1
|
Haffner D, Emma F, Seefried L, Högler W, Javaid KM, Bockenhauer D, Bacchetta J, Eastwood D, Biosse Duplan M, Schnabel D, Wicart P, Ariceta G, Levtchenko E, Harvengt P, Kirchhoff M, Gardiner O, Di Rocco F, Chaussain C, Brandi ML, Savendahl L, Briot K, Kamenický P, Rejnmark L, Linglart A. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol 2025; 21:330-354. [PMID: 39814982 DOI: 10.1038/s41581-024-00926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
X-linked hypophosphataemia (XLH) is a rare metabolic bone disorder caused by pathogenic variants in the PHEX gene, which is predominantly expressed in osteoblasts, osteocytes and odontoblasts. XLH is characterized by increased synthesis of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23), which results in renal phosphate wasting with consecutive hypophosphataemia, rickets, osteomalacia, disproportionate short stature, oral manifestations, pseudofractures, craniosynostosis, enthesopathies and osteoarthritis. Patients with XLH should be provided with multidisciplinary care organized by a metabolic bone expert. Historically, these patients were treated with frequent doses of oral phosphate supplements and active vitamin D, which was of limited efficiency and associated with adverse effects. However, the management of XLH has evolved in the past few years owing to the availability of burosumab, a fully humanized monoclonal antibody that neutralizes circulating FGF23. Here, we provide updated clinical practice recommendations for the diagnosis and management of XLH to improve outcomes and quality of life in these patients.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Paediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical, School, Hannover, Germany.
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany.
| | - Francesco Emma
- Division of Nephrology, Children's Hospital Bambino Gesù, IRCCs, Rome, Italy
| | - Lothar Seefried
- Clinical Trial Unit, Orthopedic Institute, Koenig-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Kassim M Javaid
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Detlef Bockenhauer
- University College London, Department of Renal Medicine and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Department of Paediatric Nephrology, University Hospitals Leuven, Katholic University of Leuven, Leuven, Belgium
| | - Justine Bacchetta
- Paediatric Nephrology Rheumatology and Dermatology Unit, Hospices Civils de Lyon, INSERM1033 Research Unit, Lyon, France
| | - Deborah Eastwood
- Department of Orthopaedics, Great Ormond Street Hospital for Children, London, UK
- The Catterall Unit, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Martin Biosse Duplan
- Université Paris Cité, Dental School, Montrouge, France
- APHP, Department of Odontology, Bretonneau Hospital, Paris, France
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, endo ERN and ERN BOND, Paris, France
| | - Dirk Schnabel
- Center for Chronic Sick Children, Paediatric Endocrinology, Charité-University Medicine, Berlin, Germany
| | - Philippe Wicart
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, endo ERN and ERN BOND, Paris, France
- APHP, Department of Paediatric Orthopedic Surgery, Necker - Enfants Malades University Hospital, Paris, France
- Université Paris Cité, Paris, France
| | - Gema Ariceta
- Department of Paediatric Nephrology, University Hospital Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Pol Harvengt
- International XLH Alliance, London, United Kingdom
| | - Martha Kirchhoff
- Phosphatdiabetes e.V., German Patient Association for XLH, Lippstadt, Germany
| | | | - Federico Di Rocco
- Paediatric Neurosurgery, Hôpital Femme Mère Enfant, Centre de Référence Craniosténoses, Université de Lyon, INSERM 1033, Lyon, France
| | - Catherine Chaussain
- Université Paris Cité, Dental School, Montrouge, France
- APHP, Department of Odontology, Bretonneau Hospital, Paris, France
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, endo ERN and ERN BOND, Paris, France
| | | | - Lars Savendahl
- Paediatric Endocrinology Unit, Karolinska University Hospital, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Karine Briot
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, endo ERN and ERN BOND, Paris, France
- Université Paris Cité, Paris, France
- APHP, Department of Rheumatology, Cochin Hospital, Paris, France
- INSERM UMR-1153, Paris, France
| | - Peter Kamenický
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, endo ERN and ERN BOND, Paris, France
- Université Paris Saclay, Inserm, AP-HP, Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre Paris Saclay, Le Kremlin Bicêtre, France
| | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Agnès Linglart
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, endo ERN and ERN BOND, Paris, France
- Université Paris Saclay, Inserm, AP-HP, Physiologie et Physiopathologie Endocriniennes, Service Endocrinologie et diabète de l'enfant, Hôpital Bicêtre Paris Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Ito N, Kang HG, Michigami T, Namba N, Kubota T, Shintani A, Kawai R, Kabata D, Ishii H, Nishida Y, Fukumoto S, Ozono K. Prevalence of Comorbid Hyperparathyroidism and Its Association with Renal Dysfunction in Asian Patients with X-Linked Hypophosphatemic Rickets/Osteomalacia. Calcif Tissue Int 2025; 116:50. [PMID: 40074938 PMCID: PMC11903609 DOI: 10.1007/s00223-025-01359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
In patients with X-linked hypophosphatemic rickets/osteomalacia (XLH) in Asia, the current prevalence of hyperparathyroidism and its association with renal dysfunction have not been determined. We used patient data retrospectively collected up to the time of informed consent in the SUNFLOWER study, a long-term observational study, to investigate the current treatment status and prevalence of comorbid hyperparathyroidism and its association with renal dysfunction in patients with XLH in Japan and South Korea. Of 69 patients who met the eligibility criteria, 32 (46.4%) did not have hyperparathyroidism (hereinafter referred to as non-hyperparathyroidism), 33 (47.8%) had secondary hyperparathyroidism, and four (5.8%) had tertiary hyperparathyroidism. Men were more prone to develop secondary and tertiary hyperparathyroidism, use oral phosphate at higher frequencies, and have a higher incidence of Stage ≥ 3 chronic kidney disease and Grade ≥ 3 renal calcification than women. Ongoing treatments for patients with XLH and non-hyperparathyroidism, secondary hyperparathyroidism, and tertiary hyperparathyroidism mainly consisted of active vitamin D (30 [93.8%], 25 [75.8%], and 3 [75.0%], respectively) and oral phosphate (21 [65.6%], 23 [69.7%], and 4 [100.0%], respectively). At informed consent, patients with tertiary hyperparathyroidism had the lowest estimated glomerular filtration rate values. Our study highlights the prevalence of comorbid hyperparathyroidism and its association with renal dysfunction in patients with XLH through a large-scale observational study in Asia.Trial registration: NCT03745521; UMIN000031605.
Collapse
Affiliation(s)
- Nobuaki Ito
- Division of Therapeutic Development for Intractable Bone Diseases, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo, Japan.
| | - Hee Gyung Kang
- Division of Pediatric Nephrology, Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Noriyuki Namba
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Shintani
- Department of Medical Statistics, Osaka Metropolitan University School of Medicine, Osaka, Japan
| | - Ryota Kawai
- Department of Medical Statistics, Osaka Metropolitan University School of Medicine, Osaka, Japan
| | - Daijiro Kabata
- Department of Medical Statistics, Osaka Metropolitan University School of Medicine, Osaka, Japan
- Center for Mathematical and Data Sciences, Kobe University, Hyogo, Japan
| | - Haruka Ishii
- Medical Affairs Department, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Yayoi Nishida
- Medical Affairs Department, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | | | - Keiichi Ozono
- Center for Promoting Treatment of Intractable Diseases, ISEIKAI International General Hospital, Osaka, Japan
| |
Collapse
|
3
|
Olivas-Valdez MA, Blanco-López A, Velázquez-Arestegui D, Vera-Zazueta T, Colmenares-Bonilla D, Reyes-Morales L, Blanco-Uriarte MA, Monterde-Cruz L, Hidalgo-Bravo A. Clinical, Radiographic, and Molecular Analysis of Patients with X-Linked Hypophosphatemic Rickets: Looking for Phenotype-Genotype Correlation. Diagnostics (Basel) 2025; 15:91. [PMID: 39795619 PMCID: PMC11719845 DOI: 10.3390/diagnostics15010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES X-linked hypophosphataemic rickets (XLH) represents the most frequent type of rickets from genetic origin, it is caused by mutations on the PHEX gene. The main clinical manifestations are short stature and bone deformities. Phenotype variation is observed at the intrafamily and interfamily level. The bases for this variation are not fully understood. The aim of this study was to investigate if there is a phenotype-genotype correlation in a cohort of patients with confirmed diagnosis of XLH. METHODS We recruited a total of 130 patients of Mexican Mestizo origin with confirmed molecular diagnosis of XLH; this is one of the largest cohorts reported. RESULTS Radiographies for calculating the rickets severity score (RSS) were available from 50 patients. A total of 56 different pathogenic variants were found among the study population; from them, 31 variants have not been previously reported. We compared the RSS values between individuals considering clinical and biochemical characteristics such as age, height, sex, phosphorus, and alkaline phosphatase in serum; no significant differences were observed. Then, we compared the RSS considering if the variant was intronic or exonic and considering the presence of a truncated protein or not. None of the two comparisons showed significant differences. CONCLUSIONS We did not find a genotype-phenotype correlation in the study population. Despite the knowledge regarding the genetic cause of XLH, the mechanisms driving the intrafamily and interfamily variability remain elusive. More analyses looking for the genotype-phenotype correlation are necessary in other populations, especially considering the discovery of new mutations in patients from different origin.
Collapse
Affiliation(s)
- Marco A. Olivas-Valdez
- Clínica Shriners Tijuana, Av. Paseo de Los Héroes 10999, Zona Río, Zona Urbana Rio Tijuana, Tijuana 22010, Mexico;
| | - Armando Blanco-López
- Hospital Shriners para Niños-México, Av. del Imán #257, Pedregal de Sta. Úrsula, Coyoacán, Ciudad de México 04600, Mexico; (A.B.-L.); (D.V.-A.); (M.A.B.-U.)
| | - Daniela Velázquez-Arestegui
- Hospital Shriners para Niños-México, Av. del Imán #257, Pedregal de Sta. Úrsula, Coyoacán, Ciudad de México 04600, Mexico; (A.B.-L.); (D.V.-A.); (M.A.B.-U.)
| | - Teresita Vera-Zazueta
- Hospital Ángeles Tijuana, Av. Paseo de Los Héroes 10999, Zona Río, Zona Urbana Rio Tijuana, Tijuana 22010, Mexico;
| | - Douglas Colmenares-Bonilla
- Servicio de Ortopedia Pediátrica, Hospital Regional de Alta Especialidad del Bajío, Blvd. Milenio 130, Col San Carlos la Roncha, León 37544, Mexico;
| | - Lilian Reyes-Morales
- Departamento de Nefrología, Instituto Nacional de Pediatría, Av. Insurgentes Sur 3700 Letra C, Insurgentes Cuicuilco, Ciudad de México 04530, Mexico;
| | - Miguel A. Blanco-Uriarte
- Hospital Shriners para Niños-México, Av. del Imán #257, Pedregal de Sta. Úrsula, Coyoacán, Ciudad de México 04600, Mexico; (A.B.-L.); (D.V.-A.); (M.A.B.-U.)
| | - Lucero Monterde-Cruz
- Star Medica-Hospital Infantil Privado, Nueva York 15, Col. Nápoles, Ciudad de México 03810, Mexico
| | - Alberto Hidalgo-Bravo
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Ciudad de México 14389, Mexico
| |
Collapse
|
4
|
Namba N, Ito N, Michigami T, Kang HG, Kubota T, Miyazaki O, Shintani A, Kabata D, Nishida Y, Fukumoto S, Ozono K. Impact of X-linked hypophosphatemic rickets/osteomalacia on health and quality of life: baseline data from the SUNFLOWER longitudinal, observational cohort study. JBMR Plus 2024; 8:ziae118. [PMID: 39399158 PMCID: PMC11470975 DOI: 10.1093/jbmrpl/ziae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
The SUNFLOWER study was initiated in Japan and South Korea to clarify the course of X-linked hypophosphatemic rickets/osteomalacia (XLH); delineate its physical, mental, and financial burdens; and collect information on treatment. Here, we report cross-sectional data at the time of patient enrollment to better understand the real-world management and complications in patients with XLH and examine the effect of XLH on quality of life (QOL). This is an ongoing, longitudinal, observational cohort study of patients with a diagnosis of XLH. Data from 147 patients (118 in Japan and 29 in South Korea) were evaluated. In total, 77 children (mean age, 9.7 yr; 67.5% female) and 70 adults (mean age, 37.6 yr; 65.7% female) were enrolled. PHEX gene mutations were confirmed in 46/77 (59.7%) children and 37/70 (52.9%) adults. Most patients in both age groups were receiving a combination of phosphate and active vitamin D at baseline. The mean height Z-score was -2.21 among adults (male: -2.34; female: -2.14). The mean Rickets Severity Score in children was 1.62. Whereas children appeared to have low pain levels (mean revised faces pain scale score, 1.3), adults reported mild-to-moderate pain (mean Brief Pain Inventory pain severity, 2.02). Mean QOL in children (assessed using the 10-item short-form health survey for children) was low, with a score below normative level for physical functioning. In adults, results from the Western Ontario and McMaster Universities osteoarthritis index indicated the presence of pain, stiffness, and decreased physical function. The respective mean total days/year of work/school non-attendance due to symptoms/complications and management of XLH were 0.7 and 3.0 among adults, and 6.4 and 6.1 among children. Our findings reconfirmed a relationship between disease and QOL in patients with XLH. We anticipate that these data will be important in enabling clinicians to understand the daily reality of patients with XLH.
Collapse
Affiliation(s)
- Noriyuki Namba
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, Tottori 683-8504, Japan
| | - Nobuaki Ito
- Division of Therapeutic Development for Intractable Bone Diseases, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Osaka 594-1101, Japan
| | - Hee Gyung Kang
- Division of Pediatric Nephrology, Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, South Korea
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Osamu Miyazaki
- Department of Radiology, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Ayumi Shintani
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Daijiro Kabata
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Center for Mathematical and Data Sciences, Kobe University, Hyogo 657-8501, Japan
| | - Yayoi Nishida
- Medical Affairs Department, Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan
| | | | - Keiichi Ozono
- Center for Promoting Treatment of Intractable Diseases, ISEIKAI International General Hospital, Osaka 530-0052, Japan
| |
Collapse
|
5
|
Michigami T, Kang HG, Namba N, Ito N, Kubota T, Shintani A, Kabata D, Kanematsu M, Nishida Y, Fukumoto S, Ozono K. Burosumab treatment of X-linked hypophosphatemia patients: interim analysis of the SUNFLOWER longitudinal, observational cohort study. JBMR Plus 2024; 8:ziae079. [PMID: 39015507 PMCID: PMC11250265 DOI: 10.1093/jbmrpl/ziae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
X-linked hypophosphatemia (XLH) is a genetic disease that results in excessive FGF23, chronic hypophosphatemia, and musculoskeletal abnormalities, with affected patients experiencing symptoms such as bone pain, bone deformity, fracture, and pseudofracture. Burosumab is a fully human monoclonal antibody that binds to FGF23, improving lowered serum 1,25(OH)2D and phosphate levels in patients with XLH. There are insufficient data on the use of burosumab, its safety, and the outcomes of treated patients in a real-world setting. The SUNFLOWER (Study of longitUdinal observatioN For patients with X-Linked hypOphosphatemic rickets/osteomalacia in collaboration With Asian partnERs) study is an ongoing longitudinal, observational cohort study of patients with XLH in Japan and South Korea. Enrollment occurred between April 2018 and December 2020. This interim analysis compared the background characteristics of patients who received burosumab with those who did not, and assessed improvements in biomarkers, physical and motor function, health-related quality-of-life (HRQOL) and other patient-reported outcome (PRO) measures, as well as the safety of burosumab treatment in 143 Japanese patients from 15 institutions over 6 mo. The patients had a median [interquartile range] age of 17.5 [11.0, 38.8] yr and 98 (68.5%) were female. Among patients aged <18 and ≥18 yr, 40/73 (54.8%) and 25/70 (35.7%) received burosumab, respectively. More patients aged ≥18 who received burosumab had bone pain at baseline vs those not treated with burosumab (6/25, 24.0% vs 2/45, 4.4%, p=.021). Patients treated with burosumab had improved serum phosphate and 1,25(OH)2D levels; moreover, rickets severity and HRQOL/PRO measures, such as pain, appeared to improve over 6 mo of burosumab treatment, and no new safety concerns were identified. This study identified trends in the background characteristics of patients with XLH who receive burosumab in real-world clinical practice. Furthermore, the results support the use of burosumab therapy in real-world settings.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Osaka 594-1101, Japan
| | - Hee Gyung Kang
- Department of Pediatric Nephrology, Seoul National University Children’s Hospital, Seoul 03080, Republic of Korea
| | - Noriyuki Namba
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Tottori 683-8504, Japan
| | - Nobuaki Ito
- Division of Therapeutic Development for Intractable Bone Diseases, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuo Kubota
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Ayumi Shintani
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Daijiro Kabata
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Masanori Kanematsu
- Medical Affairs Department, Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan
| | - Yayoi Nishida
- Medical Affairs Department, Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan
| | - Seiji Fukumoto
- Department of Diabetes and Endocrinology, Tamaki-Aozora Hospital, Tokushima 779-3125, Japan
| | - Keiichi Ozono
- Center for Promoting Treatment of Intractable Diseases, ISEIKAI International General Hospital, Osaka 530-0052, Japan
| |
Collapse
|
6
|
Xiaohui T, Wang L, Yang X, Jiang H, Zhang N, Zhang H, Li D, Li X, Zhang Y, Wang S, Zhong C, Yu S, Ren M, Sun M, Li N, Chen T, Ma Y, Li F, Liu J, Yu Y, Yue H, Zhang Z, Zhang G. Sclerostin inhibition in rare bone diseases: Molecular understanding and therapeutic perspectives. J Orthop Translat 2024; 47:39-49. [PMID: 39007037 PMCID: PMC11245887 DOI: 10.1016/j.jot.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 07/16/2024] Open
Abstract
Sclerostin emerges as a novel target for bone anabolic therapy in bone diseases. Osteogenesis imperfecta (OI) and X-linked hypophosphatemia (XLH) are rare bone diseases in which therapeutic potential of sclerostin inhibition cannot be ignored. In OI, genetic/pharmacologic sclerostin inhibition promoted bone formation of mice, but responses varied by genotype and age. Serum sclerostin levels were higher in young OI-I patients, while lower in adult OI-I/III/IV. It's worth investigating whether therapeutic response of OI to sclerostin inhibition could be clinically predicted by genotype and age. In XLH, preclinical/clinical data suggested factors other than identified FGF23 contributing to XLH. Higher levels of circulating sclerostin were detected in XLH. Sclerostin inhibition promoted bone formation in Hyp mice, while restored phosphate homeostasis in age-/gender-dependent manner. The role of sclerostin in regulating phosphate metabolism deserves investigation. Sclerostin/FGF23 levels of XLH patients with/without response to FGF23-antibody warrants study to develop precise sclerostin/FGF23 inhibition strategy or synergistic/additive strategy. Notably, OI patients were associated with cardiovascular abnormalities, so were XLH patients receiving conventional therapy. Targeting sclerostin loop3 promoted bone formation without cardiovascular risks. Further, blockade of sclerostin loop3-LRP4 interaction while preserving sclerostin loop2-ApoER2 interaction could be a potential precise sclerostin inhibition strategy for OI and XLH with cardiovascular safety. The Translational Potential of this Article. Preclinical data on the molecular understanding of sclerostin inhibition in OI and therapeutic efficacy in mouse models of different genotypes, as well as clinical data on serum sclerostin levels in patients with different phenotypes of OI, were reviewed and discussed. Translationally, it would facilitate to develop clinical prediction strategies (e.g. based on genotype and age, not just phenotype) for OI patients responsive to sclerostin inhibition. Both preclinical and clinical data suggested sclerostin as another factor contributing to XLH, in addition to the identified FGF23. The molecular understanding and therapeutic effects of sclerostin inhibition on both promoting bone anabolism and improving phosphate homostasis in Hyp mice were reviewed and discussed. Translationaly, it would facilitate the development of precise sclerostin/FGF23 inhibition strategy or synergistic/additive strategy for the treatment of XLH. Cardiovascular risk could not be ruled out during sclerostin inhibition treatment, especially for OI and XLH patients with cardiovascular diseases history and cardiovascular abnormalities. Studies on the role of sclerostin in inhiting bone formation and protecting cardiovascular system were reviewed and discussed. Translationaly, blockade of sclerostin loop3-LRP4 interaction while preserving sclerostin loop2-ApoER2 interaction could be a potential precise sclerostin inhibition strategy for OI and XLH with cardiovascular safety.
Collapse
Affiliation(s)
- Tao Xiaohui
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xin Yang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hewen Jiang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ning Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarui Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dijie Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaofei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yihao Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shenghang Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sifan Yu
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meishen Ren
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Meiheng Sun
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Nanxi Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Tienan Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hua Yue
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
7
|
Dodamani MH, Kumar SC, Bhattacharjee S, Barnabas R, Kumar S, Ranjan Lila A, Samad Memon S, Karlekar M, A Patil V, R Bandgar T. Efficacy and safety of burosumab compared with conventional therapy in patients with X-linked hypophosphatemia: A systematic review. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230242. [PMID: 38788147 PMCID: PMC11156178 DOI: 10.20945/2359-4292-2023-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/29/2023] [Indexed: 05/26/2024]
Abstract
Burosumab, a monoclonal antibody directed against the fibroblast growth factor 23 (FGF23), has been approved for the treatment of X-linked hypophosphatemia (XLH). We conducted a systematic review to compare the efficacy and safety of burosumab versus conventional therapy (phosphorus and calcitriol) on XLH treatment. After a comprehensive literature search on MEDLINE/PubMed and Embase, we found nine studies for inclusion in the analysis. Risk of bias was assessed, and a random-effects model was used to determine the effect size. Clinical, biochemical, and radiological parameters of disease severity before and after treatment were analyzed and expressed in standardized mean difference (SMD). Burosumab resulted in normalization of phosphate homeostasis with an increase in renal tubular phosphate reabsorption and significant resolution of skeletal lesions (change in Thacher's total rickets severity score SMD: -1.46, 95% confidence interval [CI]: -1.76 to -1.17, p < 0.001, improvement in deformities, and decline in serum alkaline phosphatase levels [SMD: 130.68, 95% CI: 125.26-136.1, p < 0.001)]. Conventional therapy led to similar improvements in all these parameters but to a lower degree. In adults, burosumab normalized phosphorus levels (SMD: 1.23, 95% CI: 0.98-1.47, p < 0.001) with resultant clinical improvement. Burosumab treatment was well tolerated, with only mild treatment-related adverse effects. The present review indicates a potential role for burosumab in improving rickets, deformities, and growth in children with XLH. Given its superior efficacy and safety profile, burosumab could be an effective therapeutic option in children. We suggest further studies comparing burosumab versus conventional therapy in children and adults with XLH.
Collapse
Affiliation(s)
| | | | - Samiksha Bhattacharjee
- Department of Clinical Pharmacology, Post-graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rohit Barnabas
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Mumbai, Maharashtra, India
| | - Sandeep Kumar
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Mumbai, Maharashtra, India
| | - Anurag Ranjan Lila
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Mumbai, Maharashtra, India
| | - Saba Samad Memon
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Mumbai, Maharashtra, India
| | - Manjiri Karlekar
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Mumbai, Maharashtra, India
| | - Virendra A Patil
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Mumbai, Maharashtra, India
| | - Tushar R Bandgar
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Mumbai, Maharashtra, India,
| |
Collapse
|
8
|
Levy-Shraga Y, Levi S, Regev R, Gal S, Brener A, Lebenthal Y, Gillis D, Strich D, Zung A, Cleper R, Borovitz Y, Bello R, Tenenbaum A, Zadik Z, Davidovits M, Zeitlin L, Tiosano D. Linear growth of children with X-linked hypophosphatemia treated with burosumab: a real-life observational study. Eur J Pediatr 2023; 182:5191-5202. [PMID: 37707589 DOI: 10.1007/s00431-023-05190-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
To assess the long-term efficacy of burosumab for pediatric patients with X-linked hypophosphatemia, focusing on linear growth. This multi-center retrospective study included 35 pediatric patients who began treatment with burosumab between January 2018 and January 2021. We collected clinical data, anthropometric measurements, laboratory results, and Rickets Severity Score (RSS), from 2 years prior to treatment initiation and up to 4 years after. Burosumab was initiated at a mean age of 7.5 ± 4.4 years (range 0.6-15.9), with a mean initial dose of 0.8 ± 0.3 mg/kg, which was subsequently increased to 1.1 ± 0.4 mg/kg. The patients were followed for 2.9 ± 1.4 years (range 1-4) after initiating burosumab. Serum phosphorus levels increased from 2.7 ± 0.8 mg/dl at burosumab initiation to 3.4 ± 0.6 mg/dl after 3 months and remained stable (p < 0.001). Total reabsorption of phosphorus increased from 82.0 ± 6.8 to 90.1 ± 5.3% after 12 months of treatment (p = 0.041). The RSS improved from 1.7 ± 1.0 at burosumab initiation to 0.5 ± 0.6 and 0.3 ± 0.6 after 12 and 24 months, respectively (p < 0.001). Both height z-score and weight z-score improved from burosumab initiation to the end of the study: from - 2.07 ± 1.05 to - 1.72 ± 1.04 (p < 0.001) and from - 0.51 ± 1.12 to - 0.11 ± 1.29 (p < 0.001), respectively. Eight children received growth hormone combined with burosumab treatment. Height z-score improved among those who received growth hormone (from - 2.33 ± 1.12 to - 1.94 ± 1.24, p = 0.042) and among those who did not (from - 2.01 ± 1.01 to - 1.66 ± 1.01, p = 0.001). CONCLUSION Burosumab treatment in a real-life setting improved phosphate homeostasis and rickets severity and enhanced linear growth. WHAT IS KNOWN • Compared to conventional therapy, burosumab treatment has been shown to increase serum phosphate levels and reduce the severity of rickets. • The effect of burosumab on growth is still being study. WHAT IS NEW • Height z-score improved between the start of burosumab treatment and the end of the study (-2.07 ± 1.05 vs. -1.72 ± 1.04, p < 0.001). • Eight children received burosumab combined with growth hormone treatment without side effects during the concomitant treatments.
Collapse
Affiliation(s)
- Yael Levy-Shraga
- Pediatric Endocrinology Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, 52621, Israel.
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Shelly Levi
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pediatric Nephrology, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Ravit Regev
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shoshana Gal
- Division of Pediatric Endocrinology, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
- Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Avivit Brener
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yael Lebenthal
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - David Gillis
- Pediatric Endocrinology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
| | - David Strich
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
- Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Amnon Zung
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
- Pediatrics Department, Kaplan Medical Center, Rehovot, Israel
| | - Roxana Cleper
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Nephrology Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yael Borovitz
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pediatric Nephrology, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Rachel Bello
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Ariel Tenenbaum
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Zvi Zadik
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
- Pediatrics Department, Kaplan Medical Center, Rehovot, Israel
| | - Miriam Davidovits
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pediatric Nephrology, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Leonid Zeitlin
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Orthopedic Department, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dov Tiosano
- Division of Pediatric Endocrinology, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
- Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
9
|
Presentation and Diagnosis of Pediatric X-Linked Hypophosphatemia. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
X-linked hypophosphatemia (XLH) is a rare type of hereditary hypophosphatemic rickets. Patients with XLH have various symptoms that lower their QOL as defined by HAQ, RAPID3, SF36-PCS, and SF36-MCS in adult patients and SF-10 and PDCOI in pediatric patients. Early diagnosis and treatment are needed to reduce the burden, but the condition is often diagnosed late in childhood. The present review aims to summarize the symptoms, radiological and biological characteristics, and long-term prognosis of pediatric XLH. Typical symptoms of XLH are lower leg deformities (age six months or later), growth impairment (first year of life or later), and delayed gross motor development with progressive lower limb deformities (second year of life or later). Other symptoms include dental abscess, bone pain, hearing impairment, and Chiari type 1 malformation. Critical, radiological findings of rickets are metaphyseal widening, cupping, and fraying, which tend to occur in the load-bearing bones. The Rickets Severity Score, validated for XLH, is useful for assessing the severity of rickets. The biochemical features of XLH include elevated FGF23, hypophosphatemia, low 1,25(OH)2D, and elevated urine phosphate. Renal phosphate wasting can be assessed using the tubular maximum reabsorption of phosphate per glomerular filtration rate (TmP/GFR), which yields low values in patients with XLH. XLH should be diagnosed early because the multisystem symptoms often worsen over time. The present review aims to help physicians diagnose XLH at an early stage.
Collapse
|
10
|
Complications and Treatments in Adult X-Linked Hypophosphatemia. ENDOCRINES 2022. [DOI: 10.3390/endocrines3030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
X-linked hypophosphatemia (XLH) is a rare inherited disorder involving elevated levels of fibroblast growth factor (FGF) 23, and is caused by loss-of-function mutations in the PHEX gene. FGF23 induces renal phosphate wasting and suppresses the activation of vitamin D, resulting in defective bone mineralization and rachitic changes in the growth plate and osteomalacia. Conventional treatment with combinations of oral inorganic phosphate and active vitamin D analogs enhances bone calcification, but the efficacy of conventional treatment is insufficient for adult XLH patients to achieve an acceptable quality of life. Burosumab, a fully human monoclonal anti-FGF23 antibody, binds and inhibits FGF23, correcting hypophosphatemia and hypovitaminosis D. This review describes a typical adult with XLH and summarizes the results of clinical trials of burosumab in adults with XLH.
Collapse
|
11
|
Treatment of X-Linked Hypophosphatemia in Children. ENDOCRINES 2022. [DOI: 10.3390/endocrines3030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The conventional treatment for X-linked hypophosphatemia (XLH), consisting of phosphorus supplementation and a biologically active form of vitamin D (alfacalcidol or calcitriol), is used to treat rickets and leg deformities and promote growth. However, patients’ adult height often remains less than −2 SD. Moreover, adverse events, such as renal calcification and hyperparathyroidism, may occur. The main pathology in XLH is caused by excessive production of fibroblast growth factor 23 (FGF23). Several studies have demonstrated that treatment with burosumab, a blocking neutralizing antibody against FGF23, is better than conventional therapy for severe XLH and has no serious, short-term side effects. Thus, treatment with burosumab may be an option for severe XLH. The present article reviews the conventional and burosumab therapies. In addition to the fact that the long-term efficacy of antibody-based treatment has not been demonstrated, there are other, unresolved issues concerning the burosumab treatment of XLH.
Collapse
|
12
|
Jurca CM, Iuhas O, Kozma K, Petchesi CD, Zaha DC, Bembea M, Jurca S, Paul C, Jurca AD. Effects of Burosumab Treatment on Two Siblings with X-Linked Hypophosphatemia. Case Report and Literature Review. Genes (Basel) 2022; 13:genes13081392. [PMID: 36011303 PMCID: PMC9407333 DOI: 10.3390/genes13081392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
X-linked hypophosphatemia (XLH) or vitamin D-resistant rickets (MIM#307800), is a monogenic disorder with X-linked inheritance. It is caused by mutations present in the Phosphate Regulating Endopeptidase Homolog X-Linked (PHEX) gene responsible for the degradation of the bone-derived hormone fibroblast growth factor 23 (FGF23) into inactive fragments, but the entire mechanism is currently unclear. The inactivation of the gene prevents the degradation of FGF23, causing increased levels of FGF23, which leads to decreased tubular reabsorbtion of phosphorus. Clinical aspects are growth delay, limb deformities, bone pain, osteomalacia, dental anomalies, and enthesopathy. Laboratory evaluation shows hypophosphatemia, elevated alkaline phosphatase (ALP), and normal serum calcium levels, whereas parathormone (PTH) may be normal or increased and FGF23 greatly increased. Conventional treatment consists of administration of oral phosphate and calcitriol. Treatment with Burosumab, a monoclonal antibody that binds to FGF23, reducing its activity, was approved in 2018. Methods. We describe a case of two siblings, a girl and a boy, diagnosed with XLH, monitored by the Genetic Department of the County Emergency Clinical Hospital since 2019. The clinical picture is suggestive for XLH, both siblings exhibiting short stature, lower limb curvature, bone pain, marked walking weakness, and fatigue. Radiological aspects showed marked deformity of the lower limbs: genu varum in the girl, genu varum and valgum in the boy. Laboratory investigations showed hypophosphathemia, hyperphosphaturia, elevated ALP, normal PTH, and highly increased FGF23 in both. DNA analysis performed on the two siblings revealed a nonsense mutation in exone 5 of the PHEX gene: NM_000444.6(PHEX):c.565C > T (p.Gln189Ter). Results. At the age of 13½ on 7 June 2021, the two children started treatment with Burosumab in therapeutic doses and were monitored clinically and biochemically at regular intervals according to the protocol established by the Endocrinology Commission of the Romanian Health Ministry. Conclusions. The first results of the Burosumab treatment in the two siblings are extremely encouraging and suggest a favorable long-term evolution under this treatment.
Collapse
Affiliation(s)
- Claudia Maria Jurca
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea, Romania, (Part of ERN THACA), 410469 Oradea, Romania
| | - Oana Iuhas
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea, Romania, (Part of ERN THACA), 410469 Oradea, Romania
| | - Kinga Kozma
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea, Romania, (Part of ERN THACA), 410469 Oradea, Romania
| | - Codruta Diana Petchesi
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
- Correspondence:
| | - Dana Carmen Zaha
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
| | - Marius Bembea
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
| | - Sanziana Jurca
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
| | - Corina Paul
- Department of Pediatrics, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alexandru Daniel Jurca
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
| |
Collapse
|
13
|
Collins MT, Marcucci G, Anders HJ, Beltrami G, Cauley JA, Ebeling PR, Kumar R, Linglart A, Sangiorgi L, Towler DA, Weston R, Whyte MP, Brandi ML, Clarke B, Thakker RV. Skeletal and extraskeletal disorders of biomineralization. Nat Rev Endocrinol 2022; 18:473-489. [PMID: 35578027 DOI: 10.1038/s41574-022-00682-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
The physiological process of biomineralization is complex and deviation from it leads to a variety of diseases. Progress in the past 10 years has enhanced understanding of the genetic, molecular and cellular pathophysiology underlying these disorders; sometimes, this knowledge has both facilitated restoration of health and clarified the very nature of biomineralization as it occurs in humans. In this Review, we consider the principal regulators of mineralization and crystallization, and how dysregulation of these processes can lead to human disease. The knowledge acquired to date and gaps still to be filled are highlighted. The disorders of mineralization discussed comprise a broad spectrum of conditions that encompass bone disorders associated with alterations of mineral quantity and quality, as well as disorders of extraskeletal mineralization (hyperphosphataemic familial tumoural calcinosis). Included are disorders of alkaline phosphatase (hypophosphatasia) and phosphate homeostasis (X-linked hypophosphataemic rickets, fluorosis, rickets and osteomalacia). Furthermore, crystallopathies are covered as well as arterial and renal calcification. This Review discusses the current knowledge of biomineralization derived from basic and clinical research and points to future studies that will lead to new therapeutic approaches for biomineralization disorders.
Collapse
Affiliation(s)
- Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA.
| | - Gemma Marcucci
- Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Hans-Joachim Anders
- Department of Medicine IV, Hospital of the University of Munich, Ludwig-Maximilians University, Munich, Germany
| | - Giovanni Beltrami
- Department Paediatric Orthopedic Oncology, Careggi and Meyer Children Hospital, Florence, Italy
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Rajiv Kumar
- Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Agnès Linglart
- APHP, Endocrinologie et diabète de l'enfant, Paris, France
| | - Luca Sangiorgi
- Medical Genetics and Skeletal Rare Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Dwight A Towler
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ria Weston
- Cardiovascular Research Group, Manchester Metropolitan University, Manchester, UK
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St Louis, St Louis, MO, USA
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - Bart Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Del Pino M, Viterbo GL, Arenas MA, Perez Garrido N, Ramirez P, Marino R, Belgorosky A, Fano V. Growth in height and body proportion from birth to adulthood in hereditary hypophosphatemic rickets: a retrospective cohort study. J Endocrinol Invest 2022; 45:1349-1358. [PMID: 35226335 DOI: 10.1007/s40618-022-01768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE Patients with hereditary hypophosphatemic rickets are short and disproportionate and very little information is available on segmental growth, but the body disproportion at adulthood leads us to think that the growth velocity of legs is slower. METHODS A total of 96 children were included and molecular testing was carried out in 42. Children who reached adult height were classified into two groups according to their compliance to conventional treatment (phosphate supplement and calcitriol). Individual growth records of height and sitting height/height were plotted using Argentine reference data in 96 children and growth curves were estimated by fitting Preece-Baines Model 1 in 19 of the children. RESULTS Molecular testing revealed sequence deleterious alterations or large deletions in 36/42 patients. During childhood, 76% of children grew below - 1.88 standard deviation score (SDS) and 97% had body disproportion. During adolescence, the mean peak height velocity for the good and poor compliance to treatment groups was 7.8 (0.6) and 5.4 (0.4) cm/year in boys and 7.0 (0.7) and 5.2 (0.8) cm/year in girls, respectively. At adulthood, the median sitting height/height ratio was 2.32 and 6.21 SDS for the good and poor compliance to treatment groups, respectively. The mean pubertal growth spurt of the trunk was -0.8 (1.4) SDS, with a short pubertal growth spurt of - 1.8 (0.4) SDS for limbs in the good compliance group. Median adult height in 13/29 males and 30/67 females was -4.56 and -3.16 SDS, respectively. CONCLUSION For all patients the growth spurt was slower, secondary to a short growth spurt of limbs, reaching a short adult height with body disproportion that was more prominent in the poor compliance group.
Collapse
Affiliation(s)
- M Del Pino
- Growth and Development, Hospital Garrahan, Combate de los Pozos 1881 (1245), Buenos Aires, Argentina.
| | - G L Viterbo
- Endocrinology, Hospital Garrahan, Buenos Aires, Argentina
| | - M A Arenas
- Growth and Development, Hospital Garrahan, Combate de los Pozos 1881 (1245), Buenos Aires, Argentina
| | - N Perez Garrido
- Endocrinology Molecular Laboratory, Hospital Garrahan, Buenos Aires, Argentina
| | - P Ramirez
- Endocrinology Molecular Laboratory, Hospital Garrahan, Buenos Aires, Argentina
| | - R Marino
- Endocrinology Molecular Laboratory, Hospital Garrahan, Buenos Aires, Argentina
| | - A Belgorosky
- Endocrinology, Hospital Garrahan, Buenos Aires, Argentina
- CONICET, Hospital Garrahan, Buenos Aires, Argentina
| | - V Fano
- Growth and Development, Hospital Garrahan, Combate de los Pozos 1881 (1245), Buenos Aires, Argentina
| |
Collapse
|
15
|
Alhasan K, D'Alessandri-Silva C, Mongia A, Topaloglu R, Tasic V, Filler G. Young Adults With Hereditary Tubular Diseases: Practical Aspects for Adult-Focused Colleagues. Adv Chronic Kidney Dis 2022; 29:292-307. [PMID: 36084976 DOI: 10.1053/j.ackd.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Recent advances in the management of kidney tubular diseases have resulted in a significant cohort of adolescents and young adults transitioning from pediatric- to adult-focused care. Most of the patients under adult-focused care have glomerular diseases, whereas rarer tubular diseases form a considerable proportion of pediatric patients. The purpose of this review is to highlight the clinical signs and symptoms of tubular disorders, as well as their diagnostic workup, including laboratory findings and imaging, during young adulthood. We will then discuss more common disorders such as cystinosis, cystinuria, distal kidney tubular acidosis, congenital nephrogenic diabetes insipidus, Dent disease, rickets, hypercalciuria, and syndromes such as Bartter, Fanconi, Gitelman, Liddle, and Lowe. This review is a practical guide on the diagnostic and therapeutic approach of tubular conditions affecting young adults who are transitioning to adult-focused care.
Collapse
Affiliation(s)
- Khalid Alhasan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Cynthia D'Alessandri-Silva
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, and Nephrology, Connecticut Children's Medical Center, Hartford, CT
| | - Anil Mongia
- Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY
| | - Rezan Topaloglu
- Department of Paediatrics, Division of Pediatric Nephrology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Velibor Tasic
- University Children's Hospital, Medical School, Skopje, North Macedonia
| | - Guido Filler
- Department of Paediatrics, Division of Pediatric Nephrology, Western University, London, ON, Canada; Department of Medicine, Western University, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| |
Collapse
|
16
|
Glorieux FH, Bonewald LF, Harvey NC, van der Meulen MCH. Potential influences on optimizing long-term musculoskeletal health in children and adolescents with X-linked hypophosphatemia (XLH). Orphanet J Rare Dis 2022; 17:30. [PMID: 35101067 PMCID: PMC8802511 DOI: 10.1186/s13023-021-02156-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years, much progress has been made in understanding the mechanisms of bone growth and development over a lifespan, including the crosstalk between muscle and bone, to achieve optimal structure and function. While there have been significant advances in understanding how to help improve and maintain bone health in normal individuals, there is limited knowledge on whether these mechanisms apply or are compromised in pathological states. X-linked hypophosphatemia (XLH) (ORPHA:89936) is a rare, heritable, renal phosphate-wasting disorder. The resultant chronic hypophosphatemia leads to progressive deterioration in musculoskeletal function, including impaired growth, rickets, and limb deformities in children, as well as lifelong osteomalacia with reduced bone quality and impaired muscle structure and function. The clinical manifestations of the disease vary both in presentation and severity in affected individuals, and many of the consequences of childhood defects persist into adulthood, causing significant morbidity that impacts physical function and quality of life. Intervention to restore phosphate levels early in life during the critical stages of skeletal development in children with XLH could optimize growth and may prevent or reduce bone deformities in childhood. A healthier bone structure, together with improved muscle function, can lead to physical activity enhancing musculoskeletal health throughout life. In adults, continued management may help to maintain the positive effects acquired from childhood treatment, thereby slowing or halting disease progression. In this review, we summarize the opinions from members of a working group with expertise in pediatrics, epidemiology, and bone, joint and muscle biology, on potential outcomes for people with XLH, who have been optimally treated from an early age and continue treatment throughout life.
Collapse
Affiliation(s)
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, USA
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | | |
Collapse
|
17
|
Fuente R, García-Bengoa M, Fernández-Iglesias Á, Gil-Peña H, Santos F, López JM. Cellular and Molecular Alterations Underlying Abnormal Bone Growth in X-Linked Hypophosphatemia. Int J Mol Sci 2022; 23:ijms23020934. [PMID: 35055123 PMCID: PMC8778463 DOI: 10.3390/ijms23020934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemic rickets, is caused by inactivating mutations of the phosphate-regulating endopeptidase gene (PHEX). XLH is mainly characterized by short stature, bone deformities and rickets, while in hypophosphatemia, normal or low vitamin D levels and low renal phosphate reabsorption are the principal biochemical aspects. The cause of growth impairment in patients with XLH is not completely understood yet, thus making the study of the growth plate (GP) alterations necessary. New treatment strategies targeting FGF23 have shown promising results in normalizing the growth velocity and improving the skeletal effects of XLH patients. However, further studies are necessary to evaluate how this treatment affects the GP as well as its long-term effects and the impact on adult height.
Collapse
Affiliation(s)
- Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Physiology, Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - María García-Bengoa
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hanover, Germany
| | - Ángela Fernández-Iglesias
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Helena Gil-Peña
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Fernando Santos
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - José Manuel López
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Correspondence:
| |
Collapse
|
18
|
Haffner D, Leifheit-Nestler M, Grund A, Schnabel D. Rickets guidance: part II-management. Pediatr Nephrol 2022; 37:2289-2302. [PMID: 35352187 PMCID: PMC9395459 DOI: 10.1007/s00467-022-05505-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
Abstract
Here, we discuss the management of different forms of rickets, including new therapeutic approaches based on recent guidelines. Management includes close monitoring of growth, the degree of leg bowing, bone pain, serum phosphate, calcium, alkaline phosphatase as a surrogate marker of osteoblast activity and thus degree of rickets, parathyroid hormone, 25-hydroxyvitamin D3, and calciuria. An adequate calcium intake and normal 25-hydroxyvitamin D3 levels should be assured in all patients. Children with calcipenic rickets require the supplementation or pharmacological treatment with native or active vitamin D depending on the underlying pathophysiology. Treatment of phosphopenic rickets depends on the underlying pathophysiology. Fibroblast-growth factor 23 (FGF23)-associated hypophosphatemic rickets was historically treated with frequent doses of oral phosphate salts in combination with active vitamin D, whereas tumor-induced osteomalacia (TIO) should primarily undergo tumor resection, if possible. Burosumab, a fully humanized FGF23-antibody, was recently approved for treatment of X-linked hypophosphatemia (XLH) and TIO and shown to be superior for treatment of XLH compared to conventional treatment. Forms of hypophosphatemic rickets independent of FGF23 due to genetic defects of renal tubular phosphate reabsorption are treated with oral phosphate only, since they are associated with excessive 1,25-dihydroxyvitamin D production. Finally, forms of hypophosphatemic rickets caused by Fanconi syndrome, such as nephropathic cystinosis and Dent disease require disease-specific treatment in addition to phosphate supplements and active vitamin D. Adjustment of medication should be done with consideration of treatment-associated side effects, including diarrhea, gastrointestinal discomfort, hypercalciuria, secondary hyperparathyroidism, and development of nephrocalcinosis or nephrolithiasis.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dirk Schnabel
- Center for Chronically Sick Children, Pediatric Endocrinology, Charitè, University Medicine, Berlin, Germany
| |
Collapse
|
19
|
Haffner D, Leifheit-Nestler M, Grund A, Schnabel D. Rickets guidance: part I-diagnostic workup. Pediatr Nephrol 2022; 37:2013-2036. [PMID: 34910242 PMCID: PMC9307538 DOI: 10.1007/s00467-021-05328-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/22/2023]
Abstract
Rickets is a disease of the growing child arising from alterations in calcium and phosphate homeostasis resulting in impaired apoptosis of hypertrophic chondrocytes in the growth plate. Its symptoms depend on the patients' age, duration of disease, and underlying disorder. Common features include thickened wrists and ankles due to widened metaphyses, growth failure, bone pain, muscle weakness, waddling gait, and leg bowing. Affected infants often show delayed closure of the fontanelles, frontal bossing, and craniotabes. The diagnosis of rickets is based on the presence of these typical clinical symptoms and radiological findings on X-rays of the wrist or knee, showing metaphyseal fraying and widening of growth plates, in conjunction with elevated serum levels of alkaline phosphatase. Nutritional rickets due to vitamin D deficiency and/or dietary calcium deficiency is the most common cause of rickets. Currently, more than 20 acquired or hereditary causes of rickets are known. The latter are due to mutations in genes involved in vitamin D metabolism or action, renal phosphate reabsorption, or synthesis, or degradation of the phosphaturic hormone fibroblast growth factor 23 (FGF23). There is a substantial overlap in the clinical features between the various entities, requiring a thorough workup using biochemical analyses and, if necessary, genetic tests. Part I of this review focuses on the etiology, pathophysiology and clinical findings of rickets followed by the presentation of a diagnostic approach for correct diagnosis. Part II focuses on the management of rickets, including new therapeutic approaches based on recent clinical practice guidelines.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dirk Schnabel
- Center for Chronically Sick Children, Pediatric Endocrinology, University Medicine, Charitè Berlin, Germany
| |
Collapse
|
20
|
Alikasifoglu A, Unsal Y, Gonc EN, Ozon ZA, Kandemir N, Alikasifoglu M. Long-term effect of conventional phosphate and calcitriol treatment on metabolic recovery and catch-up growth in children with PHEX mutation. J Pediatr Endocrinol Metab 2021; 34:1573-1584. [PMID: 34525271 DOI: 10.1515/jpem-2021-0387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/30/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Hereditary hypophosphatemic rickets (HR) is conventionally treated with phosphate and calcitriol. Exploring genotype and phenotypic spectrum of X-linked hypophosphatemic rickets (XLHR), focusing on short-term, long-term, and pubertal impact of conventional treatment was aimed. METHODS Sixteen patients from 12 unrelated families with HR were analyzed for phosphate regulating endopeptidase homolog X-linked (PHEX) mutation. Initially Sanger sequencing analysis was performed. If PHEX mutation was not detected, multiplex ligation-dependent probe amplification (MLPA) was performed. If molecular defect was detected, first-degree relatives were analyzed. Thirteen patients (81%) and five first-degree relatives with XLHR were evaluated for genotype-phenotype or gender-phenotype correlation. Clinical characteristics and response to conventional treatment were determined retrospectively. RESULTS Nine different PHEX mutations were identified; four splice-site, three point mutations, and two single exon deletions. Four were novel mutations. Despite conventional treatment, median adult height was lower than median height on admission (-3.8 and -2.3 SDS, respectively), metabolic and radiographic recovery were not achieved, adherence was low (30%). Although mean adult height was better in compliant patients than noncompliants (-2.6 vs. -3.7 SDS, respectively), they were still short. Correlation between phenotype and genotype or gender could not be shown. Median phosphate decreased significantly throughout puberty (p=0.014). Median pubertal height was lower than prepubertal height (-4.4 vs. -3.6 SDS; respectively), pubertal growth spurt was not observed. Among five patients with a follow-up longer than five years, three had nephrocalcinosis (60%), two had hyperparathyroidism (40%), 4/6 (33%) required correction osteotomy. CONCLUSIONS Conventional treatment appears to have limited effect on metabolic, clinical and radiographic recovery in XLHR. Metabolic control and growth worsened during puberty. Although, long-term adverse effects are yet to be seen, introduction of burosumab as first-line treatment may be an alternative after infancy.
Collapse
Affiliation(s)
- Ayfer Alikasifoglu
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yagmur Unsal
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Elmas Nazli Gonc
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Zeynep Alev Ozon
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nurgun Kandemir
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Alikasifoglu
- Division of Medical Genetics, Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW X-Linked hypophosphatemia (XLH) is the most common genetic cause of rickets. This review describes advances in the management of XLH using burosumab which was FDA approved for treating children with XLH in 2018. RECENT FINDINGS Elevated FGF23 in XLH leads to systemic hypophosphatemia and several musculoskeletal manifestations, including rachitic bone deformities, impaired growth, dental abscesses, insufficiency fractures, osteoarthritis, and enthesopathy, with lifelong consequences for physical function and quality of life. Burosumab treatment has demonstrated clinical improvement of rickets and growth in children, including during a randomized controlled trial compared with conventional therapy. Burosumab also improved pseudofracture healing in adults. Burosumab led to greater improvement in rickets and growth than conventional therapy. However, many questions remain regarding the impact of burosumab on several outcomes, including final height, nephrocalcinosis, dental disease, enthesopathy, and surgical interventions.
Collapse
Affiliation(s)
- Erik A Imel
- Department of Medicine, Indiana University School of Medicine, 1120 West Michigan Street, CL 365, Indianapolis, IN, 46202-5111, USA.
- Department of Pediatrics, Indiana University School of Medicine, 1120 West Michigan Street, CL 365, Indianapolis, IN, 46202-5111, USA.
| |
Collapse
|
22
|
Baroncelli GI, Zampollo E, Manca M, Toschi B, Bertelloni S, Michelucci A, Isola A, Bulleri A, Peroni D, Giuca MR. Pulp chamber features, prevalence of abscesses, disease severity, and PHEX mutation in X-linked hypophosphatemic rickets. J Bone Miner Metab 2021; 39:212-223. [PMID: 32772199 DOI: 10.1007/s00774-020-01136-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Rickets, growth failure, and recurrent periapical abscesses with fistulae are main signs in patients with X-linked hypophosphatemic rickets (XLH). Prevalence of abscesses, pulp chamber features, biochemical findings, disease severity, and PHEX gene mutation were examined. MATERIALS AND METHODS Pulp chambers size, shape, and morphology were assessed by orthopantomography in XLH patients (n = 24, age 5.8 ± 1.6 years) and in sex and age-matched healthy controls (n = 23, age 6.2 ± 1.4 years). XLH patients received conventional treatment (3.5 ± 1.9 years). Pulp chamber features were assessed in teeth of primary dentition and in the permanent left mandibular first molar and compared with those of controls. Rickets severity score was assessed at wrist, knee, and ankle. RESULTS The mean pulp chamber area/tooth area ratio, mean pulp chamber height/pulp chamber width ratio, and prominence of pulp horns into the tooth crown in primary and secondary molars were significantly higher in patients than in controls and in patients suffered abscesses than in patients without abscesses. Sixteen patients (67%) had a history of abscesses; incisors were affected more than canines and molars. Severity of rickets and mean serum parathyroid hormone (PTH) levels were significantly higher, and mean serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels significantly lower in patients suffered abscesses than in patients without abscesses. PHEX gene mutations were not correlated with dental phenotype and disease severity. CONCLUSION Enlarged pulp chambers with altered shape and morphology affected the majority of XLH patients predisposing to recurrent periapical abscesses with fistulae. Dental phenotype was associated with severity of rickets, high serum PTH, and low serum 1,25(OH)2D levels.
Collapse
Affiliation(s)
- Giampiero I Baroncelli
- Division of Pediatrics, Endocrine Unit, Department of Obstetrics, Gynecology and Pediatrics, University-Hospital, Via Roma 67, 56126, Pisa, Italy.
| | - Elisa Zampollo
- Division of Dentistry and Oral Surgery, Department of Surgical Specialties, University-Hospital, Pisa, Italy
| | - Mario Manca
- Unit of Orthopedics, Usl Northwest-Tuscany, Versilia Hospital, Camaiore, Italy
| | - Benedetta Toschi
- Division of Medical Genetics, Department of Medical and Oncological Area, University-Hospital, Pisa, Italy
| | - Silvano Bertelloni
- Division of Pediatrics, Endocrine Unit, Department of Obstetrics, Gynecology and Pediatrics, University-Hospital, Via Roma 67, 56126, Pisa, Italy
| | - Angela Michelucci
- Unit of Molecular Genetics, Department of Laboratory Medicine, University-Hospital, Pisa, Italy
| | - Alessandro Isola
- Unit of Orthopedics, Usl Northwest-Tuscany, Versilia Hospital, Camaiore, Italy
| | - Alessandra Bulleri
- Unit of Radiodiagnostic, Department of Diagnostic Imaging, University-Hospital, Pisa, Italy
| | - Diego Peroni
- Division of Pediatrics, Endocrine Unit, Department of Obstetrics, Gynecology and Pediatrics, University-Hospital, Via Roma 67, 56126, Pisa, Italy
| | - Maria Rita Giuca
- Division of Dentistry and Oral Surgery, Department of Surgical Specialties, University-Hospital, Pisa, Italy
| |
Collapse
|
23
|
Abstract
Great strides over the past few decades have increased our understanding of the pathophysiology of hypophosphatemic disorders. Phosphate is critically important to a variety of physiologic processes, including skeletal growth, development and mineralization, as well as DNA, RNA, phospholipids, and signaling pathways. Consequently, hypophosphatemic disorders have effects on multiple systems, and may cause a variety of nonspecific signs and symptoms. The acute effects of hypophosphatemia include neuromuscular symptoms and compromise. However, the dominant effects of chronic hypophosphatemia are the effects on musculoskeletal function including rickets, osteomalacia and impaired growth during childhood. While the most common causes of chronic hypophosphatemia in children are congenital, some acquired conditions also result in hypophosphatemia during childhood through a variety of mechanisms. Improved understanding of the pathophysiology of these congenital conditions has led to novel therapeutic approaches. This article will review the pathophysiologic causes of congenital hypophosphatemia, their clinical consequences and medical therapy.
Collapse
Affiliation(s)
- Erik Allen Imel
- Division of Endocrinology, Departments of Medicine and Pediatrics, Indiana University School of Medicine, 1120 West Michigan Street, Gatch Building Room 365, Indianapolis, IN, 46112, USA.
| |
Collapse
|
24
|
Robinson ME, AlQuorain H, Murshed M, Rauch F. Mineralized tissues in hypophosphatemic rickets. Pediatr Nephrol 2020; 35:1843-1854. [PMID: 31392510 DOI: 10.1007/s00467-019-04290-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022]
Abstract
Hypophosphatemic rickets is caused by renal phosphate wasting that is most commonly due to X-linked dominant mutations in PHEX. PHEX mutations cause hypophosphatemia indirectly, through the increased expression of fibroblast growth factor 23 (FGF23) by osteocytes. FGF23 decreases renal phosphate reabsorption and thereby increases phosphate excretion. The lack of phosphate leads to a mineralization defect at the level of growth plates (rickets), bone tissue (osteomalacia), and teeth, where the defect facilitates the formation of abscesses. The bone tissue immediately adjacent to osteocytes often remains unmineralized ("periosteocytic lesions"), highlighting the osteocyte defect in this disorder. Common clinical features of XLH include deformities of the lower extremities, short stature, enthesopathies, dental abscesses, as well as skull abnormalities such as craniosynostosis and Chiari I malformation. For the past four decades, XLH has been treated by oral phosphate supplementation and calcitriol, which improves rickets and osteomalacia and the dental manifestations, but often does not resolve all aspects of the mineralization defects. A newer treatment approach using inactivating FGF23 antibodies leads to more stable control of serum inorganic phosphorus levels and seems to heal rickets more reliably. However, the long-term benefits of FGF23 antibody treatment remain to be elucidated.
Collapse
Affiliation(s)
- Marie-Eve Robinson
- Shriners Hospital for Children and McGill University, 1003 Boulevard Decarie, Montreal, Québec, H4A 0A9, Canada
| | - Haitham AlQuorain
- Shriners Hospital for Children and McGill University, 1003 Boulevard Decarie, Montreal, Québec, H4A 0A9, Canada
| | - Monzur Murshed
- Shriners Hospital for Children and McGill University, 1003 Boulevard Decarie, Montreal, Québec, H4A 0A9, Canada
| | - Frank Rauch
- Shriners Hospital for Children and McGill University, 1003 Boulevard Decarie, Montreal, Québec, H4A 0A9, Canada.
| |
Collapse
|
25
|
Burosumab in X-linked hypophosphatemia and perspective for chronic kidney disease. Curr Opin Nephrol Hypertens 2020; 29:531-536. [PMID: 32701599 DOI: 10.1097/mnh.0000000000000631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Perturbations in phosphate and vitamin D homeostasis impacts skeletal health in children and adults. Study of inherited and acquired hypophosphatemic syndromes led to the discovery of fibroblast growth factor 23 (FGF23) as a potent regulator of phosphate and vitamin D metabolism, and advanced our understanding of the pathophysiology of mineral and bone disorder in chronic kidney disease (CKD-MBD). Here, we review a recently approved therapy for patients with X-linked hypophosphatemia (XLH) using a novel anti-FGF23 antibody, burosumab, and discuss the implications of such targeted therapy in CKD. RECENT FINDINGS In children and adults with XLH, burosumab treatment significantly increased renal tubular phosphate reabsorption and normalized serum phosphorus concentrations. Prolonged treatment with burosumab showed a favorable safety profile, improved healing of rickets in children, and fractures and pseudofractures in adults. FGF23 excess in CKD is independently associated with left ventricular hypertrophy and cardiovascular mortality. Research strategies to lower FGF23 in animal models of CKD are rapidly advancing and a question that remains to be answered is whether FGF23 blockade will offer a new targeted intervention for disordered mineral metabolism in CKD. SUMMARY Findings from recently concluded clinical trials in adults and children with XLH provide evidence for improved skeletal health with burosumab therapy with normalization of phosphate and vitamin D metabolism. Targeted anti-FGF23 antibody treatment of XLH has emerged as a novel therapeutic strategy to treat an inherited disorder of FGF23 excess.
Collapse
|
26
|
Kubota T, Fukumoto S, Cheong HI, Michigami T, Namba N, Ito N, Tokunaga S, Gibbs Y, Ozono K. Long-term outcomes for Asian patients with X-linked hypophosphataemia: rationale and design of the SUNFLOWER longitudinal, observational cohort study. BMJ Open 2020; 10:e036367. [PMID: 32601114 PMCID: PMC7328740 DOI: 10.1136/bmjopen-2019-036367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION X-linked hypophosphataemic rickets/osteomalacia (XLH) is a chronic, debilitating genetic disease characterised by skeletal abnormalities and growth disorder. The burden of XLH begins in childhood and continues throughout life. Conventional medical therapy with phosphate, active vitamin D and surgery do not address the underlying pathophysiology of the disease. While treatment during childhood may improve bone deformity and growth retardation, a large proportion of adult patients still fail to reach normal stature. Furthermore, adult patients with XLH report comorbidities associated with unresolved childhood disease, as well as newly developed disease-related complications and significantly impaired quality of life (QOL). Despite the multiple negative aspects of XLH, Asian consensus statements for diagnosis and management are lacking. METHODS AND ANALYSIS The Study of longitUdinal observatioN For patients with X-Linked hypOphosphataemic rickets/osteomalacia in collaboration With Asian partnERs study is a longitudinal observational cohort study of patients with XLH, designed to determine the medical characteristics and burdens (physical, emotional and financial) of this progressive disease and to evaluate the impact of treatment (including the use of burosumab) on clinical outcomes. The study was initiated in April 2018, and registration will remain open until 30 April 2022. The sample size planned for analyses is 160 patients, consisting of 100 patients in Japan and 60 patients in Korea. Up to 5 years of observation are planned per patient, from enrolment through to April 2023. Prospective and retrospective data will be collected to evaluate variables, including height/growth, rickets severity score, QOL, motor function and biomarkers for phosphate metabolism and bone turnover. ETHICS AND DISSEMINATION Ethics approval was obtained from the Ethics Committee of Osaka University, the Ethics Committee of Kyowa Kirin Co and by the Ethics Committee of each participating medical institution. Two interim analyses and associated publications are planned using retrospective and enrolment data at year 1 and results at year 3. TRIAL REGISTRATION NUMBERS NCT03745521; UMIN000031605.
Collapse
Affiliation(s)
- Takuo Kubota
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hae Il Cheong
- Department of Pediatric Nephrology, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Noriyuki Namba
- Department of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Shin Tokunaga
- Medical Affairs Department, Kyowa Kirin Co Ltd, Tokyo, Japan
| | - Yoshimi Gibbs
- Medical Affairs Department, Kyowa Kirin Co Ltd, Tokyo, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
27
|
Arango Sancho P. Complications of Phosphate and Vitamin D Treatment in X-Linked Hypophosphataemia. Adv Ther 2020; 37:105-112. [PMID: 32236871 DOI: 10.1007/s12325-019-01170-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 01/01/2023]
Abstract
Conventional treatment of X-linked hypophosphataemia (XLH) consists in the oral administration of phosphate plus calcitriol supplements. Although this therapy has reduced bone deformities and even achieved adequate patient growth, overtreatment or low adherence could lead to subsequent consequences that may compromise the efficacy of the therapy. Some of the complications associated with phosphate and vitamin D treatment are abdominal discomfort, diarrhoea, hypokalaemia, hyperparathyroidism, hypercalcaemia or hypercalciuria, nephrocalcinosis or nephrolithiasis, and ectopic calcifications. Therefore, constant multidisciplinary monitoring of patients with XLH is necessary to prevent the manifestation of these complications and to deal with them as soon as they appear. The main objective of this article is to review the main complications arising from conventional treatment of XLH and how to deal with them.
Collapse
Affiliation(s)
- Pedro Arango Sancho
- Servicio de Nefrología Pediátrica y Trasplante Renal, Hospital Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
28
|
Abstract
X-linked hypophosphataemia (XLH) is the most prevalent form of hereditary rickets characterized by an alteration of phosphate metabolism which frequently leads to the appearance of fractures, bone deformities and growth delay. Although the mechanism of growth impairment in patients with XLH still needs to be clarified, it is known that this alteration is not due to genetic or endocrine factors. A potential explanation for the impairment of growth in this disease is the alteration of the growth plate, a structure responsible for longitudinal growth of bones. Some of the findings in the growth plate of patients with XLH include atypical organization of chondrocytes due to low rates of proliferation and apoptosis and disturbance of chondrocyte hypertrophy, overactivation of the mitogen-activated protein kinase (MAPK) signalling pathway and upregulation of phosphorylated extracellular signal-regulated kinase (pERK). Conventional treatment of XLH (consisting of oral phosphate supplements and active vitamin D analogues) is often insufficient for the longitudinal growth of bone, but other strategies based on recombinant growth hormone or therapies targeting fibroblast growth factor 23 (FGF23) or its receptor, such as burosumab, have shown promising results. This article briefly describes the relationship between XLH and growth retardation, and how to address this alteration in patients with XLH.
Collapse
Affiliation(s)
- Fernando Santos Rodríguez
- Unidad de Nefrología Pediátrica, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
29
|
Rothenbuhler A, Schnabel D, Högler W, Linglart A. Diagnosis, treatment-monitoring and follow-up of children and adolescents with X-linked hypophosphatemia (XLH). Metabolism 2020; 103S:153892. [PMID: 30928313 DOI: 10.1016/j.metabol.2019.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022]
Abstract
Early diagnosis, optimal therapeutic management and regular follow up of children with X-linked hypophosphatemia (XLH) determine their long term outcomes and future quality of life. Biochemical screening of potentially affected newborns in familial cases and improving physician's knowledge on clinical signs, symptoms and biochemical characteristics of XLH for de novo cases should lead to earlier diagnosis and treatment initiation. The follow-up of children with XLH includes clinical, biochemical and radiological monitoring of treatment (efficacy and complications) and screening for XLH-related dental, neurosurgical, rheumatological, cardiovascular, renal and ENT complications. In 2018, the European Union approved the use of burosumab, a humanized monoclonal anti-FGF23 antibody, as an alternative therapy to conventional therapy (active vitamin D analogues and phosphate supplements) in growing children with XLH and insufficiently controlled disease. Diagnostic criteria of XLH and the principles of disease management with conventional treatment or with burosumab are reviewed in this paper.
Collapse
Affiliation(s)
- Anya Rothenbuhler
- APHP, Endocrinology and Diabetology for Children, Bicêtre Paris Sud Hospital, Le Kremlin-Bicêtre, France; APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, filière OSCAR, Paris, France; APHP, Platform of Expertise for Rare Disorders Paris-Sud, Bicêtre Paris Sud Hospital, Le Kremlin-Bicêtre, France.
| | - Dirk Schnabel
- Center for Chronic Sick Children, Pediatric Endocrinology, Charité, University Medicine Berlin, Germany
| | - Wolfgang Högler
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Department of Pediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Agnès Linglart
- APHP, Endocrinology and Diabetology for Children, Bicêtre Paris Sud Hospital, Le Kremlin-Bicêtre, France; APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, filière OSCAR, Paris, France; APHP, Platform of Expertise for Rare Disorders Paris-Sud, Bicêtre Paris Sud Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
30
|
Martín Ramos S, Gil-Calvo M, Roldán V, Castellano Martínez A, Santos F. Positive Response to One-Year Treatment With Burosumab in Pediatric Patients With X-Linked Hypophosphatemia. Front Pediatr 2020; 8:48. [PMID: 32133333 PMCID: PMC7040476 DOI: 10.3389/fped.2020.00048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
X-linked hypophosphatemia (XLH) causes significant burden in pediatric patients in spite of maintained treatment with phosphate supplements and vitamin D derivatives. Administration of burosumab has shown promising results in clinical trial but studies assessing its effect in the everyday practice are missing. With this aim, we analyzed the response to one-year treatment with burosumab, injected subcutaneously at 0.8 mg/kg every 2 weeks, in five children (three females) aged from 6 to 16 years, with genetically confirmed XLH. Patients were being treated with phosphate and vitamin D analogs until the beginning of burosumab treatment. In all children, burosumab administration led to normalization of serum phosphate in association with marked increase of tubular reabsorption of phosphate and reduction of elevated serum alkaline phosphatase levels. Baseline height of patients, from -3.56 to -0.46 SD, increased in the three prepubertal children (+0.84, +0.89, and +0.16 SD) during burosumab treatment. Growth improvement was associated with reduction in body mass index (-1.75, -1.47, and -0.17 SD, respectively), suggesting a salutary effect of burosumab on physical activity and body composition. Burosumab was well-tolerated, mild local pain at the injection site and transient and mild headache following the initial doses of burosumab being the only reported undesirable side effects. No patient exhibited hyperphosphatemia, progression of nephrocalcinosis, worsening of metabolic control or developed hyperparathyroidism. Mild elevation of serum PTH present at the beginning of treatment in one patient 4 was not modified by burosumab administration. These results indicate that in the clinical setting, beyond the strict conditions and follow-up of clinical trials, burosumab treatment for 1 year exerts positive effects in pediatric patients with XLH without major adverse events.
Collapse
Affiliation(s)
| | - Marta Gil-Calvo
- Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | | | | | - Fernando Santos
- Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
31
|
Abstract
Fibroblast growth factor 23 (FGF23), one of the endocrine fibroblast growth factors, is a principal regulator in the maintenance of serum phosphorus concentration. Binding to its cofactor αKlotho and a fibroblast growth factor receptor is essential for its activity. Its regulation and interaction with other factors in the bone-parathyroid-kidney axis is complex. FGF23 reduces serum phosphorus concentration through decreased reabsorption of phosphorus in the kidney and by decreasing 1,25 dihydroxyvitamin D (1,25(OH)2D) concentrations. Various FGF23-mediated disorders of renal phosphate wasting share similar clinical and biochemical features. The most common of these is X-linked hypophosphatemia (XLH). Additional disorders of FGF23 excess include autosomal dominant hypophosphatemic rickets, autosomal recessive hypophosphatemic rickets, fibrous dysplasia, and tumor-induced osteomalacia. Treatment is challenging, requiring careful monitoring and titration of dosages to optimize effectiveness and to balance side effects. Conventional therapy for XLH and other disorders of FGF23-mediated hypophosphatemia involves multiple daily doses of oral phosphate salts and active vitamin D analogs, such as calcitriol or alfacalcidol. Additional treatments may be used to help address side effects of conventional therapy such as thiazides to address hypercalciuria or nephrocalcinosis, and calcimimetics to manage hyperparathyroidism. The recent development and approval of an anti-FGF23 antibody, burosumab, for use in XLH provides a novel treatment option.
Collapse
Affiliation(s)
- Anisha Gohil
- Indiana University School of Medicine, Riley Hospital for Children, Fellow, Endocrinology and Diabetes, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202, USA, E-mail:
| | - Erik A Imel
- Indiana University School of Medicine, Riley Hospital for Children, Associate Professor of Medicine and Pediatrics, 1120 West Michigan Street, CL 459, Indianapolis, IN 46202, USA
| |
Collapse
|
32
|
Imel EA, Biggin A, Schindeler A, Munns CF. FGF23, Hypophosphatemia, and Emerging Treatments. JBMR Plus 2019; 3:e10190. [PMID: 31485552 PMCID: PMC6715782 DOI: 10.1002/jbm4.10190] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 01/03/2023] Open
Abstract
FGF23 is an important hormonal regulator of phosphate homeostasis. Together with its co-receptor Klotho, it modulates phosphate reabsorption and both 1α-hydroxylation and 24-hydroxylation in the renal proximal tubules. The most common FGF23-mediated hypophosphatemia is X-linked hypophosphatemia (XLH), caused by mutations in the PHEX gene. FGF23-mediated forms of hypophosphatemia are characterized by phosphaturia and low or low-normal calcitriol concentrations, and unlike nutritional rickets, these cannot be cured with nutritional vitamin D supplementation. Autosomal dominant and autosomal recessive forms of FGF23-mediated hypophosphatemias show a similar pathophysiology, despite a variety of different underlying genetic causes. An excess of FGF23 activity has also been associated with a number of other conditions causing hypophosphatemia, including tumor-induced osteomalacia, fibrous dysplasia of the bone, and cutaneous skeletal hypophosphatemia syndrome. Historically phosphate supplementation and therapy using analogs of highly active vitamin D (eg, calcitriol, alfacalcidol, paricalcitol, eldecalcitol) have been used to manage conditions involving hypophosphatemia; however, recently a neutralizing antibody for FGF23 (burosumab) has emerged as a promising treatment agent for FGF23-mediated disorders. This review discusses the progression of clinical trials for burosumab for the treatment of XLH and its recent availability for clinical use. Burosumab may have potential for treating other conditions associated with FGF23 overactivity, but these are not yet supported by trial data. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Erik A Imel
- Division of EndocrinologyIndiana University School of Medicine, Indianapolis, INUSA
| | - Andrew Biggin
- The University of Sydney Children's Hospital Westmead Clinical School, University of SydneySydneyAustralia
- Department of EndocrinologyThe Children's Hospital at WestmeadWestmeadAustralia
| | - Aaron Schindeler
- The University of Sydney Children's Hospital Westmead Clinical School, University of SydneySydneyAustralia
- Orthopaedic Research Unit, The Children's Hospital at WestmeadWestmeadAustralia
| | - Craig F Munns
- The University of Sydney Children's Hospital Westmead Clinical School, University of SydneySydneyAustralia
- Department of EndocrinologyThe Children's Hospital at WestmeadWestmeadAustralia
| |
Collapse
|
33
|
Haffner D, Emma F, Eastwood DM, Biosse Duplan M, Bacchetta J, Schnabel D, Wicart P, Bockenhauer D, Santos F, Levtchenko E, Harvengt P, Kirchhoff M, Di Rocco F, Chaussain C, Brandi ML, Savendahl L, Briot K, Kamenicky P, Rejnmark L, Linglart A. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol 2019; 15:435-455. [PMID: 31068690 PMCID: PMC7136170 DOI: 10.1038/s41581-019-0152-5] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
X-linked hypophosphataemia (XLH) is the most common cause of inherited phosphate wasting and is associated with severe complications such as rickets, lower limb deformities, pain, poor mineralization of the teeth and disproportionate short stature in children as well as hyperparathyroidism, osteomalacia, enthesopathies, osteoarthritis and pseudofractures in adults. The characteristics and severity of XLH vary between patients. Because of its rarity, the diagnosis and specific treatment of XLH are frequently delayed, which has a detrimental effect on patient outcomes. In this Evidence-Based Guideline, we recommend that the diagnosis of XLH is based on signs of rickets and/or osteomalacia in association with hypophosphataemia and renal phosphate wasting in the absence of vitamin D or calcium deficiency. Whenever possible, the diagnosis should be confirmed by molecular genetic analysis or measurement of levels of fibroblast growth factor 23 (FGF23) before treatment. Owing to the multisystemic nature of the disease, patients should be seen regularly by multidisciplinary teams organized by a metabolic bone disease expert. In this article, we summarize the current evidence and provide recommendations on features of the disease, including new treatment modalities, to improve knowledge and provide guidance for diagnosis and multidisciplinary care.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany.
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany.
| | - Francesco Emma
- Department of Pediatric Subspecialties, Division of Nephrology, Children's Hospital Bambino Gesù - IRCCS, Rome, Italy
| | - Deborah M Eastwood
- Department of Orthopaedics, Great Ormond St Hospital for Children, Orthopaedics, London, UK
- The Catterall Unit Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Martin Biosse Duplan
- Dental School, Université Paris Descartes Sorbonne Paris Cité, Montrouge, France
- APHP, Department of Odontology, Bretonneau Hospital, Paris, France
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
| | - Justine Bacchetta
- Department of Pediatric Nephrology, Rheumatology and Dermatology, University Children's Hospital, Lyon, France
| | - Dirk Schnabel
- Center for Chronic Sick Children, Pediatric Endocrinology, Charitè, University Medicine, Berlin, Germany
| | - Philippe Wicart
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
- APHP, Department of Pediatric Orthopedic Surgery, Necker - Enfants Malades University Hospital, Paris, France
- Paris Descartes University, Paris, France
| | - Detlef Bockenhauer
- University College London, Centre for Nephrology and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fernando Santos
- Hospital Universitario Central de Asturias (HUCA), University of Oviedo, Oviedo, Spain
| | - Elena Levtchenko
- Department of Pediatric Nephrology and Development and Regeneration, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Pol Harvengt
- RVRH-XLH, French Patient Association for XLH, Suresnes, France
| | - Martha Kirchhoff
- Phosphatdiabetes e.V., German Patient Association for XLH, Lippstadt, Germany
| | - Federico Di Rocco
- Pediatric Neurosurgery, Hôpital Femme Mère Enfant, Centre de Référence Craniosténoses, Université de Lyon, Lyon, France
| | - Catherine Chaussain
- Dental School, Université Paris Descartes Sorbonne Paris Cité, Montrouge, France
- APHP, Department of Odontology, Bretonneau Hospital, Paris, France
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
| | - Maria Louisa Brandi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Lars Savendahl
- Pediatric Endocrinology Unit, Karolinska University Hospital, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Karine Briot
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
- Paris Descartes University, Paris, France
- APHP, Department of Rheumatology, Cochin Hospital, Paris, France
- INSERM UMR-1153, Paris, France
| | - Peter Kamenicky
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
- APHP, Department of Endocrinology and Reproductive Diseases, Bicêtre Paris-Sud Hospital, Paris, France
- INSERM U1185, Bicêtre Paris-Sud, Paris-Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Agnès Linglart
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
- INSERM U1185, Bicêtre Paris-Sud, Paris-Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
- APHP, Platform of Expertise of Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris-Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Endocrinology and Diabetes for Children, Bicêtre Paris-Sud Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
34
|
Imel EA, Glorieux FH, Whyte MP, Munns CF, Ward LM, Nilsson O, Simmons JH, Padidela R, Namba N, Cheong HI, Pitukcheewanont P, Sochett E, Högler W, Muroya K, Tanaka H, Gottesman GS, Biggin A, Perwad F, Mao M, Chen CY, Skrinar A, San Martin J, Portale AA. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet 2019; 393:2416-2427. [PMID: 31104833 PMCID: PMC7179969 DOI: 10.1016/s0140-6736(19)30654-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/24/2019] [Accepted: 03/06/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND X-linked hypophosphataemia in children is characterised by elevated serum concentrations of fibroblast growth factor 23 (FGF23), hypophosphataemia, rickets, lower extremity bowing, and growth impairment. We compared the efficacy and safety of continuing conventional therapy, consisting of oral phosphate and active vitamin D, versus switching to burosumab, a fully human monoclonal antibody against FGF23, in paediatric X-linked hypophosphataemia. METHODS In this randomised, active-controlled, open-label, phase 3 trial at 16 clinical sites, we enrolled children with X-linked hypophosphataemia aged 1-12 years. Key eligibility criteria were a total Thacher rickets severity score of at least 2·0, fasting serum phosphorus lower than 0·97 mmol/L (3·0 mg/dL), confirmed PHEX (phosphate-regulating endopeptidase homolog, X-linked) mutation or variant of unknown significance in the patient or a family member with appropriate X-linked dominant inheritance, and receipt of conventional therapy for at least 6 consecutive months for children younger than 3 years or at least 12 consecutive months for children older than 3 years. Eligible patients were randomly assigned (1:1) to receive either subcutaneous burosumab starting at 0·8 mg/kg every 2 weeks (burosumab group) or conventional therapy prescribed by investigators (conventional therapy group). Both interventions lasted 64 weeks. The primary endpoint was change in rickets severity at week 40, assessed by the Radiographic Global Impression of Change global score. All patients who received at least one dose of treatment were included in the primary and safety analyses. The trial is registered with ClinicalTrials.gov, number NCT02915705. FINDINGS Recruitment took place between Aug 3, 2016, and May 8, 2017. Of 122 patients assessed, 61 were enrolled. Of these, 32 (18 girls, 14 boys) were randomly assigned to continue receiving conventional therapy and 29 (16 girls, 13 boys) to receive burosumab. For the primary endpoint at week 40, patients in the burosumab group had significantly greater improvement in Radiographic Global Impression of Change global score than did patients in the conventional therapy group (least squares mean +1·9 [SE 0·1] with burosumab vs +0·8 [0·1] with conventional therapy; difference 1·1, 95% CI 0·8-1·5; p<0·0001). Treatment-emergent adverse events considered possibly, probably, or definitely related to treatment by the investigator occurred more frequently with burosumab (17 [59%] of 29 patients in the burosumab group vs seven [22%] of 32 patients in the conventional therapy group). Three serious adverse events occurred in each group, all considered unrelated to treatment and resolved. INTERPRETATION Significantly greater clinical improvements were shown in rickets severity, growth, and biochemistries among children with X-linked hypophosphataemia treated with burosumab compared with those continuing conventional therapy. FUNDING Ultragenyx Pharmaceutical and Kyowa Kirin International.
Collapse
Affiliation(s)
- Erik A Imel
- Department of Medicine and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Francis H Glorieux
- Shriners Hospital for Children - Canada, McGill University, Montreal, QC, Canada
| | - Michael P Whyte
- Shriners Hospitals for Children - St Louis, St Louis, MO, USA
| | - Craig F Munns
- The University of Sydney Children's Hospital Westmead Clinical School, The Children's Hospital at Westmead, Westmead, NSW, Australia; Department of Endocrinology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Leanne M Ward
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ola Nilsson
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Jill H Simmons
- Department of Pediatrics, Division of Endocrinology and Diabetes, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Raja Padidela
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | - Noriyuki Namba
- Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hae Il Cheong
- Seoul National University Children's Hospital, Seoul, Korea
| | - Pisit Pitukcheewanont
- Center of Endocrinology, Diabetes and Metabolism, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Etienne Sochett
- Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Koji Muroya
- Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroyuki Tanaka
- Okayama Saiseikai General Hospital Outpatient Center, Okayama, Japan
| | | | - Andrew Biggin
- The University of Sydney Children's Hospital Westmead Clinical School, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Farzana Perwad
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Meng Mao
- Ultragenyx Pharmaceutical, Novato, CA, USA
| | | | | | | | - Anthony A Portale
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
35
|
Fuente R, Gil-Peña H, Claramunt-Taberner D, Hernández-Frías O, Fernández-Iglesias Á, Alonso-Durán L, Rodríguez-Rubio E, Hermida-Prado F, Anes-González G, Rubio-Aliaga I, Wagner C, Santos F. MAPK inhibition and growth hormone: a promising therapy in XLH. FASEB J 2019; 33:8349-8362. [DOI: 10.1096/fj.201802007r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rocío Fuente
- Division of PediatricsDepartment of MedicineFaculty of Medicine and Health SciencesUniversity of Oviedo Oviedo Spain
- Department of Developmental BiologyHarvard School of Dental MedicineHarvard University Boston Massachusetts USA
| | - Helena Gil-Peña
- Department of PediatricsHospital Universitario Central de Asturias Oviedo Spain
| | - Débora Claramunt-Taberner
- Division of PediatricsDepartment of MedicineFaculty of Medicine and Health SciencesUniversity of Oviedo Oviedo Spain
| | - Olaya Hernández-Frías
- Division of PediatricsDepartment of MedicineFaculty of Medicine and Health SciencesUniversity of Oviedo Oviedo Spain
| | - Ángela Fernández-Iglesias
- Division of PediatricsDepartment of MedicineFaculty of Medicine and Health SciencesUniversity of Oviedo Oviedo Spain
| | - Laura Alonso-Durán
- Division of PediatricsDepartment of MedicineFaculty of Medicine and Health SciencesUniversity of Oviedo Oviedo Spain
| | - Enrique Rodríguez-Rubio
- Division of PediatricsDepartment of MedicineFaculty of Medicine and Health SciencesUniversity of Oviedo Oviedo Spain
| | - Francisco Hermida-Prado
- Department of OtorhinolaryngologyHospital Universitario Central de AsturiasInstituto Universitario de Oncología del Principado de Asturias Oviedo Spain
| | | | - Isabel Rubio-Aliaga
- Kidney and Acid-Base Physiology GroupInstitute of PhysiologyUniversity of Zurich Zurich Switzerland
| | - Carsten Wagner
- Kidney and Acid-Base Physiology GroupInstitute of PhysiologyUniversity of Zurich Zurich Switzerland
| | - Fernando Santos
- Division of PediatricsDepartment of MedicineFaculty of Medicine and Health SciencesUniversity of Oviedo Oviedo Spain
- Department of PediatricsHospital Universitario Central de Asturias Oviedo Spain
| |
Collapse
|
36
|
Zhang C, Zhao Z, Sun Y, Xu L, JiaJue R, Cui L, Pang Q, Jiang Y, Li M, Wang O, He X, He S, Nie M, Xing X, Meng X, Zhou X, Yan L, Kaplan JM, Insogna KL, Xia W. Clinical and genetic analysis in a large Chinese cohort of patients with X-linked hypophosphatemia. Bone 2019; 121:212-220. [PMID: 30682568 DOI: 10.1016/j.bone.2019.01.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/11/2019] [Accepted: 01/20/2019] [Indexed: 01/09/2023]
Abstract
X-linked Hypophosphatemia (XLH) is caused by loss of function mutations in the PHEX gene. Given the recent availability of a new therapy for XLH, a retrospective analysis of the most recent 261 Chinese patients with XLH evaluated at Peking Union Medical College Hospital was conducted. Clinical, biochemical, radiographic studies, as well as genetic analyses, including Sanger sequencing for point mutations and Multiplex Ligation-dependent Probe Amplification (MLPA) to detect large deletions/duplications were employed. Based on the structure of Neprilysin (NEP), a member of M13 family that includes PHEX, a three-dimensional (3D) model of PHEX was constructed, missense and nonsense mutations were positioned on the predicted structure to visualize relative positions of these two types of variants. Sex differences and genotype-phenotype correlations were also undertaken. Genetic analyses identified 166 PHEX mutations in 261 XLH patients. One hundred and eleven of the 166 mutations were unreported. Four mutational 'hot-spots' were identified in this cohort (P534L, G579R, R747X, c.1645+1 G>A). Missense mutations, but not nonsense mutations, clustered in the two putative lobes of the PHEX protein, suggesting these are functionally important regions of the molecule. Circulating levels of intact FGF23 were significantly elevated (median level 101.9 pg/mL; reference range 16.1-42.2 pg/mL). No significant sex differences, as well as no phenotypic differences were identified between patients with putative truncating and non-truncating PHEX mutations. However, patients with N-terminal PHEX mutations had an earlier age of onset of disease (P = 0.015) and higher iFGF23 levels (P = 0.045) as compared to those with C-terminal mutations. These data provide a comprehensive characterization of the largest cohort of patients with XLH reported to date from China, which will help in evaluating the applicability of emerging therapies for this disease in this ethnic group.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Zhen Zhao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China; Department of Geriatrics, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing 100050, China
| | - Yue Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Lijun Xu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Ruizhi JiaJue
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Lijia Cui
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Qianqian Pang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Xiaodong He
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China; Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Shuli He
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Min Nie
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Xunwu Meng
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Xueying Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Lina Yan
- Department of Endocrinology, Baogang Hospital, Baotou, Inner Mongolia 014000, China
| | - Jared M Kaplan
- Department of Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT, USA
| | - Karl L Insogna
- Department of Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT, USA
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
37
|
Pettifor JM. Hope for patients with X-linked hypophosphataemia? Lancet Diabetes Endocrinol 2019; 7:163-165. [PMID: 30638857 DOI: 10.1016/s2213-8587(19)30004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 11/18/2022]
Affiliation(s)
- John M Pettifor
- SAMRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
38
|
Abstract
Hypophosphatemic rickets, mostly of the X-linked dominant form caused by pathogenic variants of the PHEX gene, poses therapeutic challenges with consequences for growth and bone development and portends a high risk of fractions and poor bone healing, dental problems and nephrolithiasis/nephrocalcinosis. Conventional treatment consists of PO4 supplements and calcitriol requiring monitoring for treatment-emergent adverse effects. FGF23 measurement, where available, has implications for the differential diagnosis of hypophosphatemia syndromes and, potentially, treatment monitoring. Newer therapeutic modalities include calcium sensing receptor modulation (cinacalcet) and biological molecules targeting FGF23 or its receptors. Their long-term effects must be compared with those of conventional treatments.
Collapse
Affiliation(s)
- Martin Bitzan
- Department of Pediatrics, The Montreal Children's Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Room B RC.6164, Montreal, Quebec H4A 3J1, Canada.
| | - Paul R Goodyer
- The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Room EM1.2232, Montreal, Quebec H4A3J1, Canada
| |
Collapse
|
39
|
Fuente R, Gil-Peña H, Claramunt-Taberner D, Hernández-Frías O, Fernández-Iglesias Á, Hermida-Prado F, Anes-González G, Rubio-Aliaga I, Lopez JM, Santos F. Marked alterations in the structure, dynamics and maturation of growth plate likely explain growth retardation and bone deformities of young Hyp mice. Bone 2018; 116:187-195. [PMID: 30096468 DOI: 10.1016/j.bone.2018.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022]
Abstract
Mechanisms underlying growth impairment and bone deformities in X-linked hypophosphatemia are not fully understood. We here describe marked alterations in the structure, dynamics and maturation of growth plate in growth-retarded young Hyp mice, in comparison with wild type mice. Hyp mice exhibited reduced proliferation and apoptosis rates of chondrocytes as well as severe disturbance in the process of chondrocyte hypertrophy disclosed by abnormal expression of proteins likely involved in cell enlargement, irregular chondro-osseous junction and disordered bone trabecular pattern and vascular invasion in the primary spongiosa. (Hyp mice had elevated circulating FGF23 levels and over activation of ERK in the growth plate.) All these findings provide a basis to explain growth impairment and metaphyseal deformities in XLH. Hyp mice were compared with wild type mice serum parameters, nutritional status and growth impairment by evaluation of growth cartilage and bone structures. Hyp mice presented hyphosphatemia with high FGF23 levels. Weight gain and longitudinal growth resulted reduced in them with numerous skeletal abnormalities at cortical bone. It was also observed aberrant trabecular organization at primary spongiosa and atypical growth plate organization with abnormal proliferation and hypertrophy of chondrocytes and diminished apoptosis and vascular invasion processes. The present results show for the first time the abnormalities present in the growth plate of young Hyp mice and suggest that both cartilage and bone alterations may be involved in the growth impairment and the long bone deformities of XLH.
Collapse
Affiliation(s)
- Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain; Harvard School of Dental Medicine, Developmental Biology, Harvard University, Boston, MA, USA
| | - Helena Gil-Peña
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain.
| | - Débora Claramunt-Taberner
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - Olaya Hernández-Frías
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - Ángela Fernández-Iglesias
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngologist, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Gonzalo Anes-González
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Isabel Rubio-Aliaga
- University of Zurich, Institute of Physiology, Kidney and Acid-base Physiology Group, Zurich, Switzerland
| | - Jose Manuel Lopez
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - Fernando Santos
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain; Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| |
Collapse
|
40
|
Imel EA, White KE. Pharmacological management of X-linked hypophosphataemia. Br J Clin Pharmacol 2018; 85:1188-1198. [PMID: 30207609 DOI: 10.1111/bcp.13763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022] Open
Abstract
The most common heritable disorder of renal phosphate wasting, X-linked hypophosphataemia (XLH), was discovered to be caused by inactivating mutations in the phosphate regulating gene with homology to endopeptidases on the X-chromosome (PHEX) gene in 1995. Although the exact molecular mechanisms by which PHEX mutations cause disturbed phosphate handling in XLH remain unknown, focus for novel therapies has more recently been based upon the finding that the bone-produced phosphaturic hormone fibroblast growth factor-23 is elevated in XLH patient plasma. Previous treatment strategies for XLH were based upon phosphate repletion plus active vitamin D analogues, which are difficult to manage, fail to address the primary pathogenesis of the disease, and can have deleterious side effects. A novel therapy for XLH directly targeting fibroblast growth factor-23 via a humanized monoclonal antibody (burosumab-twza/CRYSVITA, henceforth referred to just as burosumab) has emerged as an effective, and recently approved, pharmacological treatment for both children and adults. This review will provide an overview of the clinical manifestations of XLH, the molecular pathophysiology, and summarize its current treatment.
Collapse
Affiliation(s)
- Erik A Imel
- Department of Medicine, Division of Endocrinology and Metabolism, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pediatrics, Section of Endocrinology and Diabetology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kenneth E White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
41
|
Abstract
Rickets refers to deficient mineralization at the growth plate and is usually associated with abnormal serum calcium and/or phosphate. There are several subtypes of rickets, including hypophosphatemic rickets (vitamin-D-resistant rickets secondary to renal phosphate wasting), vitamin D-dependent rickets (defects of vitamin D metabolism) and nutritional rickets (caused by dietary deficiency of vitamin D, and/or calcium, and/or phosphate). Most rickets manifest as bone deformities, bone pain, and impaired growth velocity. Diagnosis of rickets is established through the medical history, physical examination, biochemical tests and radiographs. It is of crucial importance to determine the cause of rickets, including the molecular characterization in case of vitamin D resistant rickets, and initiate rapidly the appropriate therapy. In this review, we describe the different causes and therapies of genetic and nutritional rickets, supported by the recent progress in genetics and development of novel molecules such as anti-FGF23 antibody.
Collapse
Affiliation(s)
- A S Lambert
- APHP, Department of Pediatric Endocrinology and Diabetology for Children, Bicêtre Paris-Sud, Le Kremlin-Bicêtre, France; APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Filière OSCAR and Plateforme D'Expertise Maladies Rares Paris-Sud, Bicêtre Paris-Sud, Le Kremlin Bicêtre, France.
| | - A Linglart
- APHP, Department of Pediatric Endocrinology and Diabetology for Children, Bicêtre Paris-Sud, Le Kremlin-Bicêtre, France; APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Filière OSCAR and Plateforme D'Expertise Maladies Rares Paris-Sud, Bicêtre Paris-Sud, Le Kremlin Bicêtre, France
| |
Collapse
|
42
|
Carpenter TO, Whyte MP, Imel EA, Boot AM, Högler W, Linglart A, Padidela R, Van't Hoff W, Mao M, Chen CY, Skrinar A, Kakkis E, San Martin J, Portale AA. Burosumab Therapy in Children with X-Linked Hypophosphatemia. N Engl J Med 2018; 378:1987-1998. [PMID: 29791829 DOI: 10.1056/nejmoa1714641] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND X-linked hypophosphatemia is characterized by increased secretion of fibroblast growth factor 23 (FGF-23), which leads to hypophosphatemia and consequently rickets, osteomalacia, and skeletal deformities. We investigated burosumab, a monoclonal antibody that targets FGF-23, in patients with X-linked hypophosphatemia. METHODS In an open-label, phase 2 trial, we randomly assigned 52 children with X-linked hypophosphatemia, in a 1:1 ratio, to receive subcutaneous burosumab either every 2 weeks or every 4 weeks; the dose was adjusted to achieve a serum phosphorus level at the low end of the normal range. The primary end point was the change from baseline to weeks 40 and 64 in the Thacher rickets severity total score (ranging from 0 to 10, with higher scores indicating greater disease severity). In addition, the Radiographic Global Impression of Change was used to evaluate rachitic changes from baseline to week 40 and to week 64. Additional end points were changes in pharmacodynamic markers, linear growth, physical ability, and patient-reported outcomes and the incidence of adverse events. RESULTS The mean Thacher rickets severity total score decreased from 1.9 at baseline to 0.8 at week 40 with every-2-week dosing and from 1.7 at baseline to 1.1 at week 40 with every-4-week dosing (P<0.001 for both comparisons); these improvements persisted at week 64. The mean serum phosphorus level increased after the first dose in both groups, and more than half the patients in both groups had levels within the normal range (3.2 to 6.1 mg per deciliter [1.0 to 2.0 mmol per liter]) by week 6. Stable serum phosphorus levels were maintained through week 64 with every-2-week dosing. Renal tubular phosphate reabsorption increased from baseline in both groups, with an overall mean increase of 0.98 mg per deciliter (0.32 mmol per liter). The mean dose of burosumab at week 40 was 0.98 mg per kilogram of body weight with every-2-week dosing and 1.50 mg per kilogram with every-4-week dosing. Across both groups, the mean serum alkaline phosphatase level decreased from 459 U per liter at baseline to 369 U per liter at week 64. The mean standing-height z score increased in both groups, with greater improvement seen at all time points with every-2-week dosing (an increase from baseline of 0.19 at week 64) than with every-4-week dosing (an increase from baseline of 0.12 at week 64). Physical ability improved and pain decreased. Nearly all the adverse events were mild or moderate in severity. CONCLUSIONS In children with X-linked hypophosphatemia, treatment with burosumab improved renal tubular phosphate reabsorption, serum phosphorus levels, linear growth, and physical function and reduced pain and the severity of rickets. (Funded by Ultragenyx Pharmaceutical and Kyowa Hakko Kirin; ClinicalTrials.gov number, NCT02163577 ; EudraCT number, 2014-000406-35 ).
Collapse
Affiliation(s)
- Thomas O Carpenter
- From Yale University School of Medicine, New Haven, CT (T.O.C.); Shriners Hospital for Children and Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis (M.P.W.); Indiana University School of Medicine, Indianapolis (E.A.I.); University of Groningen, Groningen, the Netherlands (A.M.B.); Birmingham Children's Hospital, Birmingham (W. Högler), Royal Manchester Children's Hospital, Manchester (R.P.), and Great Ormond Street Hospital, London (W. van't Hoff) - all in the United Kingdom; Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Paris (A.L.); and Ultragenyx Pharmaceutical, Novato (M.M., C.-Y.C., A.S., E.K., J.S.M.), and University of California at San Francisco, San Francisco (A.A.P.) - both in California
| | - Michael P Whyte
- From Yale University School of Medicine, New Haven, CT (T.O.C.); Shriners Hospital for Children and Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis (M.P.W.); Indiana University School of Medicine, Indianapolis (E.A.I.); University of Groningen, Groningen, the Netherlands (A.M.B.); Birmingham Children's Hospital, Birmingham (W. Högler), Royal Manchester Children's Hospital, Manchester (R.P.), and Great Ormond Street Hospital, London (W. van't Hoff) - all in the United Kingdom; Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Paris (A.L.); and Ultragenyx Pharmaceutical, Novato (M.M., C.-Y.C., A.S., E.K., J.S.M.), and University of California at San Francisco, San Francisco (A.A.P.) - both in California
| | - Erik A Imel
- From Yale University School of Medicine, New Haven, CT (T.O.C.); Shriners Hospital for Children and Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis (M.P.W.); Indiana University School of Medicine, Indianapolis (E.A.I.); University of Groningen, Groningen, the Netherlands (A.M.B.); Birmingham Children's Hospital, Birmingham (W. Högler), Royal Manchester Children's Hospital, Manchester (R.P.), and Great Ormond Street Hospital, London (W. van't Hoff) - all in the United Kingdom; Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Paris (A.L.); and Ultragenyx Pharmaceutical, Novato (M.M., C.-Y.C., A.S., E.K., J.S.M.), and University of California at San Francisco, San Francisco (A.A.P.) - both in California
| | - Annemieke M Boot
- From Yale University School of Medicine, New Haven, CT (T.O.C.); Shriners Hospital for Children and Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis (M.P.W.); Indiana University School of Medicine, Indianapolis (E.A.I.); University of Groningen, Groningen, the Netherlands (A.M.B.); Birmingham Children's Hospital, Birmingham (W. Högler), Royal Manchester Children's Hospital, Manchester (R.P.), and Great Ormond Street Hospital, London (W. van't Hoff) - all in the United Kingdom; Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Paris (A.L.); and Ultragenyx Pharmaceutical, Novato (M.M., C.-Y.C., A.S., E.K., J.S.M.), and University of California at San Francisco, San Francisco (A.A.P.) - both in California
| | - Wolfgang Högler
- From Yale University School of Medicine, New Haven, CT (T.O.C.); Shriners Hospital for Children and Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis (M.P.W.); Indiana University School of Medicine, Indianapolis (E.A.I.); University of Groningen, Groningen, the Netherlands (A.M.B.); Birmingham Children's Hospital, Birmingham (W. Högler), Royal Manchester Children's Hospital, Manchester (R.P.), and Great Ormond Street Hospital, London (W. van't Hoff) - all in the United Kingdom; Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Paris (A.L.); and Ultragenyx Pharmaceutical, Novato (M.M., C.-Y.C., A.S., E.K., J.S.M.), and University of California at San Francisco, San Francisco (A.A.P.) - both in California
| | - Agnès Linglart
- From Yale University School of Medicine, New Haven, CT (T.O.C.); Shriners Hospital for Children and Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis (M.P.W.); Indiana University School of Medicine, Indianapolis (E.A.I.); University of Groningen, Groningen, the Netherlands (A.M.B.); Birmingham Children's Hospital, Birmingham (W. Högler), Royal Manchester Children's Hospital, Manchester (R.P.), and Great Ormond Street Hospital, London (W. van't Hoff) - all in the United Kingdom; Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Paris (A.L.); and Ultragenyx Pharmaceutical, Novato (M.M., C.-Y.C., A.S., E.K., J.S.M.), and University of California at San Francisco, San Francisco (A.A.P.) - both in California
| | - Raja Padidela
- From Yale University School of Medicine, New Haven, CT (T.O.C.); Shriners Hospital for Children and Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis (M.P.W.); Indiana University School of Medicine, Indianapolis (E.A.I.); University of Groningen, Groningen, the Netherlands (A.M.B.); Birmingham Children's Hospital, Birmingham (W. Högler), Royal Manchester Children's Hospital, Manchester (R.P.), and Great Ormond Street Hospital, London (W. van't Hoff) - all in the United Kingdom; Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Paris (A.L.); and Ultragenyx Pharmaceutical, Novato (M.M., C.-Y.C., A.S., E.K., J.S.M.), and University of California at San Francisco, San Francisco (A.A.P.) - both in California
| | - William Van't Hoff
- From Yale University School of Medicine, New Haven, CT (T.O.C.); Shriners Hospital for Children and Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis (M.P.W.); Indiana University School of Medicine, Indianapolis (E.A.I.); University of Groningen, Groningen, the Netherlands (A.M.B.); Birmingham Children's Hospital, Birmingham (W. Högler), Royal Manchester Children's Hospital, Manchester (R.P.), and Great Ormond Street Hospital, London (W. van't Hoff) - all in the United Kingdom; Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Paris (A.L.); and Ultragenyx Pharmaceutical, Novato (M.M., C.-Y.C., A.S., E.K., J.S.M.), and University of California at San Francisco, San Francisco (A.A.P.) - both in California
| | - Meng Mao
- From Yale University School of Medicine, New Haven, CT (T.O.C.); Shriners Hospital for Children and Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis (M.P.W.); Indiana University School of Medicine, Indianapolis (E.A.I.); University of Groningen, Groningen, the Netherlands (A.M.B.); Birmingham Children's Hospital, Birmingham (W. Högler), Royal Manchester Children's Hospital, Manchester (R.P.), and Great Ormond Street Hospital, London (W. van't Hoff) - all in the United Kingdom; Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Paris (A.L.); and Ultragenyx Pharmaceutical, Novato (M.M., C.-Y.C., A.S., E.K., J.S.M.), and University of California at San Francisco, San Francisco (A.A.P.) - both in California
| | - Chao-Yin Chen
- From Yale University School of Medicine, New Haven, CT (T.O.C.); Shriners Hospital for Children and Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis (M.P.W.); Indiana University School of Medicine, Indianapolis (E.A.I.); University of Groningen, Groningen, the Netherlands (A.M.B.); Birmingham Children's Hospital, Birmingham (W. Högler), Royal Manchester Children's Hospital, Manchester (R.P.), and Great Ormond Street Hospital, London (W. van't Hoff) - all in the United Kingdom; Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Paris (A.L.); and Ultragenyx Pharmaceutical, Novato (M.M., C.-Y.C., A.S., E.K., J.S.M.), and University of California at San Francisco, San Francisco (A.A.P.) - both in California
| | - Alison Skrinar
- From Yale University School of Medicine, New Haven, CT (T.O.C.); Shriners Hospital for Children and Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis (M.P.W.); Indiana University School of Medicine, Indianapolis (E.A.I.); University of Groningen, Groningen, the Netherlands (A.M.B.); Birmingham Children's Hospital, Birmingham (W. Högler), Royal Manchester Children's Hospital, Manchester (R.P.), and Great Ormond Street Hospital, London (W. van't Hoff) - all in the United Kingdom; Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Paris (A.L.); and Ultragenyx Pharmaceutical, Novato (M.M., C.-Y.C., A.S., E.K., J.S.M.), and University of California at San Francisco, San Francisco (A.A.P.) - both in California
| | - Emil Kakkis
- From Yale University School of Medicine, New Haven, CT (T.O.C.); Shriners Hospital for Children and Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis (M.P.W.); Indiana University School of Medicine, Indianapolis (E.A.I.); University of Groningen, Groningen, the Netherlands (A.M.B.); Birmingham Children's Hospital, Birmingham (W. Högler), Royal Manchester Children's Hospital, Manchester (R.P.), and Great Ormond Street Hospital, London (W. van't Hoff) - all in the United Kingdom; Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Paris (A.L.); and Ultragenyx Pharmaceutical, Novato (M.M., C.-Y.C., A.S., E.K., J.S.M.), and University of California at San Francisco, San Francisco (A.A.P.) - both in California
| | - Javier San Martin
- From Yale University School of Medicine, New Haven, CT (T.O.C.); Shriners Hospital for Children and Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis (M.P.W.); Indiana University School of Medicine, Indianapolis (E.A.I.); University of Groningen, Groningen, the Netherlands (A.M.B.); Birmingham Children's Hospital, Birmingham (W. Högler), Royal Manchester Children's Hospital, Manchester (R.P.), and Great Ormond Street Hospital, London (W. van't Hoff) - all in the United Kingdom; Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Paris (A.L.); and Ultragenyx Pharmaceutical, Novato (M.M., C.-Y.C., A.S., E.K., J.S.M.), and University of California at San Francisco, San Francisco (A.A.P.) - both in California
| | - Anthony A Portale
- From Yale University School of Medicine, New Haven, CT (T.O.C.); Shriners Hospital for Children and Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis (M.P.W.); Indiana University School of Medicine, Indianapolis (E.A.I.); University of Groningen, Groningen, the Netherlands (A.M.B.); Birmingham Children's Hospital, Birmingham (W. Högler), Royal Manchester Children's Hospital, Manchester (R.P.), and Great Ormond Street Hospital, London (W. van't Hoff) - all in the United Kingdom; Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Paris (A.L.); and Ultragenyx Pharmaceutical, Novato (M.M., C.-Y.C., A.S., E.K., J.S.M.), and University of California at San Francisco, San Francisco (A.A.P.) - both in California
| |
Collapse
|
43
|
Meyerhoff N, Haffner D, Staude H, Wühl E, Marx M, Beetz R, Querfeld U, Holder M, Billing H, Rabl W, Schröder C, Hiort O, Brämswig JH, Richter-Unruh A, Schnabel D, Živičnjak M. Effects of growth hormone treatment on adult height in severely short children with X-linked hypophosphatemic rickets. Pediatr Nephrol 2018; 33:447-456. [PMID: 29058153 DOI: 10.1007/s00467-017-3820-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/30/2017] [Accepted: 09/17/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND We recently showed that a 3-year growth hormone (GH) treatment improves linear growth in severely short children with X-linked hypophosphatemic rickets (XLH). It is unknown if GH therapy increases adult height in XLH patients. METHODS We carried out a follow-up analysis of a randomized controlled open-label GH study in short prepubertal children with XLH on phosphate and active vitamin D treatment. The changes in SD scores (SDS) of height, sitting height, leg and arm length, and sitting height index (i.e., the ratio between sitting height and height) were analyzed in 11 out of 16 patients followed-up until adult height. RESULTS At baseline, XLH patients showed disproportionately short stature with reduced standardized height (-3.2 ± 0.6), sitting height (-1.7 ± 0.6), leg (-3.7 ± 0.7) and arm (-2.5 ± 0.8) length, and markedly elevated sitting height index (3.3 ± 0.6; each p < 0.01 versus healthy children). In GH-treated patients, adult height, sitting height, leg length, and arm length exceeded baseline values by 0.7 SDS, 1.7 SDS, 0.7 SDS, and 1.2 SDS respectively, although this was only significant for sitting height. In controls, no significant changes in linear body dimensions were noted. Adult height did not statistically differ between groups (-2.4 ± 0.7 vs -3.3 ± 1.2, p = 0.082). GH did not exaggerate body disproportion. CONCLUSIONS Growth hormone treatment did not significantly increase adult height in this group of short children with XLH, which may be at least partly due to the small number of patients included in our study.
Collapse
Affiliation(s)
- Nadine Meyerhoff
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Hagen Staude
- University Children's Hospital Rostock, Rostock, Germany
| | - Elke Wühl
- University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Michaela Marx
- University Children's Hospital Erlangen, Erlangen, Germany
| | - Rolf Beetz
- University Children's Hospital Mainz, Mainz, Germany
| | - Uwe Querfeld
- Department of Pediatric Nephrology, University Children's Hospital, Charité, Berlin, Germany
| | - Martin Holder
- Department of Pediatrics, Klinikum Stuttgart, Olgahospital, Stuttgart, Germany
| | - Heiko Billing
- University Children's Hospital Tübingen, Tübingen, Germany
| | - Wolfgang Rabl
- Children's Hospital of the Technical University Munich, Munich, Germany
| | - Carmen Schröder
- University Children's Hospital Greifswald, Greifswald, Germany
| | - Olaf Hiort
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | | | | | - Dirk Schnabel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Chronically Sick Children, Pediatric Endocrinology, Berlin, Germany
| | - Miroslav Živičnjak
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | | |
Collapse
|
44
|
Leifheit-Nestler M, Kucka J, Yoshizawa E, Behets G, D'Haese P, Bergen C, Meier M, Fischer DC, Haffner D. Comparison of calcimimetic R568 and calcitriol in mineral homeostasis in the Hyp mouse, a murine homolog of X-linked hypophosphatemia. Bone 2017; 103:224-232. [PMID: 28728941 DOI: 10.1016/j.bone.2017.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/02/2017] [Accepted: 06/23/2017] [Indexed: 12/28/2022]
Abstract
X-linked hypophosphatemia (XLH) caused by mutations in the Phex gene is the most common human inherited phosphate wasting disorder characterized by enhanced synthesis of fibroblast growth factor 23 (FGF23) in bone, renal phosphate wasting, 1,25(OH)2D3 (1,25D) deficiency, rickets and osteomalacia. Here we studied the effects of calcimimetic R568 and calcitriol treatment in the Hyp mouse, a murine homolog of XLH. We hypothesized that mineral homeostasis is differentially affected by R568 and 1,25D with respect to the PTH-vitamin D-FGF23-Klotho axis and bone health. Four-week-old male Hyp mice received R568 in different doses, 1,25D or vehicle for 28days. Vehicle-treated wild-type mice served as controls. Both R568 and 1,25D reduced PTH levels, yet only 1,25D raised serum phosphate levels in Hyp mice. 1,25D increased calciuria and further enhanced FGF23 synthesis in bone and circulating FGF23 levels. By contrast, R568 reduced bone FGF23 expression and serum total but not intact FGF23 concentrations. Renal 1,25D metabolism was further impaired by 1,25D and improved although not normalized by R568. Hyp mice showed reduced renal Klotho levels, which were increased by 1,25D and high dose R568. 1,25D, but not R568, significantly improved femur growth, and weight gain, and partially restored growth plate morphology and bone mineralization. Although a significant improvement of trabecular bone was noted by μCT, compared to 1,25D the effects of R568 on bone histomophometric parameters were marginal. Our data indicate that monotherapy with R568 reduced PTH and FGF23 synthesis in bone, but failed to restore vitamin D and phosphate metabolism and skeletal abnormalities in Hyp mice. By contrast, 1,25D improved body growth, and defective mineralization despite further enhancement of skeletal FGF23 synthesis thereby highlighting the importance of vitamin D in bone mineralization in Hyp mice.
Collapse
Affiliation(s)
- Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany.
| | - Julia Kucka
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Emi Yoshizawa
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Geert Behets
- Laboratory of Pathophysiology, University of Antwerp, Wilrijk, Belgium
| | - Patrick D'Haese
- Laboratory of Pathophysiology, University of Antwerp, Wilrijk, Belgium
| | - Christian Bergen
- Institute for Laboratory Animal Science, Small Animal Imaging Center, Hannover Medical School, Hannover, Germany
| | - Martin Meier
- Institute for Laboratory Animal Science, Small Animal Imaging Center, Hannover Medical School, Hannover, Germany
| | | | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
45
|
Rothenbuhler A, Esterle L, Gueorguieva I, Salles JP, Mignot B, Colle M, Linglart A. Two-year recombinant human growth hormone (rhGH) treatment is more effective in pre-pubertal compared to pubertal short children with X-linked hypophosphatemic rickets (XLHR). Growth Horm IGF Res 2017; 36:11-15. [PMID: 28822957 DOI: 10.1016/j.ghir.2017.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 01/20/2023]
Abstract
CONTEXT Twenty-five to 40% of patients with well-controlled X-linked hypophosphatemic rickets (XLHR) have a final height under -2 SDS. Previous studies have shown that recombinant human growth hormone (rhGH) treatment improves linear growth in short children with XLHR. OBJECTIVE We studied the effectiveness of rhGH treatment in children with XLHR in a larger cohort. DESIGN Monocentric, prospective, non-randomized trial. SETTING University hospital in France. PATIENTS 19 patients with XLHR and a mutation in the PHEX gene. Six male and 6 female Tanner stage 1 patients (age 6.1±2.4years) and 4 male and 3 female Tanner stage 2 patients (age 13.1±1years). At inclusion, height SDS was -2.35±0.8 SDS and growth velocity was -1.12±1.2 SDS. INTERVENTION 2years of treatment with 67mcg/kg/day of rhGH at initiation. Every three months rhGH dosage was adjusted using an IGF-1 dosing protocol. MAIN OUTCOME MEASURES Comparison in change from baseline to year 2 in height and growth velocity. RESULTS Height SDS improved from -2.35±0.8 SDS at baseline, to -1.62±0.8 SDS (p=0.01) after one and to -1.2±1 SDS (p=0.04) after two years of rhGH treatment. There was a strong correlation (r2=0.6104, p<0.0001) between the age of onset of rhGH treatment and the number of cm gained over the study period. Pre-pubertal patients height SDS improved compared to baseline height SDS after one (-1.5±0.7, p<0.03) and two (-0.96±1, p<0.03) years of rhGH treatment. In pubertal patients there was no significant improvement in height SDS after one year (-1.75±1) and after two years (-1.7±0.8) of rhGH treatment. CONCLUSION Two-year rhGH treatment is effective to treat short stature in XLHR children. Pre-pubertal children responded better to rhGH. CLINICAL TRIAL REGISTRATION NUMBER NCT02720770.
Collapse
Affiliation(s)
- Anya Rothenbuhler
- Department of Pediatric Endocrinology and Diabetes, Centre de Reference des Maladies Rares du Metabolisme du Calcium et du Phophore, Pole I3E, Bicetre Hospital, Paris Sud University, APHP, 94275 Le Kremlin Bicetre, France.
| | - Laure Esterle
- Department of Pediatric Endocrinology and Diabetes, Centre de Reference des Maladies Rares du Metabolisme du Calcium et du Phophore, Pole I3E, Bicetre Hospital, Paris Sud University, APHP, 94275 Le Kremlin Bicetre, France
| | - Iva Gueorguieva
- Department of Pediatric Endocrinology and Diabetes, Centre de Reference des Maladies Rares du Metabolisme du Calcium et du Phophore, Pole I3E, Bicetre Hospital, Paris Sud University, APHP, 94275 Le Kremlin Bicetre, France
| | - Jean-Pierre Salles
- Unite d'Endocrinologie, Maladies Osseuses, Hopital des Enfants, Toulouse University Hospital, INSERM UMR 1043 (CPTP), University of Toulouse Paul Sabatier, Toulouse, France
| | - Brigitte Mignot
- Service de Pediatrie, Centre Hospitalier Regional Universitaire, Hopital Jean Minjoz, Besancon, France
| | | | - Agnes Linglart
- Department of Pediatric Endocrinology and Diabetes, Centre de Reference des Maladies Rares du Metabolisme du Calcium et du Phophore, Pole I3E, Bicetre Hospital, Paris Sud University, APHP, 94275 Le Kremlin Bicetre, France
| |
Collapse
|
46
|
Fuente R, Gil-Peña H, Claramunt-Taberner D, Hernández O, Fernández-Iglesias A, Alonso-Durán L, Rodríguez-Rubio E, Santos F. X-linked hypophosphatemia and growth. Rev Endocr Metab Disord 2017; 18:107-115. [PMID: 28130634 DOI: 10.1007/s11154-017-9408-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
X-Linked hypophosphatemia (XLH) is the most common form of hereditary rickets caused by loss-of function mutations in the PHEX gene. XLH is characterized by hypophosphatemia secondary to renal phosphate wasting, inappropriately low concentrations of 1,25 dihydroxyvitamin D and high circulating levels of fibroblast growth factor 23 (FGF23). Short stature and rachitic osseous lesions are characteristic phenotypic findings of XLH although the severity of these manifestations is highly variable among patients. The degree of growth impairment is not dependent on the magnitude of hypophosphatemia or the extent of legs´ bowing and height is not normalized by chronic administration of phosphate supplements and 1α hydroxyvitamin D derivatives. Treatment with growth hormone accelerates longitudinal growth rate but there is still controversy regarding the potential risk of increasing bone deformities and body disproportion. Treatments aimed at blocking FGF23 action are promising, but information is lacking on the consequences of counteracting FGF23 during the growing period. This review summarizes current knowledge on phosphorus metabolism in XLH, presents updated information on XLH and growth, including the effects of FGF23 on epiphyseal growth plate of the Hyp mouse, an animal model of the disease, and discusses growth hormone and novel FGF23 related therapies.
Collapse
Affiliation(s)
- R Fuente
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - H Gil-Peña
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - D Claramunt-Taberner
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - O Hernández
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - A Fernández-Iglesias
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - L Alonso-Durán
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - E Rodríguez-Rubio
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - F Santos
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain.
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain.
| |
Collapse
|
47
|
Kidney transplantation fails to provide adequate growth in children with chronic kidney disease born small for gestational age. Pediatr Nephrol 2017; 32:511-519. [PMID: 27770258 DOI: 10.1007/s00467-016-3503-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Children with chronic kidney disease are frequently born small for gestational age (SGA) and prone to disproportionately short stature. It is unclear how SGA affects growth after kidney transplantation (KTx). METHODS Linear growth (height, sitting height, and leg length) was prospectively investigated in a cohort of 322 pediatric KTx recipients, with a mean follow-up of 4.9 years. Sitting height index (ratio of sitting height to total body height) was used to assess body proportions. Predictors of growth outcome in KTx patients with (n = 94) and without (n = 228) an SGA history were evaluated by the use of linear mixed-effects models. RESULTS Mean z-scores for all linear body dimensions were lower in SGA compared with non-SGA patients (p < 0.001). SGA patients presented with higher target height deficit and degree of body disproportion (p < 0.001). The latter was mainly due to reduced leg growth during childhood. Pubertal trunk growth was diminished in SGA patients, and the pubertal growth spurt of legs was delayed in both groups, resulting in further impairment of adult height, which was more frequently reduced in SGA than in non-SGA patients (50 % vs 18 %, p < 0.001). Use of growth hormone treatment in the pre-transplant period, preemptive KTx, transplant function, and control of metabolic acidosis were the only potentially modifiable correlates of post-transplant growth in SGA groups. By contrast, living related KTx, steroid exposure, and degree of anemia proved to be correlates in non-SGA only. CONCLUSIONS In children born SGA, growth outcome after KTx is significantly more impaired and affected by different clinical parameters compared with non-SGA patients.
Collapse
|
48
|
Popkov A, Aranovich A, Popkov D. Results of deformity correction in children with X-linked hereditary hypophosphatemic rickets by external fixation or combined technique. INTERNATIONAL ORTHOPAEDICS 2015; 39:2423-31. [PMID: 26150332 DOI: 10.1007/s00264-015-2814-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/13/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND The operative procedures to correct multiplanar bone deformities may be indicated for prevention of secondary orthopaedic complications in children with X-linked hereditary hypophosphatemic rickets (XHPR). Different problems related to surgical correction were reported: increased rate of non-union, delayed union, recurrent deformity, deep intramedullary infection, refracture, nerve palsy, and pin tract infection. The aim of this retrospective study was comparison of results of correction in children with XHPR who underwent the treatment with either the Ilizarov device alone or a combined technique: the Ilizarov fixator with flexible intramedullary nailing (FIN) with hydroxyapatite bioactive coating and FIN. MATERIAL AND METHODS We retrospectively analysed 47 cases (children of age under 14 years) affected by XHPR. Simultaneous deformity correction in femur and tibia was performed with the Ilizarov device (group I) or the combined method (group II). This article is based on the results of a historical comparative retrospective study from the same institution. RESULTS The duration of external fixation is noted to be shorter applying the combined technique: 124.7 days (group I) vs 87.4 days (group II). In both groups deformity correction was achieved with a proper alignment. Nevertheless, while a child continues to grow during long-term follow-up, deviations of the mechanic axis from the centre of the knee joint have been developing again and values of mLDFA, mMPTA have become pathologic in the most of the cases. In group I location of a newly developed deformity resembled a pre-operative one, whereby both diaphyseal and metaphyseal parts were deformed. In group II in all the cases an apex of deformity was located in distal metadiaphyseal zone of the femur and proximal metadiaphyseal zone of the tibia. It is important to note that all of those in group II were out of the zone of the intramedullary nail. CONCLUSION Simultaneous correction of femoral and tibial deformities by means of circular external fixators is preferable. Application of a combined osteosynthesis allows to considerably reduce the duration of external fixation and decrease the number of complications. There were no recurrent deformities in parts of bone reinforced by intramedullary nails.
Collapse
Affiliation(s)
- Arnold Popkov
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, 6, M. Ulyanova Street, 640014, Kurgan, Russian Federation
| | - Anna Aranovich
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, 6, M. Ulyanova Street, 640014, Kurgan, Russian Federation
| | - Dmitry Popkov
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, 6, M. Ulyanova Street, 640014, Kurgan, Russian Federation.
| |
Collapse
|
49
|
Franke D, Thomas L, Steffens R, Pavičić L, Gellermann J, Froede K, Querfeld U, Haffner D, Živičnjak M. Patterns of growth after kidney transplantation among children with ESRD. Clin J Am Soc Nephrol 2014; 10:127-34. [PMID: 25352379 DOI: 10.2215/cjn.02180314] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Poor linear growth is a frequent complication of CKD. This study evaluated the effect of kidney transplantation on age-related growth of linear body segments in pediatric renal transplant recipients who were enrolled from May 1998 until August 2013 in the CKD Growth and Development observational cohort study. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Linear growth (height, sitting height, arm and leg lengths) was prospectively investigated during 1639 annual visits in a cohort of 389 pediatric renal transplant recipients ages 2-18 years with a median follow-up of 3.4 years (interquartile range, 1.9-5.9 years). Linear mixed-effects models were used to assess age-related changes and predictors of linear body segments. RESULTS During early childhood, patients showed lower mean SD scores (SDS) for height (-1.7) and a markedly elevated sitting height index (ratio of sitting height to total body height) compared with healthy children (1.6 SDS), indicating disproportionate stunting (each P<0.001). After early childhood a sustained increase in standardized leg length and a constant decrease in standardized sitting height were noted (each P<0.001), resulting in significant catch-up growth and almost complete normalization of sitting height index by adult age (0.4 SDS; P<0.01 versus age 2-4 years). Time after transplantation, congenital renal disease, bone maturation, steroid exposure, degree of metabolic acidosis and anemia, intrauterine growth restriction, and parental height were significant predictors of linear body dimensions and body proportions (each P<0.05). CONCLUSIONS Children with ESRD present with disproportionate stunting. In pediatric renal transplant recipients, a sustained increase in standardized leg length and total body height is observed from preschool until adult age, resulting in restoration of body proportions in most patients. Reduction of steroid exposure and optimal metabolic control before and after transplantation are promising measures to further improve growth outcome.
Collapse
Affiliation(s)
- Doris Franke
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Lena Thomas
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Rena Steffens
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Leo Pavičić
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia; and
| | - Jutta Gellermann
- Department of Pediatric Nephrology, Charité University Hospital, Berlin, Germany
| | - Kerstin Froede
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Uwe Querfeld
- Department of Pediatric Nephrology, Charité University Hospital, Berlin, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Miroslav Živičnjak
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover, Germany;
| |
Collapse
|
50
|
Linglart A, Biosse-Duplan M, Briot K, Chaussain C, Esterle L, Guillaume-Czitrom S, Kamenicky P, Nevoux J, Prié D, Rothenbuhler A, Wicart P, Harvengt P. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect 2014; 3:R13-30. [PMID: 24550322 PMCID: PMC3959730 DOI: 10.1530/ec-13-0103] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In children, hypophosphatemic rickets (HR) is revealed by delayed walking, waddling gait, leg bowing, enlarged cartilages, bone pain, craniostenosis, spontaneous dental abscesses, and growth failure. If undiagnosed during childhood, patients with hypophosphatemia present with bone and/or joint pain, fractures, mineralization defects such as osteomalacia, entesopathy, severe dental anomalies, hearing loss, and fatigue. Healing rickets is the initial endpoint of treatment in children. Therapy aims at counteracting consequences of FGF23 excess, i.e. oral phosphorus supplementation with multiple daily intakes to compensate for renal phosphate wasting and active vitamin D analogs (alfacalcidol or calcitriol) to counter the 1,25-diOH-vitamin D deficiency. Corrective surgeries for residual leg bowing at the end of growth are occasionally performed. In absence of consensus regarding indications of the treatment in adults, it is generally accepted that medical treatment should be reinitiated (or maintained) in symptomatic patients to reduce pain, which may be due to bone microfractures and/or osteomalacia. In addition to the conventional treatment, optimal care of symptomatic patients requires pharmacological and non-pharmacological management of pain and joint stiffness, through appropriated rehabilitation. Much attention should be given to the dental and periodontal manifestations of HR. Besides vitamin D analogs and phosphate supplements that improve tooth mineralization, rigorous oral hygiene, active endodontic treatment of root abscesses and preventive protection of teeth surfaces are recommended. Current outcomes of this therapy are still not optimal, and therapies targeting the pathophysiology of the disease, i.e. FGF23 excess, are desirable. In this review, medical, dental, surgical, and contributions of various expertises to the treatment of HR are described, with an effort to highlight the importance of coordinated care.
Collapse
Affiliation(s)
- Agnès Linglart
- Service d'Endocrinologie et Diabétologie de l'EnfantHôpital Bicêtre, APHP78 rue du Général Leclerc , Le Kremlin Bicêtre, 94270France
- Université Paris 11 faculté de Médecine, Hôpital Bicêtre70 rue du général Leclerc, Le Kremlin-Bicêtre, 94270France
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du PhosphoreLe Kremlin-BicêtreFrance
- Correspondence should be addressed to A Linglart
| | - Martin Biosse-Duplan
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du PhosphoreLe Kremlin-BicêtreFrance
- Service d'Odontologie-Maladies Rares Hôpital Bretonneau 2 rue Carpeaux Paris, 75018France
- Université Paris Descartes 12 Rue de l'École de MédecineParis, 75006France
| | - Karine Briot
- Université Paris Descartes 12 Rue de l'École de MédecineParis, 75006France
- Service Rhumatologie B Hôpital Cochin, APHP27, rue du Faubourg Saint-Jacques, Paris, 75014France
| | - Catherine Chaussain
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du PhosphoreLe Kremlin-BicêtreFrance
- Service d'Odontologie-Maladies Rares Hôpital Bretonneau 2 rue Carpeaux Paris, 75018France
- Université Paris Descartes 12 Rue de l'École de MédecineParis, 75006France
| | - Laure Esterle
- Service d'Endocrinologie et Diabétologie de l'EnfantHôpital Bicêtre, APHP78 rue du Général Leclerc , Le Kremlin Bicêtre, 94270France
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du PhosphoreLe Kremlin-BicêtreFrance
| | - Séverine Guillaume-Czitrom
- Service de Pédiatrie générale – Consultation de rhumatologieHôpital Bicêtre, APHP78 rue du Général Leclerc , Le Kremlin Bicêtre, 94270France
- Centre de Référence des Maladies Rares des Maladies Auto-Inflammatoires Rares de l'EnfantLe Kremlin BicêtreFrance
| | - Peter Kamenicky
- Service d'Endocrinologie et des Maladies de la ReproductionHôpital Bicêtre, APHP78 rue du Général Leclerc , Le Kremlin Bicêtre, 94270France
- Université Paris 11 faculté de Médecine, Hôpital Bicêtre70 rue du général Leclerc, Le Kremlin-Bicêtre, 94270France
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du PhosphoreLe Kremlin-BicêtreFrance
| | - Jerome Nevoux
- Service d'ORL et chirurgie cervico-maxillo-facialeHôpital Bicêtre, APHP78 rue du Général Leclerc , Le Kremlin Bicêtre, 94270France
- Université Paris 11 faculté de Médecine, Hôpital Bicêtre70 rue du général Leclerc, Le Kremlin-Bicêtre, 94270France
| | - Dominique Prié
- Université Paris Descartes 12 Rue de l'École de MédecineParis, 75006France
- Service d'explorations fonctionnelles rénales, Hôpital Necker-Enfants Malades149 rue de Sèvres, Paris, 75015France
| | - Anya Rothenbuhler
- Service d'Endocrinologie et Diabétologie de l'EnfantHôpital Bicêtre, APHP78 rue du Général Leclerc , Le Kremlin Bicêtre, 94270France
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du PhosphoreLe Kremlin-BicêtreFrance
| | - Philippe Wicart
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du PhosphoreLe Kremlin-BicêtreFrance
- Université Paris Descartes 12 Rue de l'École de MédecineParis, 75006France
- Service de Chirurgie infantile orthopédiqueHôpital Necker-Enfants Malades149 rue de Sèvres, Paris, 75015 France
| | - Pol Harvengt
- Association de patients RVRH-XLH20 rue Merlin de Thionville, Suresnes , 92150France
| |
Collapse
|