38965466 PMCID: PMC11225275 DOI: 10.1186/s12887-024-04872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Nephronophthisis (NPHP) is an autosomal recessive disorder with a subset of patients presenting with extrarenal manifestations such as retinal degeneration, cerebella ataxia, liver fibrosis, skeletal abnormalities, cardiac malformations, and lung bronchiectasis. However, the involvement of other organ systems has also been documented. Extrarenal manifestations occur in approximately 10-20% of patients. In developed countries, it has been reported as one of the most common causes of monogenic chronic kidney failure (CKF) during the first three decades of life, with more than 25 genes associated with this condition. The current treatment options for managing NPHP include supportive care, management of complications, and kidney replacement therapy when necessary. The index patient is a 10-year-old Caucasian female who presented with recurrent attacks of abdominal pain. Her elder sister, TN, who was 17 years old, was diagnosed with CKF and noted to have persistently elevated liver enzymes (gamma-glutamyl transferase, alanine, and aspartate transaminases). Following genetic testing, her elder sister was shown to have Nephronophthisis Type 3, and a liver biopsy showed early fibrotic changes. Subsequent genetic testing confirmed the index patient as having NPHP Type 3. A kidney biopsy showed focal sclerosed glomeruli with patchy areas of tubular atrophy and related tubulointerstitial changes in keeping with NPHP. We present the first confirmatory case of NPHP from South Africa based on histopathology and genetic testing in a 10-year-old Caucasian female who presented with recurrent attacks of abdominal pain, whose elder sister also presented with CKF and early liver fibrosis, confirmed on biopsy and genetic testing. CONCLUSION In low-middle-income countries, genetic testing should be undertaken whenever possible to confirm the diagnosis of NPHP, especially in those with a suggestive biopsy or if there is CKF of unknown aetiology with or without extra-renal manifestations.
Collapse
Affiliation(s)
- Rajendra Bhimma
- Department of Paediatrics and Child Health, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| | - Edgar Jembere
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
| | - Sudesh Hariparshad
- Department of Nephrology, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
12
|
Greenberg D, Rosenblum ND, Tonelli M. The multifaceted links between hearing loss and chronic kidney disease. Nat Rev Nephrol 2024; 20:295-312. [PMID: 38287134 DOI: 10.1038/s41581-024-00808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
Hearing loss affects nearly 1.6 billion people and is the third-leading cause of disability worldwide. Chronic kidney disease (CKD) is also a common condition that is associated with adverse clinical outcomes and high health-care costs. From a developmental perspective, the structures responsible for hearing have a common morphogenetic origin with the kidney, and genetic abnormalities that cause familial forms of hearing loss can also lead to kidney disease. On a cellular level, normal kidney and cochlea function both depend on cilial activities at the apical surface, and kidney tubular cells and sensory epithelial cells of the inner ear use similar transport mechanisms to modify luminal fluid. The two organs also share the same collagen IV basement membrane network. Thus, strong developmental and physiological links exist between hearing and kidney function. These theoretical considerations are supported by epidemiological data demonstrating that CKD is associated with a graded and independent excess risk of sensorineural hearing loss. In addition to developmental and physiological links between kidney and cochlear function, hearing loss in patients with CKD may be driven by specific medications or treatments, including haemodialysis. The associations between these two common conditions are not commonly appreciated, yet have important implications for research and clinical practice.
Collapse
Affiliation(s)
- Dina Greenberg
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, Toronto, Ontario, Canada
- Department of Paediatrics, Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
13
|
Patel MM, Gerakopoulos V, Petsouki E, Zimmerman KA, Tsiokas L. Nephronophthisis-associated FBW7 mediates cyst-dependent decline of renal function in ADPKD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582788. [PMID: 38464230 PMCID: PMC10925305 DOI: 10.1101/2024.02.29.582788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Nephronophthisis (NPHP) and autosomal dominant Polycystic Kidney Disease (ADPKD) are two genetically distinct forms of Polycystic Kidney Disease (PKD), yet both diseases present with kidney cysts and a gradual decline in renal function. Prevailing dogma in PKD is that changes in kidney architecture account for the decline in kidney function, but the molecular/cellular basis of such coupling is unknown. To address this question, we induced a form of proteome reprogramming by deleting Fbxw7 encoding FBW7, the recognition receptor of the SCF FBW7 E3 ubiquitin ligase in different segments of the kidney tubular system. Deletion of Fbxw7 in the medulla led to a juvenile-adult NPHP-like phenotype, where the decline in renal function was due to SOX9-mediated interstitial fibrosis rather than cystogenesis. In contrast, the decline of renal function in ADPKD is coupled to cystic expansion via the abnormal accumulation of FBW7 in the proximal tubules and other cell types in the renal cortex. We propose that FBW7 functions at the apex of a protein network that determines renal function in ADPKD by sensing architectural changes induced by cystic expansion.
Collapse
|
14
|
Kofotolios I, Bonios MJ, Adamopoulos M, Mourouzis I, Filippatos G, Boletis JN, Marinaki S, Mavroidis M. The Han:SPRD Rat: A Preclinical Model of Polycystic Kidney Disease. Biomedicines 2024; 12:362. [PMID: 38397964 PMCID: PMC10887417 DOI: 10.3390/biomedicines12020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) stands as the most prevalent hereditary renal disorder in humans, ultimately culminating in end-stage kidney disease. Animal models carrying mutations associated with polycystic kidney disease have played an important role in the advancement of ADPKD research. The Han:SPRD rat model, carrying an R823W mutation in the Anks6 gene, is characterized by cyst formation and kidney enlargement. The mutated protein, named Samcystin, is localized in cilia of tubular epithelial cells and seems to be involved in cystogenesis. The homozygous Anks6 mutation leads to end-stage renal disease and death, making it a critical factor in kidney development and function. This review explores the utility of the Han:SPRD rat model, highlighting its phenotypic similarity to human ADPKD. Specifically, we discuss its role in preclinical trials and its importance for investigating the pathogenesis of the disease and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Ioannis Kofotolios
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| | - Michael J. Bonios
- Heart Failure and Transplant Unit, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - Markos Adamopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Gerasimos Filippatos
- Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - John N. Boletis
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Smaragdi Marinaki
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| |
Collapse
|
15
|
Kalot R, Sentell Z, Kitzler TM, Torban E. Primary cilia and actin regulatory pathways in renal ciliopathies. FRONTIERS IN NEPHROLOGY 2024; 3:1331847. [PMID: 38292052 PMCID: PMC10824913 DOI: 10.3389/fneph.2023.1331847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Ciliopathies are a group of rare genetic disorders caused by defects to the structure or function of the primary cilium. They often affect multiple organs, leading to brain malformations, congenital heart defects, and anomalies of the retina or skeletal system. Kidney abnormalities are among the most frequent ciliopathic phenotypes manifesting as smaller, dysplastic, and cystic kidneys that are often accompanied by renal fibrosis. Many renal ciliopathies cause chronic kidney disease and often progress to end-stage renal disease, necessitating replacing therapies. There are more than 35 known ciliopathies; each is a rare hereditary condition, yet collectively they account for a significant proportion of chronic kidney disease worldwide. The primary cilium is a tiny microtubule-based organelle at the apex of almost all vertebrate cells. It serves as a "cellular antenna" surveying environment outside the cell and transducing this information inside the cell to trigger multiple signaling responses crucial for tissue morphogenesis and homeostasis. Hundreds of proteins and unique cellular mechanisms are involved in cilia formation. Recent evidence suggests that actin remodeling and regulation at the base of the primary cilium strongly impacts ciliogenesis. In this review, we provide an overview of the structure and function of the primary cilium, focusing on the role of actin cytoskeleton and its regulators in ciliogenesis. We then describe the key clinical, genetic, and molecular aspects of renal ciliopathies. We highlight what is known about actin regulation in the pathogenesis of these diseases with the aim to consider these recent molecular findings as potential therapeutic targets for renal ciliopathies.
Collapse
Affiliation(s)
- Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Zachary Sentell
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M. Kitzler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Health Center, Montreal, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
16
|
Reddy S, Simmers R, Shah A, Couser N. NPHP1-Related ciliopathies: A new case and major review of the ophthalmic manifestations of 147 reported cases. Clin Case Rep 2023; 11:e7818. [PMID: 37663822 PMCID: PMC10468586 DOI: 10.1002/ccr3.7818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Our case report and review contribute to the understanding of ocular manifestations in NPHP1 ciliopathies by reinforcing the relationship between pathogenic genetic variants and a wide array of ophthalmic abnormalities.
Collapse
Affiliation(s)
- Shivania Reddy
- Virginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Russell Simmers
- Virginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Arth Shah
- Virginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Natario Couser
- Department of Human and Molecular GeneticsVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
- Department of OphthalmologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
- Department of PediatricsVirginia Commonwealth University School of Medicine, Children's Hospital of Richmond at VCURichmondVirginiaUSA
| |
Collapse
|
17
|
Leggatt GP, Seaby EG, Veighey K, Gast C, Gilbert RD, Ennis S. A Role for Genetic Modifiers in Tubulointerstitial Kidney Diseases. Genes (Basel) 2023; 14:1582. [PMID: 37628633 PMCID: PMC10454709 DOI: 10.3390/genes14081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With the increased availability of genomic sequencing technologies, the molecular bases for kidney diseases such as nephronophthisis and mitochondrially inherited and autosomal-dominant tubulointerstitial kidney diseases (ADTKD) has become increasingly apparent. These tubulointerstitial kidney diseases (TKD) are monogenic diseases of the tubulointerstitium and result in interstitial fibrosis and tubular atrophy (IF/TA). However, monogenic inheritance alone does not adequately explain the highly variable onset of kidney failure and extra-renal manifestations. Phenotypes vary considerably between individuals harbouring the same pathogenic variant in the same putative monogenic gene, even within families sharing common environmental factors. While the extreme end of the disease spectrum may have dramatic syndromic manifestations typically diagnosed in childhood, many patients present a more subtle phenotype with little to differentiate them from many other common forms of non-proteinuric chronic kidney disease (CKD). This review summarises the expanding repertoire of genes underpinning TKD and their known phenotypic manifestations. Furthermore, we collate the growing evidence for a role of modifier genes and discuss the extent to which these data bridge the historical gap between apparently rare monogenic TKD and polygenic non-proteinuric CKD (excluding polycystic kidney disease).
Collapse
Affiliation(s)
- Gary P. Leggatt
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Eleanor G. Seaby
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| | - Kristin Veighey
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Christine Gast
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
| | - Rodney D. Gilbert
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Department of Paediatric Nephrology, Southampton Children’s Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Sarah Ennis
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| |
Collapse
|
18
|
Wang J, Li S, Jiang Y, Wang Y, Ouyang J, Yi Z, Sun W, Jia X, Xiao X, Wang P, Zhang Q. Pathogenic Variants in CEP290 or IQCB1 Cause Earlier-Onset Retinopathy in Senior-Loken Syndrome Compared to Those in INVS, NPHP3, or NPHP4. Am J Ophthalmol 2023; 252:188-204. [PMID: 36990420 DOI: 10.1016/j.ajo.2023.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Senior-Loken syndrome (SLSN) is an autosomal recessive disorder characterized by retinopathy and nephronophthisis. This study aimed to evaluate whether different phenotypes are associated with different variants or subsets of 10 SLSN-associated genes based on an in-house data set and a literature review. DESIGN Retrospective case series. METHODS Patients with biallelic variants in SLSN-associated genes, including NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, SDCCAG8, WDR19, CEP164, and TRAF3IP1, were recruited. Ocular phenotypes and nephrology medical records were collected for comprehensive analysis. RESULTS Variants in 5 genes were identified in 74 patients from 70 unrelated families, including CEP290 (61.4%), IQCB1 (28.6%), NPHP1 (4.2%), NPHP4 (2.9%), and WDR19 (2.9%). The median age at the onset of retinopathy was approximately 1 month (since birth). Nystagmus was the most common initial sign in patients with CEP290 (28 of 44, 63.6%) or IQCB1 (19 of 22, 86.4%) variants. Cone and rod responses were extinguished in 53 of 55 patients (96.4%). Characteristic fundus changes were observed in CEP290- and IQCB1-associated patients. During follow-up, 70 of the 74 patients were referred to nephrology, among whom nephronophthisis was not detected in 62 patients (88.6%) at a median age of 6 years but presented in 8 patients (11.4%) aged approximately 9 years. CONCLUSIONS Patients with pathogenic variants in CEP290 or IQCB1 presented early with retinopathy, whereas other patients with INVS, NPHP3, or NPHP4 variants first developed nephropathy. Therefore, awareness of the genetic and clinical features may facilitate the clinical management of SLSN, especially early intervention of kidney problems for patients with eyes affected first.
Collapse
Affiliation(s)
- Junwen Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shiqiang Li
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yi Jiang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yingwei Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiamin Ouyang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhen Yi
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenmin Sun
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoyun Jia
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xueshan Xiao
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Panfeng Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qingjiong Zhang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
19
|
Wang Q, Zou B, Wei X, Lin H, Pang C, Wang L, Zhong J, Chen H, Gao X, Li M, Ong ACM, Yue Z, Sun L. Identification of renal cyst cells of type I Nephronophthisis by single-nucleus RNA sequencing. Front Cell Dev Biol 2023; 11:1192935. [PMID: 37583898 PMCID: PMC10423821 DOI: 10.3389/fcell.2023.1192935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Background: Nephronophthisis (NPH) is the most common genetic cause of end-stage renal disease (ESRD) in childhood, and NPHP1 is the major pathogenic gene. Cyst formation at the corticomedullary junction is a pathological feature of NPH, but the mechanism underlying cystogenesis is not well understood. The isolation and identification of cystic cell subpopulation could help to identify their origins and provide vital clues to the mechanisms underlying cystogenesis in NPH. Methods: Single-nucleus RNA sequencing (snRNA-seq) was performed to produce an atlas of NPHP1 renal cells. Kidney samples were collected from WT (Nphp1 +/+) mice and NPHP1 (Nphp1 del2-20/del2-20) model mice. Results: A comprehensive atlas of the renal cellular landscape in NPHP1 was generated, consisting of 14 basic renal cell types as well as a subpopulation of DCT cells that was overrepresented in NPHP1 kidneys compared to WT kidneys. GO analysis revealed significant downregulation of genes associated with tubular development and kidney morphogenesis in this subpopulation. Furthermore, the reconstruction of differentiation trajectories of individual cells within this subpopulation confirmed that a specific group of cells in NPHP1 mice become arrested at an early stage of differentiation and proliferate to form cysts. We demonstrate that Niban1 is a specific molecular marker of cystic cells in both mice and human NPHP1. Conclusion: In summary, we report a novel subpopulation of DCT cells, marked by Niban1, that are classified as cystic cells in the NPHP1 mice kidney. These results offer fresh insights into the cellular and molecular basis of cystogenesis in NPH.
Collapse
Affiliation(s)
- Qianying Wang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baojuan Zou
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoya Wei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongrong Lin
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changmiao Pang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinglin Zhong
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huamu Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Min Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Albert C. M. Ong
- Kidney Genetics Group, Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Zhihui Yue
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangzhong Sun
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Heras Benito M, Pérez García ML, Antúnez Plaza P, Montero Mateos E. [Unexpected diagnosis of nephronopthisis in the genetic study of hypertension due to histological diagnosis of benign nephroangioesclerosis evolved in a young caucasian patient]. HIPERTENSION Y RIESGO VASCULAR 2023; 40:150-153. [PMID: 36894476 DOI: 10.1016/j.hipert.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 03/09/2023]
Abstract
We present the case of a young Caucasian patient with renal disease of unclear cause, with a final diagnosis of advanced benign nephroangiosclerosis established by renal biopsy. Due to the possibility of having hypertension in pediatric age (without study or treatment), with the renal biopsy findings, the genetic study showed polymorphisms risk in the APOL1 and MYH9, and also an unexpected diagnosis of a complete deletion of the NPHP1 gene in homozygosis, associated with the development of nephronophthisis. In conclusion, this case illustrates the importance of carrying out a genetic study in youngs patients with renal disease unclear cause, even having a histological diagnosis of nephroangiosclerosis.
Collapse
Affiliation(s)
- M Heras Benito
- Servicio de Nefrología, Hospital Universitario de Salamanca, Salamanca, España.
| | - M L Pérez García
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca, España
| | - P Antúnez Plaza
- Servicio de Anatomía Patológica, Hospital Universitario de Salamanca, Salamanca, España
| | - E Montero Mateos
- Servicio de Anatomía Patológica, Hospital Universitario de Salamanca, Salamanca, España
| |
Collapse
|
21
|
Wang H, Zaiser F, Eckert P, Ruf J, Kayser N, Veenstra AC, Müller M, Haas R, Walz G, Yakulov TA. Inversin (NPHP2) and Vangl2 are required for normal zebrafish cloaca formation. Biochem Biophys Res Commun 2023; 673:9-15. [PMID: 37352572 DOI: 10.1016/j.bbrc.2023.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Nephronophthisis (NPH), an autosomal recessive ciliopathy, results from mutations in more than 20 different genes (NPHPs). These gene products form protein complexes that regulate trafficking within the cilium, a microtubular structure that plays a crucial role in developmental processes. Several NPHPs, including NPHP2/Inversin, have been linked to extraciliary functions. In addition to defining a specific segment of primary cilia (Inversin compartment), NPHP2 participates in planar cell polarity (PCP) signaling along with Dishevelled and Vangl family members. We used the mutant zebrafish line invssa36157, containing a stop codon at amino acid 314, to characterize tissue-specific functions of zebrafish Nphp2. The invssa36157 line exhibits mild ciliopathy phenotypes and increased glomerular and cloaca cyst formation. These mutants showed enhanced susceptibility to the simultaneous depletion of the nphp1/nphp2/nphp8 module, known to be involved in the cytoskeletal organization of epithelial cells. Notably, simultaneous depletion of zebrafish nphp1 and vangl2 led to a pronounced increase in cloaca malformations in the invssa36157 mutant embryos. Time-lapse imaging showed that the pronephric cells correctly migrated towards the ectodermal cells in these embryos, but failed to form the cloaca opening. Despite these abnormal developments, cellular fate does not seem to be affected in nphp1 and vangl2 MO-depleted invssa36157 mutants, as shown by in situ hybridizations for markers of pronephros and ectodermal cell development. However, significantly reduced apoptotic activity was observed in this double knockdown model, signifying the role of apoptosis in cloacal morphogenesis. Our findings underscore the critical interplay of nphp1, nphp2/Inversin, and vangl2 in orchestrating normal cloaca formation in zebrafish, shedding light on the complex molecular mechanisms underlying ciliopathy-associated phenotypes.
Collapse
Affiliation(s)
- Hui Wang
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Friedemann Zaiser
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Priska Eckert
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Johannes Ruf
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Nicolas Kayser
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Anna C Veenstra
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Merle Müller
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Rebecca Haas
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Gerd Walz
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Albertstrasse 19, 79104, Freiburg, Germany
| | - Toma A Yakulov
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
22
|
Leggatt G, Cheng G, Narain S, Briseño-Roa L, Annereau JP, Gast C, Gilbert RD, Ennis S. A genotype-to-phenotype approach suggests under-reporting of single nucleotide variants in nephrocystin-1 (NPHP1) related disease (UK 100,000 Genomes Project). Sci Rep 2023; 13:9369. [PMID: 37296294 PMCID: PMC10256716 DOI: 10.1038/s41598-023-32169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/23/2023] [Indexed: 06/12/2023] Open
Abstract
Autosomal recessive whole gene deletions of nephrocystin-1 (NPHP1) result in abnormal structure and function of the primary cilia. These deletions can result in a tubulointerstitial kidney disease known as nephronophthisis and retinal (Senior-Løken syndrome) and neurological (Joubert syndrome) diseases. Nephronophthisis is a common cause of end-stage kidney disease (ESKD) in children and up to 1% of adult onset ESKD. Single nucleotide variants (SNVs) and small insertions and deletions (Indels) have been less well characterised. We used a gene pathogenicity scoring system (GenePy) and a genotype-to-phenotype approach on individuals recruited to the UK Genomics England (GEL) 100,000 Genomes Project (100kGP) (n = 78,050). This approach identified all participants with NPHP1-related diseases reported by NHS Genomics Medical Centres and an additional eight participants. Extreme NPHP1 gene scores, often underpinned by clear recessive inheritance, were observed in patients from diverse recruitment categories, including cancer, suggesting the possibility of a more widespread disease than previously appreciated. In total, ten participants had homozygous CNV deletions with eight homozygous or compound heterozygous with SNVs. Our data also reveals strong in-silico evidence that approximately 44% of NPHP1 related disease may be due to SNVs with AlphaFold structural modelling evidence for a significant impact on protein structure. This study suggests historical under-reporting of SNVS in NPHP1 related diseases compared with CNVs.
Collapse
Affiliation(s)
- Gary Leggatt
- University of Southampton, Duthie Building (MP 808), Southampton General Hospital, Tremona Road Shirley, Southampton, SO16 6YD, UK.
- Wessex Kidney Centre, Portsmouth Hospitals University NHS Trust, Southwick Hill Road, Cosham, Portsmouth, PO6 3LY, UK.
- University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Tremona Road Shirley, Southampton, SO16 6YD, UK.
| | - Guo Cheng
- University of Southampton, Duthie Building (MP 808), Southampton General Hospital, Tremona Road Shirley, Southampton, SO16 6YD, UK
| | - Sumit Narain
- University of Southampton, Duthie Building (MP 808), Southampton General Hospital, Tremona Road Shirley, Southampton, SO16 6YD, UK
| | - Luis Briseño-Roa
- Medetia, Imagine Institute for Genetic Diseases, 24 Boulevard du Montparnasse, 75015, Paris, France
| | - Jean-Philippe Annereau
- Medetia, Imagine Institute for Genetic Diseases, 24 Boulevard du Montparnasse, 75015, Paris, France
| | - Christine Gast
- University of Southampton, Duthie Building (MP 808), Southampton General Hospital, Tremona Road Shirley, Southampton, SO16 6YD, UK
- Wessex Kidney Centre, Portsmouth Hospitals University NHS Trust, Southwick Hill Road, Cosham, Portsmouth, PO6 3LY, UK
| | - Rodney D Gilbert
- University of Southampton, Duthie Building (MP 808), Southampton General Hospital, Tremona Road Shirley, Southampton, SO16 6YD, UK
- Southampton Children's Hospital, Southampton General Hospital, Tremona Road Shirley, Southampton, SO16 6YD, UK
| | - Sarah Ennis
- University of Southampton, Duthie Building (MP 808), Southampton General Hospital, Tremona Road Shirley, Southampton, SO16 6YD, UK
| |
Collapse
|
23
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
24
|
Liu CH, Li LJ, Tian M, Cao GH, Zhang SF, Li JT. Two rare copy number variants involving loss of NPHP1, MALL, and MTLN genes contribute to nephronophthisis-induced nephropathy progression in a family: A case report. Niger J Clin Pract 2023; 26:524-527. [PMID: 37203120 DOI: 10.4103/njcp.njcp_775_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nephronophthisis (NPHP) is a common pediatric cystic kidney disease, accounting for approximately 10% of end-stage renal failure cases in children. NPHP is primarily diagnosed through the identification of indel mutations and copy number variants (CNVs), and patients carrying NPHP1 mutations usually progress to renal failure at a mean age of 13 years old. However, the association between CNVs containing NPHP1 variations and the progression of NPHP-induced disease remains unclear. Here, we report three NPHP patients in a family. The proband had developed stage 4 chronic kidney disease (CKD) at 9 years old, and her younger brother and older sister had developed renal failure at 8 and 10 years old, respectively. A genetic diagnosis showed that they carried two rare CNVs, including homozygous loss of NPHP1, MALL, ACTR1AP1, MTLN, and LOC100507334. Heterozygous deletions mainly consisted of non-coding RNA genes on both sides of the CNVs. The proband was in stage 4 of CKD while her brother had progressed to renal failure, probably due to more extensive heterozygous deletion of a 67.115 kbp fragment, which included LIMS3-LOC440895, LOC440895, GPAA1P1, ZBTB45P1, and LINC0112 genes. This report demonstrates that larger CNV deletions, including homozygous NPHP1, MALL, and MTLN mutations and heterozygous deletions, presumably accelerate disease progression. Therefore, early genetic diagnosis plays a crucial role in the intervention and prognosis of these patients.
Collapse
Affiliation(s)
- C H Liu
- Department of Nephrology and Rheumatology, Zhengzhou Key Laboratory of Pediatric Kidney Disease Research; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - L J Li
- Department of Nephrology and Rheumatology, Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - M Tian
- Department of Nephrology and Rheumatology, Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - G H Cao
- Department of Nephrology and Rheumatology, Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - S F Zhang
- Department of Nephrology and Rheumatology, Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - J T Li
- Department of Nephrology and Rheumatology, Zhengzhou Key Laboratory of Pediatric Kidney Disease Research; Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| |
Collapse
|
25
|
Never-in-Mitosis A-Related Kinase 8 (NEK8) Regulates Adipogenesis, Glucose Homeostasis, and Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1947067. [PMID: 36506932 PMCID: PMC9729029 DOI: 10.1155/2022/1947067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Background Adipogenesis is a complex biological process and the leading main cause of obesity. We evaluated the role of never-in-mitosis A-related kinase 8 (NEK8) in adipocyte development and insulin sensitivity in the present study. Methods NEK8 expression was manipulated using a specific shRNA or the NEK8-full-length expressing recombinant plasmids. The interaction between NEK8 and Tafazzin (TAZ, an oncogenic transcriptional regulator) was examined by Co-immunoprecipitation (Co-IP) and confocal immunofluorescence staining. Western blot assay was performed to determine the protein expression. The in vivo role of NEK8 was explored in a mouse model of high-fat diet- (HFD-) induced insulin resistance. Results During adipogenesis, the expression of NEK8 was elevated while TAZ was downregulated. Overexpression of NEK8 promoted lipid accumulation and expression of markers for adipocyte differentiation. Mechanically, NEK8 interacted with TAZ and suppressed its expression in adipocytes. Functionally, lentiviral-mediated NEK8 inhibition ameliorates HFD-induced insulin resistance in adipocytes. Conclusion These findings suggest that NEK8 plays a critical role in adipocyte proliferation, providing novel insight into the link between NEK8 and type 2 diabetes- (T2DM-) related obesity.
Collapse
|
26
|
Lee JW, Cho JY, Thuy PX, Moon EY. HeLa Cervical Cancer Cells Are Maintained by Nephronophthisis 3-Associated Primary Cilium Formation via ROS-Induced ERK and HIF-1α Activation under Serum-Deprived Normoxic Condition. Int J Mol Sci 2022; 23:ijms232314500. [PMID: 36498831 PMCID: PMC9739938 DOI: 10.3390/ijms232314500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
The primary cilium (PC) is a microtubule-based antenna-like organelle projecting from the surface of the cell membrane. We previously reported that PC formation could be regulated by nephronophthisis 3 (NPHP3) expression followed by its interaction with thymosin β4. Here, we investigated whether cancer cell viability is regulated by NPHP3-mediated PC formation. The total and viable cell number were reduced by incubating cells under serum deprivation (SD) without fetal bovine serum (-FBS). PC frequency was increased by SD which enhanced NPHP3 expression and hypoxia inducible factor (HIF)-1α. The role of HIF-1α on NPHP3 expression and PC formation was confirmed by the binding of HIF-1α to the NPHP3 promoter and siRNA-based inhibition of HIF-1α (siHIF-1α), respectively. HIF-1α-stabilizing dimethyloxallyl glycine (DMOG) and hypoxic conditions increased NPHP3 expression and PC formation. In addition, as SD elevated the reactive oxygen species (ROS), PC frequency and NPHP3 expression were inhibited by a treatment with N-acetylcysteine (NAC), a ROS scavenger. PC formation was increased by H2O2 treatment, which was inhibited by siHIF-1α. The inhibition of ERK with P98059 decreased the frequency of PC formation and NPHP3 expression. Cell viability was reduced by a treatment with ciliobrevin A (CilioA) to inhibit PC formation, which was re-affirmed by using PC-deficient IFT88-/- cells. Taken together, the results imply that PC formation in cancer cells could be controlled by NPHP3 expression through ROS-induced HIF-1α and ERK activation under SD conditions. It suggests that cancer cell viability under SD conditions could be maintained by NPHP3 expression to regulate PC formation.
Collapse
Affiliation(s)
| | | | | | - Eun-Yi Moon
- Correspondence: ; Tel.: +82-2-3408-3768; Fax: +82-2-3408-4334
| |
Collapse
|
27
|
Živná M, Kidd KO, Barešová V, Hůlková H, Kmoch S, Bleyer AJ. Autosomal dominant tubulointerstitial kidney disease: A review. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:309-324. [PMID: 36250282 PMCID: PMC9619361 DOI: 10.1002/ajmg.c.32008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/10/2022] [Accepted: 09/29/2022] [Indexed: 01/11/2023]
Abstract
The clinical characteristics of autosomal dominant tubulointerstitial kidney disease (ADTKD) include bland urinary sediment, slowly progressive chronic kidney disease (CKD) with many patients reaching end stage renal disease (ESRD) between age 20 and 70 years, and autosomal dominant inheritance. Due to advances in genetic diagnosis, ADTKD is becoming increasingly recognized as a cause of CKD. Pathogenic variants in UMOD, MUC1, and REN are the most common causes of ADTKD. ADTKD-UMOD is also associated with hyperuricemia and gout. ADTKD-REN often presents in childhood with mild hypotension, CKD, hyperkalemia, acidosis, and anemia. ADTKD-MUC1 patients present only with CKD. This review describes the pathophysiology, genetics, clinical manifestation, and diagnosis for ADTKD, with an emphasis on genetic testing and genetic counseling suggestions for patients.
Collapse
Affiliation(s)
- Martina Živná
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Kendrah O. Kidd
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
- Wake Forest University School of MedicineSection on NephrologyWinston‐SalemNorth CarolinaUSA
| | - Veronika Barešová
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Helena Hůlková
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Stanislav Kmoch
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
- Wake Forest University School of MedicineSection on NephrologyWinston‐SalemNorth CarolinaUSA
| | - Anthony J. Bleyer
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
- Wake Forest University School of MedicineSection on NephrologyWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
28
|
Avcı B, Baskın E, Gülleroğlu K, Çaltık Yılmaz A, Kantar A, Akdur A, Moray G, Haberal M. Long-Term Outcomes of Kidney Transplant Recipients With Juvenile Nephronophthisis. EXP CLIN TRANSPLANT 2022; 20:122-125. [PMID: 35570616 DOI: 10.6002/ect.pediatricsymp2022.o39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Nephronophthisis is the most common genetic cause of kidney failure in childhood. Treatment for nephronophthisis is symptomatic, and kidney transplant is a good treatment option when kidney failure has developed. We reported the outcomes of kidney transplant recipients with primary diagnosis of juvenile nephronophthisis who were followed-up in our center. MATERIALS AND METHODS We retrospectively examined medical records of 17 kidney transplant patients with a primary diagnosis of juvenile nephronophthisis. We compared this group of 17 patients with kidney transplant recipients who had other etiologies of kidney failure in terms of transplant age, donor type, immunosuppressive treatment, acute rejection, graft loss rates, and glomerular filtration rates at 1 and 5 years posttransplant (N = 180 total analyzed). RESULTS Among 180 kidney transplant recipients, the 17 patients (9.4%) with nephronophthisis had a mean age of 12.6 ± 4.3 years and mean follow-up time posttransplant of 79.5 ± 41.9 months. Five of 17 patients received a kidney transplant from a deceased donor (29.4%), and the remaining 12 patients (70.6%) received transplants from living related donors. Preemptive kidney transplant was performed in 4 patients (23.5%). There was a statistically significant difference (P < .05) in terms of acute rejection between patients with nephronophthisis (17.6%) versus patients with other primary diagnoses (34%). However, the patients with nephronophthisis versus those with other primary diagnoses were similar (P > .05) in terms of transplant age (12.6 ± 4.3 vs 13.8 ± 6.7 years, respectively) and follow-up time (79.5 ± 41.9 vs 59.1 ± 38.8 months, respectively). Donor type, immunosuppressive treatment, and 1-year (96.7 ± 23.2 vs 97.6 ± 28.4 mL/min/1.73 m2) and 5-year (84.7 ± 31.1 vs 86.7 ± 21.7 mL/min/1.73 m2) glomerular filtration rates were also similar (P > .05) between groups. CONCLUSIONS Posttransplant prognosis was good among kidney transplant recipients with juvenile nephronophthisis.
Collapse
Affiliation(s)
- Begüm Avcı
- From the Department of Pediatric Nephrology, Baskent University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bleyer AJ, Wolf MT, Kidd KO, Zivna M, Kmoch S. Autosomal dominant tubulointerstitial kidney disease: more than just HNF1β. Pediatr Nephrol 2022; 37:933-946. [PMID: 34021396 PMCID: PMC8722360 DOI: 10.1007/s00467-021-05118-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022]
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) refers to a group of disorders with a bland urinary sediment, slowly progressive chronic kidney disease (CKD), and autosomal dominant inheritance. Due to advances in genetic diagnosis, ADTKD is becoming increasingly recognized as a cause of CKD in both children and adults. ADTKD-REN presents in childhood with mild hypotension, CKD, hyperkalemia, acidosis, and anemia. ADTKD-UMOD is associated with gout and CKD that may present in adolescence and slowly progresses to kidney failure. HNF1β mutations often present in childhood with anatomic abnormalities such as multicystic or dysplastic kidneys, as well as CKD and a number of other extra-kidney manifestations. ADTKD-MUC1 is less common in childhood, and progressive CKD is its sole clinical manifestation, usually beginning in the late teenage years. This review describes the pathophysiology, genetics, clinical characteristics, diagnosis, and treatment of the different forms of ADTKD, with an emphasis on diagnosis. We also present data on kidney function in children with ADTKD from the Wake Forest Rare Inherited Kidney Disease Registry.
Collapse
Affiliation(s)
- Anthony J Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Matthias T Wolf
- Pediatric Nephrology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-0936, USA
| | - Kendrah O Kidd
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Zivna
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
30
|
Wachoski-Dark E, Zhao T, Khan A, Shutt TE, Greenway SC. Mitochondrial Protein Homeostasis and Cardiomyopathy. Int J Mol Sci 2022; 23:3353. [PMID: 35328774 PMCID: PMC8953902 DOI: 10.3390/ijms23063353] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/06/2022] Open
Abstract
Human mitochondrial disorders impact tissues with high energetic demands and can be associated with cardiac muscle disease (cardiomyopathy) and early mortality. However, the mechanistic link between mitochondrial disease and the development of cardiomyopathy is frequently unclear. In addition, there is often marked phenotypic heterogeneity between patients, even between those with the same genetic variant, which is also not well understood. Several of the mitochondrial cardiomyopathies are related to defects in the maintenance of mitochondrial protein homeostasis, or proteostasis. This essential process involves the importing, sorting, folding and degradation of preproteins into fully functional mature structures inside mitochondria. Disrupted mitochondrial proteostasis interferes with mitochondrial energetics and ATP production, which can directly impact cardiac function. An inability to maintain proteostasis can result in mitochondrial dysfunction and subsequent mitophagy or even apoptosis. We review the known mitochondrial diseases that have been associated with cardiomyopathy and which arise from mutations in genes that are important for mitochondrial proteostasis. Genes discussed include DnaJ heat shock protein family member C19 (DNAJC19), mitochondrial import inner membrane translocase subunit TIM16 (MAGMAS), translocase of the inner mitochondrial membrane 50 (TIMM50), mitochondrial intermediate peptidase (MIPEP), X-prolyl-aminopeptidase 3 (XPNPEP3), HtraA serine peptidase 2 (HTRA2), caseinolytic mitochondrial peptidase chaperone subunit B (CLPB) and heat shock 60-kD protein 1 (HSPD1). The identification and description of disorders with a shared mechanism of disease may provide further insights into the disease process and assist with the identification of potential therapeutics.
Collapse
Affiliation(s)
- Emily Wachoski-Dark
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tian Zhao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- M.A.G.I.C. Inc., Calgary, AB T2E 7Z4, Canada
| | - Timothy E. Shutt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Steven C. Greenway
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
31
|
Ziegler WH, Lüdiger S, Hassan F, Georgiadis ME, Swolana K, Khera A, Mertens A, Franke D, Wohlgemuth K, Dahmer-Heath M, König J, Dafinger C, Liebau MC, Cetiner M, Bergmann C, Soetje B, Haffner D. Primary URECs: a source to better understand the pathology of renal tubular epithelia in pediatric hereditary cystic kidney diseases. Orphanet J Rare Dis 2022; 17:122. [PMID: 35264234 PMCID: PMC8905910 DOI: 10.1186/s13023-022-02265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background In pediatric hereditary cystic kidney diseases, epithelial cell defects mostly result from rare, autosomal recessively inherited pathogenic variants in genes encoding proteins of the cilia-centrosome complex. Consequences of individual gene variants on epithelial function are often difficult to predict and can furthermore depend on the patient’s genetic background. Here, we studied urine-derived renal tubular epithelial cells (URECs) from genetically determined, pediatric cohorts of different hereditary cystic kidney diseases, comprising autosomal recessive polycystic kidney disease, nephronophthisis (NPH) and the Bardet Biedl syndrome (BBS). UREC characteristics and behavior in epithelial function-related 3D cell culture were compared in order to identify gene and variant-specific properties and to determine aspects of epithelial (cell) dysfunction. Results UREC preparations from patients (19) and healthy controls (39) were studied in a qualitative and quantitative manner using primary cells cultured for up-to 21 days. In patients with biallelic pathogenic variants in PKHD1 or NPHP genes, we were able to receive satisfactory amounts of URECs of reproducible quality. In BBS patients, UREC yield was lower and more dependent on the individual genotype. In contrast, in UREC preparations derived from healthy controls, no predictable and satisfactory outcome could be established. Considering cell proliferation, tubular origin and epithelial properties in 2D/3D culture conditions, we observed distinct and reproducible epithelial properties of URECs. In particular, the cells from patients carrying PKHD1 variants were characterized by a high incidence of defective morphogenesis of monolayered spheroids—a property proposed to be suitable for corrective intervention. Furthermore, we explored different ways to generate reference cell lines for both—patients and healthy controls—in order to eliminate restrictions in cell number and availability of primary URECs. Conclusions Ex vivo 3D cell culture of primary URECs represents a valuable, non-invasive source to evaluate epithelial cell function in kidney diseases and as such helps to elucidate the functional consequences of rare genetic disorders. In combination with genetically defined control cell lines to be generated in the future, the cultivation of primary URECs could become a relevant tool for testing personalized treatment of epithelial dysfunction in patients with hereditary cystic kidney disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02265-1.
Collapse
Affiliation(s)
- Wolfgang H Ziegler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany.
| | - Sarah Lüdiger
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Fatima Hassan
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Margarita E Georgiadis
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Kathrin Swolana
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Amrit Khera
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Arne Mertens
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Doris Franke
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Kai Wohlgemuth
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Mareike Dahmer-Heath
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Jens König
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Claudia Dafinger
- Department of Pediatrics and Center for Molecular Medicine, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Rare Diseases, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Rare Diseases, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Metin Cetiner
- Department of Pediatric Nephrology, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Medizinische Genetik Mainz, Mainz, Germany
| | - Birga Soetje
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany.,Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Baig MM, Tal L, Shah S. Abnormal Hand Radiograph, Polyuria, and Polydipsia in a 17-year-old Male. Pediatr Rev 2022; 43:181-184. [PMID: 35229113 DOI: 10.1542/pir.2020-003723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
| | - Leyat Tal
- Department of Pediatrics, Renal Section, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Shweta Shah
- Department of Pediatrics, Renal Section, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| |
Collapse
|
33
|
van de Leemput J, Wen P, Han Z. Using Drosophila Nephrocytes to Understand the Formation and Maintenance of the Podocyte Slit Diaphragm. Front Cell Dev Biol 2022; 10:837828. [PMID: 35265622 PMCID: PMC8898902 DOI: 10.3389/fcell.2022.837828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
The podocyte slit diaphragm (SD) is an essential component of the glomerular filtration barrier and its disruption is a common cause of proteinuria and many types of kidney disease. Therefore, better understanding of the pathways and proteins that play key roles in SD formation and maintenance has been of great interest. Podocyte and SD biology have been mainly studied using mouse and other vertebrate models. However, vertebrates are limited by inherent properties and technically challenging in vivo access to the podocytes. Drosophila is a relatively new alternative model system but it has already made great strides. Past the initial obvious differences, mammalian podocytes and fly nephrocytes are remarkably similar at the genetic, molecular and functional levels. This review discusses SD formation and maintenance, and their dependence on cell polarity, the cytoskeleton, and endo- and exocytosis, as learned from studies in fly nephrocytes and mammalian podocytes. In addition, it reflects on the remaining gaps in our knowledge, the physiological implications for glomerular diseases and how we can leverage the advantages Drosophila has to offer to further our understanding.
Collapse
Affiliation(s)
- Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Pei Wen
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Sakakibara N, Nozu K, Yamamura T, Horinouchi T, Nagano C, Ye MJ, Ishiko S, Aoto Y, Rossanti R, Hamada R, Okamoto N, Shima Y, Nakanishi K, Matsuo M, Iijima K, Morisada N. Comprehensive genetic analysis using next-generation sequencing for the diagnosis of nephronophthisis-related ciliopathies in the Japanese population. J Hum Genet 2022; 67:427-440. [PMID: 35140360 DOI: 10.1038/s10038-022-01020-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Nephronophthisis is an autosomal-recessive kidney disease that is caused by abnormalities in primary cilia. Nephronophthisis-related ciliopathies (NPHP-RCs) are a common cause of end-stage kidney disease (ESKD) in children and adolescents. NPHP-RCs are often accompanied by extrarenal manifestations, including intellectual disability, retinitis pigmentosa, or polydactyly. Although more than 100 causative genes have been identified, its diagnosis is difficult because the clinical features of each mutation often overlap. From September 2010 to August 2021, we performed genetic analysis, including next-generation sequencing (NGS), in 574 probands with kidney dysfunction and retrospectively studied cases genetically diagnosed with NPHP-RCs. RESULTS: We detected mutations related to NPHP-RCs in 93 patients from 83 families. Members of 60 families were diagnosed using NGS, and the mutations and the corresponding number of families are as follows: NPHP1 (24), NPHP3 (10), OFD1 (7), WDR35 (5), SDCCAG8 (4), BBS10 (3), TMEM67 (3), WDR19 (3), BBS1 (2), BBS2 (2), IFT122 (2), IFT140 (2), IQCB1 (2), MKKS (2), SCLT1 (2), TTC21B (2), ALMS1 (1), ANKS6 (1), BBS4 (1), BBS12 (1), CC2D2A (1), DYNC2H1 (1), IFT172 (1), and MAPKBP1 (1). A total of 39 cases (41.9%) progressed to ESKD at the time of genetic analysis, whereas 58 cases (62.3%) showed extrarenal manifestations, the most common being developmental delay, intellectual disability, and autism spectrum disorder in 44 patients. Comprehensive genetic analysis using NGS is useful for diagnosing patients with NPHP-RCs.
Collapse
Affiliation(s)
- Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ming Juan Ye
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Riku Hamada
- Department of Nephrology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Masafumi Matsuo
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.,Hospital Director, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan. .,Department of Clinical Genetics, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan.
| |
Collapse
|
35
|
Patel TN, Dhanyamraju PK. Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies. J Biomed Res 2021; 36:1-9. [PMID: 34963676 PMCID: PMC8894283 DOI: 10.7555/jbr.35.20210139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Development is a sophisticated process maintained by various signal transduction pathways, including the Hedgehog (Hh) pathway. Several important functions are executed by the Hh signaling cascade such as organogenesis, tissue regeneration, and tissue homeostasis, among various others. Considering the multiple functions carried out by this pathway, any mutation causing aberrant Hh signaling may lead to myriad developmental abnormalities besides cancers. In the present review article, we explored a wide range of diseases caused by aberrant Hh signaling, including developmental defects and cancers. Finally, we concluded this mini-review with various treatment strategies for Hh-induced diseases.
Collapse
Affiliation(s)
- Trupti N Patel
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Pavan Kumar Dhanyamraju
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA.,Penn State Cancer Institute, Hershey, PA 17033, USA
| |
Collapse
|
36
|
Mansour F, Boivin FJ, Shaheed IB, Schueler M, Schmidt-Ott KM. The Role of Centrosome Distal Appendage Proteins (DAPs) in Nephronophthisis and Ciliogenesis. Int J Mol Sci 2021; 22:ijms222212253. [PMID: 34830133 PMCID: PMC8621283 DOI: 10.3390/ijms222212253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The primary cilium is found in most mammalian cells and plays a functional role in tissue homeostasis and organ development by modulating key signaling pathways. Ciliopathies are a group of genetically heterogeneous disorders resulting from defects in cilia development and function. Patients with ciliopathic disorders exhibit a range of phenotypes that include nephronophthisis (NPHP), a progressive tubulointerstitial kidney disease that commonly results in end-stage renal disease (ESRD). In recent years, distal appendages (DAPs), which radially project from the distal end of the mother centriole, have been shown to play a vital role in primary ciliary vesicle docking and the initiation of ciliogenesis. Mutations in the genes encoding these proteins can result in either a complete loss of the primary cilium, abnormal ciliary formation, or defective ciliary signaling. DAPs deficiency in humans or mice commonly results in NPHP. In this review, we outline recent advances in our understanding of the molecular functions of DAPs and how they participate in nephronophthisis development.
Collapse
Affiliation(s)
- Fatma Mansour
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12613 Giza, Egypt;
| | - Felix J. Boivin
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Iman B. Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12613 Giza, Egypt;
| | - Markus Schueler
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Correspondence: (M.S.); (K.M.S.-O.)
| | - Kai M. Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Correspondence: (M.S.); (K.M.S.-O.)
| |
Collapse
|
37
|
Li D, Hu M, Chen H, Wu X, Wei X, Lin H, Gao X, Wang H, Li M, Ong ACM, Yue Z, Sun L. An Nphp1 knockout mouse model targeting exon 2-20 demonstrates characteristic phenotypes of human Nephronophthisis. Hum Mol Genet 2021; 31:232-243. [PMID: 34415307 DOI: 10.1093/hmg/ddab239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Nephronophthisis (NPH) is the most prevalent monogenetic disorder leading to end-stage renal failure (ESRD) in childhood. Mutations in Nphp1, encoding a cilia-localized protein, account for the majority of NPH cases. Despite its identification many years ago, Nphp1 deletions targeting exon 4 or exon 20 have not reproduced the histological features of human NPH in murine models. In this study, we deleted exon 2-20 of Nphp1 by CRISPR/Cas9 gene editing to create a near-total knockout (KO) mouse model (Nphp1del2-20/del2-20). Nphp1del2-20/del2-20 mice faithfully reproduced the renal and extrarenal phenotypes associated with human NPH, including renal cyst development, tubular basement membrane thickening, retinal degeneration and abnormal spermatogenesis. Importantly, Nphp1 re-expression using an adenoviral-associated-virus-9 (AAV9) vector could partially rescue both renal and retinal phenotypes in Nphp1del2-20/del2-20 mice. Our results reported the first relevant Nphp1 mouse model with renal phenotypes for human disease. It will be a valuable model for future studies of Nphp1 function and to develop novel treatments for this common childhood disease.
Collapse
Affiliation(s)
- Dantong Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Miaoyue Hu
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Huamu Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaohong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoya Wei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongrong Lin
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haiyan Wang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Min Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Zhihui Yue
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Liangzhong Sun
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
38
|
Focșa IO, Budișteanu M, Bălgrădean M. Clinical and genetic heterogeneity of primary ciliopathies (Review). Int J Mol Med 2021; 48:176. [PMID: 34278440 PMCID: PMC8354309 DOI: 10.3892/ijmm.2021.5009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023] Open
Abstract
Ciliopathies comprise a group of complex disorders, with involvement of the majority of organs and systems. In total, >180 causal genes have been identified and, in addition to Mendelian inheritance, oligogenicity, genetic modifications, epistatic interactions and retrotransposon insertions have all been described when defining the ciliopathic phenotype. It is remarkable how the structural and functional impairment of a single, minuscule organelle may lead to the pathogenesis of highly pleiotropic diseases. Thus, combined efforts have been made to identify the genetic substratum and to determine the pathophysiological mechanism underlying the clinical presentation, in order to diagnose and classify ciliopathies. Yet, predicting the phenotype, given the intricacy of the genetic cause and overlapping clinical characteristics, represents a major challenge. In the future, advances in proteomics, cell biology and model organisms may provide new insights that could remodel the field of ciliopathies.
Collapse
Affiliation(s)
- Ina Ofelia Focșa
- Department of Medical Genetics, University of Medicine and Pharmacy 'Carol Davila', 021901 Bucharest, Romania
| | - Magdalena Budișteanu
- Department of Pediatric Neurology, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Mihaela Bălgrădean
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children 'Maria Skłodowska Curie', 077120 Bucharest, Romania
| |
Collapse
|
39
|
Hirai Y, Mizumoto A, Mitsumoto K, Uzu T. Senior-Løken syndrome misdiagnosed as nephrosclerosis related to hypertensive disorders of pregnancy. BMJ Case Rep 2020; 13:13/10/e236137. [PMID: 33109693 DOI: 10.1136/bcr-2020-236137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 31-year-old woman with retinitis pigmentosa who had been diagnosed with renal failure due to nephrosclerosis related to hypertensive disorders of pregnancy was referred to our hospital to prepare for renal replacement therapy. Ultrasonography and MRI of the kidneys revealed multiple corticomedullary cysts. A renal biopsy showed that the tubules were tortuous and atrophic with segmented tubular basement membrane thickening. These findings indicated that she had Senior-Løken syndrome. A molecular genetic analysis was performed, and homozygous deletion of the gene encoding nephronophthisis-1 was found. Thus, the clinical diagnosis of Senior-Løken syndrome was genetically confirmed. Because her renal function was gradually worsening, she was scheduled to undergo living donor kidney transplantation. Senior-Løken syndrome, which is recognised as a very rare paediatric inherited disease characterised by nephronophthisis and eye problems, can cause adult-onset end-stage renal failure.
Collapse
Affiliation(s)
- Yuri Hirai
- Nephrology and Blood Purification, Nippon Life Hospital, Osaka, Japan
| | - Aya Mizumoto
- Nephrology and Blood Purification, Nippon Life Hospital, Osaka, Japan
| | - Kensuke Mitsumoto
- Nephrology and Blood Purification, Nippon Life Hospital, Osaka, Japan
| | - Takashi Uzu
- Nephrology and Blood Purification, Nippon Life Hospital, Osaka, Japan
| |
Collapse
|
40
|
Vnučák M, Graňák K, Skálová P, Laca Ľ, Mokáň M, Dedinská I. Living-Related Kidney Transplantation in a Patient with Juvenile Nephronophthisis. Nephron Clin Pract 2020; 144:583-588. [PMID: 32906116 DOI: 10.1159/000508501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/07/2020] [Indexed: 11/19/2022] Open
Abstract
Nephronophthisis (NPHP) is an autosomal recessive disease manifesting as tubulointerstitial nephritis uniformly progressing to ESRD in approximately 5-10% patients in childhood. Living donor transplantation is the most beneficial mean of renal replacement therapy compared to other methods. However, living kidney donation is contraindicated in potential donor with diseases of autosomal dominant mode of inheritance potentially leading to kidney failure in future. On the other hand, autosomal recessive genetic kidney diseases, such as NPHP, are not usually contraindication to living kidney donation. Herein, we are reporting related living kidney transplantation with a family history of NPHP form 46-year-old mother (heterozygote) to 17-year-old daughter with (autosomal recessive homozygote) with focus on donor follow-up after nephrectomy.
Collapse
Affiliation(s)
- Matej Vnučák
- Department of Surgery and Transplantation Center, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin, Slovakia
| | - Karol Graňák
- Department of Surgery and Transplantation Center, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin, Slovakia ,
| | - Petra Skálová
- Department of Surgery and Transplantation Center, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin, Slovakia
| | - Ľudovít Laca
- Department of Surgery and Transplantation Center, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin, Slovakia
| | - Marián Mokáň
- 1st Department of Internal Diseases, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin, Slovakia
| | - Ivana Dedinská
- Department of Surgery and Transplantation Center, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin, Slovakia
| |
Collapse
|
41
|
Alizadeh R, Jamshidi S, Keramatipour M, Moeinian P, Hosseini R, Otukesh H, Talebi S. Whole Exome Sequencing Reveals a XPNPEP3 Novel Mutation Causing Nephronophthisis in a Pediatric Patient. IRANIAN BIOMEDICAL JOURNAL 2020; 24:405-8. [PMID: 32660933 PMCID: PMC7601541 DOI: 10.29252/ibj.24.6.400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Background Nephronophthisis (NPHP) is a progressive tubulointestinal kidney condition that demonstrates an AR inheritance pattern. Up to now, more than 20 various genes have been detected for NPHP, with NPHP1 as the first one detected. X-prolyl aminopeptidase 3 (XPNPEP3) mutation is related to NPHP-like 1 nephropathy and late onset NPHP. Methods The proband (index patient) had polyuria, polydipsia and chronic kidney disease and was clinically suspected of NPHP. After the collection of blood sample from proband and her parents, whole exome sequencing (WES) was performed to identify the possible variants in the proband from a consanguineous marriage. The functional importance of variants was estimated by bioinformatic analysis. In the affected proband and her parents, Sanger sequencing was conducted for variants’ confirmation and segregation analysis. Results Clinical and paraclinical investigations of the patient was not informative. Using WES, we could detect a novel homozygous frameshift mutation in XPNPEP3 (NM_022098.2: c.719_720insA; p. Q241Tfs*13), and by Sanger sequencing, we demonstrated an insertion in XPNPEP3. Conclusion The homozygous genotype of the novel p.Q241Tfs*31 variant in XPNPEP3 may cause NPHP in the early childhood age.
Collapse
Affiliation(s)
- Rasoul Alizadeh
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Jamshidi
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, Schools of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Moeinian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rozita Hosseini
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Talebi
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Tang C, Zhou D, Tan R, Zhong X, Xiao X, Qin D, Liu Y, Hu J, Liu Y. Auxiliary genetic analysis in a Chinese adolescent NPH family by single nucleotide polymorphism screening. Mol Med Rep 2020; 21:1115-1124. [PMID: 31922211 PMCID: PMC7003018 DOI: 10.3892/mmr.2020.10917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/18/2019] [Indexed: 11/25/2022] Open
Abstract
Hereditary nephropathy is a progressive fatal renal disease caused by genetic changes. In this study, genetic screening was used to reveal mutations in a family in Southern China, in which there are two patients with confirmed hereditary nephropathy, who are alive at the time of publication. Imaging tests, including color Doppler ultrasonography and magnetic resonance imaging (MRI), as well as pathological examinations, including hematoxylin-eosin staining, electron microscopy and immunohistochemistry were performed. Target sequencing of nephrosis 2 (NPHS2), wilms tumor 1 (WT1), phospholipase C ε 1 (PLCE1), actinin α 4 (ACTN4), angiotensin I converting enzyme (ACE), uromodulin (UMOD) and nephrocystin 1 (NPHP1) was also carried out. This study indicated that heterozygous genetic variants of NPHS2, WT1, ACTN4, PLCE1 and UMOD found in the patients were gene polymorphisms. A renal biopsy showed sclerosing glomerulonephritis, dilated tubules and lymphocyte/monocyte infiltration in the interstitium of the index patients. Genetic analysis showed vertical transmission of the disease-causing mutations, including a homozygous deletion in NPHP1 and a nonsense mutation in ACE found via PCR-based single nucleotide polymorphism screening. Further network analysis identified direct and indirect co-location genes between NPHP1 and ACE. To conclude, familial adolescent nephronophthisis was diagnosed in two index patients in this study. It is recommended that comprehensive gene mutation screening is used in the diagnosis of complex hereditary diseases.
Collapse
Affiliation(s)
- Chunrong Tang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Daoyuan Zhou
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Rongshao Tan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaoshi Zhong
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiao Xiao
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Danping Qin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yun Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jianguang Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yan Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
43
|
Fishman CE, Mohebnasab M, van Setten J, Zanoni F, Wang C, Deaglio S, Amoroso A, Callans L, van Gelder T, Lee S, Kiryluk K, Lanktree MB, Keating BJ. Genome-Wide Study Updates in the International Genetics and Translational Research in Transplantation Network (iGeneTRAiN). Front Genet 2019; 10:1084. [PMID: 31803228 PMCID: PMC6873800 DOI: 10.3389/fgene.2019.01084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
The prevalence of end-stage renal disease (ESRD) and the number of kidney transplants performed continues to rise every year, straining the procurement of deceased and living kidney allografts and health systems. Genome-wide genotyping and sequencing of diseased populations have uncovered genetic contributors in substantial proportions of ESRD patients. A number of these discoveries are beginning to be utilized in risk stratification and clinical management of patients. Specifically, genetics can provide insight into the primary cause of chronic kidney disease (CKD), the risk of progression to ESRD, and post-transplant outcomes, including various forms of allograft rejection. The International Genetics & Translational Research in Transplantation Network (iGeneTRAiN), is a multi-site consortium that encompasses >45 genetic studies with genome-wide genotyping from over 51,000 transplant samples, including genome-wide data from >30 kidney transplant cohorts (n = 28,015). iGeneTRAiN is statistically powered to capture both rare and common genetic contributions to ESRD and post-transplant outcomes. The primary cause of ESRD is often difficult to ascertain, especially where formal biopsy diagnosis is not performed, and is unavailable in ∼2% to >20% of kidney transplant recipients in iGeneTRAiN studies. We overview our current copy number variant (CNV) screening approaches from genome-wide genotyping datasets in iGeneTRAiN, in attempts to discover and validate genetic contributors to CKD and ESRD. Greater aggregation and analyses of well phenotyped patients with genome-wide datasets will undoubtedly yield insights into the underlying pathophysiological mechanisms of CKD, leading the way to improved diagnostic precision in nephrology.
Collapse
Affiliation(s)
- Claire E Fishman
- Division of Transplantation Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Maede Mohebnasab
- Division of Transplantation Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Francesca Zanoni
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Chen Wang
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Silvia Deaglio
- Immunogenetics and Biology of Transplantation, Città della Salute e della Scienza, University Hospital of Turin, Turin, Italy.,Medical Genetics, Department of Medical Sciences, University Turin, Turin, Italy
| | - Antonio Amoroso
- Immunogenetics and Biology of Transplantation, Città della Salute e della Scienza, University Hospital of Turin, Turin, Italy.,Medical Genetics, Department of Medical Sciences, University Turin, Turin, Italy
| | - Lauren Callans
- Division of Transplantation Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Teun van Gelder
- Department of Hospital Pharmacy, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sangho Lee
- Department of Nephrology, Khung Hee University, Seoul, South Korea
| | - Krzysztof Kiryluk
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Matthew B Lanktree
- Division of Nephrology, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, ON, Canada
| | - Brendan J Keating
- Division of Transplantation Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
44
|
Fang B, Guo J, Hao C, Guo R, Qian S, Li W, Jia X. Whole-exome sequencing identifies a novel compound heterozygous mutation of ANKS6 gene in a Chinese nephronophthisis patient. Clin Chim Acta 2019; 501:131-135. [PMID: 31678577 DOI: 10.1016/j.cca.2019.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease that leads to renal failure in childhood or adolescence. NPHP and the related syndromes have been termed 'ciliopathies' because most NPHP gene products localize to the cilium or its associated structures. METHODS Here, we report a 2-year and 11-month-old Chinese girl with end-stage renal disease (ESRD), severe anemia, thrombocytopenia and myocardial hypertrophy. We performed trio-whole-exome sequencing to identify the causative variant of this patient. RESULTS We identified an unreported compound heterozygous mutation (c.2420dupT, p.Thr808Aspfs*2 and c.1973-1G > A) in ANKS6 in the proband. The frameshift mutation c.2420dupT of ANKS6 was inherited from the proband's unaffected father and the splicing mutation c.1973-1G > A of ANKS6 was inherited from the proband's unaffected mother. Homozygous mutation in ANKS6 leads to NPHP16 (OMIM#615382) and this is the first case with a compound heterozygous mutation in the NPHP16 gene. CONCLUSION We have identified a patient with ANKS6 variants in the East-Asian population for the first time. This case report expands the clinical and genetic spectra of NPHP and emphasizes the usefulness of whole-exome sequencing for genetic diagnosis of kidney disease.
Collapse
Affiliation(s)
- Boliang Fang
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jun Guo
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Ruolan Guo
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Suyun Qian
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China.
| | - Xinlei Jia
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
45
|
Liu J, Huang L, He Z, Lin S, Wang Y, Luo Y. Clinical value of genetic analysis in prenatal diagnosis of short femur. Mol Genet Genomic Med 2019; 7:e978. [PMID: 31566912 PMCID: PMC6825856 DOI: 10.1002/mgg3.978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
Background Fetal femur length (FL) is an important biometric index in prenatal screening. The etiology of short femur is diverse, with some pathogenic causes leading to adverse outcomes. To improve the accuracy and practicability of diagnosis, we investigated the value of genetic analysis in prenatal diagnosis of short femur. Methods We examined chromosomal microarray analysis (CMA) (64 fetuses) and karyotyping (59 fetuses) data retrospectively for short femur without fetal growth restriction (FGR). Genetic testing was conducted for 15 fetuses. Results Karyotyping and CMA detected chromosomal aberrations at rates of 13.6% and 27.2%, respectively. Among fetuses with other abnormalities, detection rates were 21.0% higher with CMA than karyotyping. CMA identified chromosomal abnormalities in 36.4% of cases with a FL 2–4 standard deviations (SDs) below the gestational age (GA) mean. Abnormality detection by CMA reached 38.5% in the second trimester. Duplication of 12p, 16p13.1 deletion, and uniparental disomy 16 were identified by CMA in three cases of short femur. Gene sequencing detected clinically notable mutations in 12/15 fetuses, among which 9/12 fetuses had FLs >4 SDs below the GA mean. Conclusions CMA yielded a higher detection value than karyotyping in fetuses with other abnormalities or a FL 2–4 SDs below the GA mean during the second trimester. Gene sequencing should be performed when FL is >4 SDs below the mean.
Collapse
Affiliation(s)
- Jialiu Liu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Linhuan Huang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhiming He
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shaobin Lin
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ye Wang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yanmin Luo
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
46
|
Mannella V, Quilici G, Nigro EA, Lampis M, Minici C, Degano M, Boletta A, Musco G. The N-Terminal Domain of NPHP1 Folds into a Monomeric Left-Handed Antiparallel Three-Stranded Coiled Coil with Anti-apoptotic Function. ACS Chem Biol 2019; 14:1845-1854. [PMID: 31345020 DOI: 10.1021/acschembio.9b00582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the NPHP1 gene, coding for human nephrocystin-1 (NPHP1), cause the autosomal recessive disease nephronophthisis, the most common cause of end-stage renal disease in children and adolescents. The function and structure of NPHP1 are still poorly characterized. NPHP1 presents a modular structure well in keeping with its role as an adaptor protein: it harbors an SH3 domain flanked by two glutamic acid-rich regions and a conserved C-terminal nephrocystin homology domain (NHD). Similar to other NPHP protein family members, its N-terminus contains a putative coiled-coil domain (NPHP1CC) that is supposed to play an important role in NPHP1 self-association and/or protein-protein interactions. Structural studies proving its structure and its oligomerization state are still lacking. Here we demonstrate that NPHP1CC is monomeric in solution and unexpectedly folds into an autonomous domain forming a three-stranded antiparallel coiled coil suitable for protein-protein interactions. Notably, we found that the NPHP1CC shares remarkable structural similarities with the three-stranded coiled coil of the BAG domain protein family, which is known to mediate the anti-apoptotic function of these proteins, suggesting a possible similar role for NPHP1CC. In agreement with this hypothesis, we show that in the context of the full-length protein the NPHP1CC is fundamental to regulate resistance to apoptotic stimuli.
Collapse
Affiliation(s)
- Valeria Mannella
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Elisa Agnese Nigro
- Molecular Basis of PKD Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Matteo Lampis
- Molecular Basis of PKD Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Claudia Minici
- Biocrystallography Unit, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Massimo Degano
- Biocrystallography Unit, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Alessandra Boletta
- Molecular Basis of PKD Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
47
|
Lee JW, Kim HS, Moon EY. Thymosin β-4 is a novel regulator for primary cilium formation by nephronophthisis 3 in HeLa human cervical cancer cells. Sci Rep 2019; 9:6849. [PMID: 31048733 PMCID: PMC6497666 DOI: 10.1038/s41598-019-43235-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/10/2019] [Indexed: 11/09/2022] Open
Abstract
Thymosinβ-4(Tβ4) is an actin-sequestering protein involved in tumor malignancy. Primary cilia, microtubule-based organelles, are present in most eukaryotic cells, which might be related to tumor cell transformation. Here, we investigated whether ciliogenesis is affected by Tβ4 in HeLa human cervical cancer cells. The inhibition of Tβ4 attenuated primary cilia formation. The frequency of cilia was increased by Tβ4 overexpression. When yeast two-hybrid assay was performed by using Tβ4 as a bait, we rescued nephronophthisis 3(NPHP3), one of the components of primary cilia. Interaction of Tβ4 with NPHP3 in mammalian cells was confirmed by GST-pulldown assay. Their intracellular co-localization was observed by immunofluorescence staining at peripheral surface of cells. In addition, the number of ciliated cells was reduced by the inhibition of NPHP3. Moreover, NPHP3 expression was decreased by the inhibition of Tβ4 but it was increased by Tβ4 overexpression. Taken together, the results demonstrate that primary cilia formation could be regulated by Tβ4 through its interaction with NPHP3 and/or the control of NPHP3 expression. It suggests that Tβ4 is a novel regulator for primary cilia formation by NPHP3. It also suggests that tumorigenesis could be associated with inappropriate regulation of Tβ4 and/or NPHP3 expression to maintain primary cilia formation normally.
Collapse
Affiliation(s)
- Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Hong Sug Kim
- Macrogen Inc., 254, Beotkkot-ro, Geumcheon-gu, Seoul, 08511, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
48
|
Schlimpert M, Lagies S, Müller B, Budnyk V, Blanz KD, Walz G, Kammerer B. Metabolic perturbations caused by depletion of nephronophthisis factor Anks6 in mIMCD3 cells. Metabolomics 2019; 15:71. [PMID: 31041607 DOI: 10.1007/s11306-019-1535-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Nephronophthisis (NPH) is an inherited form of cystic kidney disease with various extrarenal manifestations accounting for the largest amount of endstage renal disease in childhood. Patient mutations of Anks6 have also been found to cause NPH like phenotypes in animal models. However, little is known about functionality of Anks6. OBJECTIVES/METHODS We investigated the impact of Anks6 depletion on cellular metabolism of inner medullary collecting duct cells by GC-MS profiling and targeted LC-MS/MS analysis using two different shRNA cell lines for tetracycline-inducible Anks6 downregulation, namely mIMCD3 krab shANKS6 i52 and mIMCD3 krab shANKS6 i12. RESULTS In combination, we could successfully identify 158 metabolites of which 20 compounds showed similar alterations in both knockdown systems. Especially, large neutral amino acids, such as phenylalanine, where found to be significantly downregulated indicating disturbances in amino acid metabolism. Arginine, lysine and spermidine, which play an important role in cell survival and proliferation, were found to be downregulated. Accordingly, cell growth was diminished in tet treated mIMCD3 krab shANKS6 i52 knockdown cells. Deoxynucleosides were significantly downregulated in both knockdown systems. Hence, PARP1 levels were increased in tet treated mIMCD3 krab shANKS6 i52 cells, but not in tet treated mIMCD3 krab shANKS6 i12 cells. However, yH2AX was found to be increased in the latter. CONCLUSION In combination, we hypothesise that Anks6 affects DNA damage responses and proliferation and plays a crucial role in physiological amino acid and purine/pyrimidine metabolism.
Collapse
Affiliation(s)
- Manuel Schlimpert
- Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Simon Lagies
- Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Barbara Müller
- Renal Division, Department of Medicine, Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Vadym Budnyk
- Renal Division, Department of Medicine, Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Kelly Daryll Blanz
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Bernd Kammerer
- Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
49
|
Blackburn ATM, Miller RK. Modeling congenital kidney diseases in Xenopus laevis. Dis Model Mech 2019; 12:12/4/dmm038604. [PMID: 30967415 PMCID: PMC6505484 DOI: 10.1242/dmm.038604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) occur in ∼1/500 live births and are a leading cause of pediatric kidney failure. With an average wait time of 3-5 years for a kidney transplant, the need is high for the development of new strategies aimed at reducing the incidence of CAKUT and preserving renal function. Next-generation sequencing has uncovered a significant number of putative causal genes, but a simple and efficient model system to examine the function of CAKUT genes is needed. Xenopus laevis (frog) embryos are well-suited to model congenital kidney diseases and to explore the mechanisms that cause these developmental defects. Xenopus has many advantages for studying the kidney: the embryos develop externally and are easily manipulated with microinjections, they have a functional kidney in ∼2 days, and 79% of identified human disease genes have a verified ortholog in Xenopus. This facilitates high-throughput screening of candidate CAKUT-causing genes. In this Review, we present the similarities between Xenopus and mammalian kidneys, highlight studies of CAKUT-causing genes in Xenopus and describe how common kidney diseases have been modeled successfully in this model organism. Additionally, we discuss several molecular pathways associated with kidney disease that have been studied in Xenopus and demonstrate why it is a useful model for studying human kidney diseases. Summary: Understanding how congenital kidney diseases arise is imperative to their treatment. Using Xenopus as a model will aid in elucidating kidney development and congenital kidney diseases.
Collapse
Affiliation(s)
- Alexandria T M Blackburn
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
| | - Rachel K Miller
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA .,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry and Cell Biology Houston, Houston, TX 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
50
|
Wheway G, Mitchison HM. Opportunities and Challenges for Molecular Understanding of Ciliopathies-The 100,000 Genomes Project. Front Genet 2019; 10:127. [PMID: 30915099 PMCID: PMC6421331 DOI: 10.3389/fgene.2019.00127] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/05/2019] [Indexed: 01/11/2023] Open
Abstract
Cilia are highly specialized cellular organelles that serve multiple functions in human development and health. Their central importance in the body is demonstrated by the occurrence of a diverse range of developmental disorders that arise from defects of cilia structure and function, caused by a range of different inherited mutations found in more than 150 different genes. Genetic analysis has rapidly advanced our understanding of the cell biological basis of ciliopathies over the past two decades, with more recent technological advances in genomics rapidly accelerating this progress. The 100,000 Genomes Project was launched in 2012 in the UK to improve diagnosis and future care for individuals affected by rare diseases like ciliopathies, through whole genome sequencing (WGS). In this review we discuss the potential promise and medical impact of WGS for ciliopathies and report on current progress of the 100,000 Genomes Project, reviewing the medical, technical and ethical challenges and opportunities that new, large scale initiatives such as this can offer.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Hannah M. Mitchison
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|