1
|
Botha SM, Bartho LA, Hartmann S, Cannon P, Nguyen A, Nguyen TV, Pritchard N, Dechend R, Nonn O, Tong S, Kaitu'u-Lino TJ. Cystatin 6 (CST6) and Legumain (LGMN) are potential mediators in the pathogenesis of preeclampsia. Sci Rep 2025; 15:12945. [PMID: 40234537 PMCID: PMC12000359 DOI: 10.1038/s41598-025-96823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Preeclampsia results from placental insufficiency and causes maternal endothelial dysfunction and multi-organ damage. Our in-silico analysis identified Cystatin 6 (CST6), a cysteine protease inhibitor, as located on the placental surface where it might be released into maternal circulation. This study aimed to characterise CST6 and one of its high affinity targets, Legumain (LGMN), in preeclampsia and assess its biomarker potential by measuring levels in maternal circulation. Placental CST6 mRNA expression was significantly increased in 78 pregnancies complicated by early-onset preeclampsia (delivering at < 34 weeks' gestation) relative to 30 gestation matched controls (P < 0.0001). LGMN mRNA expression was significantly decreased (P = 0.0309). Circulating CST6 was increased in 35 pregnancies complicated by early-onset preeclampsia (< 34 weeks' gestation) relative to 27 gestation matched controls (P = 0.0261), and LGMN levels remained unchanged. At 36 weeks' gestation, circulating CST6 was significantly increased (P = 0.001), while LGMN was significantly decreased (P = 0.0135) in 21 pregnancies preceding diagnosis of preeclampsia at term, compared to 184 pregnancies that did not develop preeclampsia. Human trophoblast stem cells (hTSC) were differentiated into syncytiotrophoblast or extravillous trophoblast (EVT) to evaluate CST6 and LGMN expression in these trophoblast lineages. CST6 and LGMN mRNA expression were significantly increased across 96 h after syncytiotrophoblast (P = 0.0066 and P = 0.0010 respectively) and EVT differentiation (P = 0.0618 and P = 0.0016 respectively), with the highest expression in syncytiotrophoblast. Computational analysis of two publicly available single-cell and single-nuclei RNA sequencing datasets correlated with the expression pattern observed in vitro. When syncytiotrophoblast cells were exposed to hypoxia (1% O2 vs. 8% O2), CST6 expression significantly increased (P = 0.0079), whilst LGMN expression was unchanged. The vascular endothelium may serve as an additional source of circulating CST6 and LGMN in preeclampsia. Induction of dysfunction in endothelial cells by TNFα, caused reduced CST6 expression (P = 0.0036), whilst LGMN expression remained unchanged. Administering recombinant CST6 to endothelial cells enhanced markers of endothelial dysfunction and LGMN expression in the presence of TNFα. These findings indicate an inverse relationship between CST6 and LGMN in the placenta and maternal circulation in preeclampsia. We suggest elevated circulating levels of CST6 may be induced by placental hypoxia. This study provides novel insight into the dysregulation of CST6 and LGMN in preeclampsia and introduces their potential roles in human pregnancy and associated pathology.
Collapse
Affiliation(s)
- Stefan M Botha
- Translational Obstetrics Group, The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, 3084, Australia.
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Experimental and Clinical Research Center, a cooperation between Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
| | - Lucy A Bartho
- Translational Obstetrics Group, The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Sunhild Hartmann
- Translational Obstetrics Group, The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ping Cannon
- Translational Obstetrics Group, The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Anna Nguyen
- Translational Obstetrics Group, The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tuong-Vi Nguyen
- Translational Obstetrics Group, The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natasha Pritchard
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ralf Dechend
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Clinic, Berlin, Germany
| | - Olivia Nonn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
2
|
Rizzollo F, Agostinis P. Mitochondria-Lysosome Contact Sites: Emerging Players in Cellular Homeostasis and Disease. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564251329250. [PMID: 40109887 PMCID: PMC11920999 DOI: 10.1177/25152564251329250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Mitochondria and lysosomes regulate a multitude of biological processes that are essential for the maintenance of nutrient and metabolic homeostasis and overall cell viability. Recent evidence reveals that these pivotal organelles, similarly to others previously studied, communicate through specialized membrane contact sites (MCSs), hereafter referred to as mitochondria-lysosome contacts (or MLCs), which promote their dynamic interaction without involving membrane fusion. Signal integration through MLCs is implicated in key processes, including mitochondrial fission and dynamics, and the exchange of calcium, cholesterol, and amino acids. Impairments in the formation and function of MLCs are increasingly associated with age-related diseases, specifically neurodegenerative disorders and lysosomal storage diseases. However, MLCs may play roles in other pathological contexts where lysosomes and mitochondria are crucial. In this review, we introduce the methodologies used to study MLCs and discuss known molecular players and key factors involved in their regulation in mammalian cells. We also argue other potential regulatory mechanisms depending on the acidic lysosomal pH and their impact on MLC's function. Finally, we explore the emerging implications of dysfunctional mitochondria-lysosome interactions in disease, highlighting their potential as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Francesca Rizzollo
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Zhao T, Zhang T, Tao Z, Zhou Z, Xia X, Wu Z, Wang F, Ren J, Wang E. A lysosome-targeted fluorescent probe with large Stokes shift for visualizing biothiols in vivo and in vitro. iScience 2024; 27:111334. [PMID: 39634562 PMCID: PMC11615578 DOI: 10.1016/j.isci.2024.111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Lysosomal biothiols play critical roles in numerous cellular processes and diseases. Researching an effective method for real-time labeling biothiols in lysosomes is of great significance and urgency, as it could provide essential information for the diagnosis of relevant diseases. In this study, we developed a lysosome-targeted fluorescent probe (LY-DCM-P) with a large Stokes shift of 150 nm for the sensitive and selective detection of biothiols in vivo and in vitro. Additionally, LY-DCM-P showed low cytotoxicity and excellent lysosome-targeted ability. The probe was successfully employed to monitor fluctuations in lysosomal biothiols in various living systems, enabling enormous potential to accurately monitor the occurrence and progress of biothiol-related diseases.
Collapse
Affiliation(s)
- Taotao Zhao
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Tong Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Zijun Tao
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Zhe Zhou
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Xiaofeng Xia
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Zhengjun Wu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Feiyi Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Jun Ren
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Erfei Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| |
Collapse
|
4
|
Collardeau-Frachon S. [Adult and pediatric thesaurismosis: Lysosomal, lipid and glycogen storage diseases]. Ann Pathol 2024; 44:432-452. [PMID: 39358197 DOI: 10.1016/j.annpat.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Thesaurismosis or storage diseases are rare genetic disorders due to an abnormal accumulation of an organic compound or its metabolite within cells. These conditions are either secondary to a defect in catabolism caused by enzymatic dysfunction or to a deficiency in transport proteins. They encompass lysosomal storage diseases, lipid storage diseases or dyslipidemias, and glycogen storage disorders or glycogenoses. Diagnosis is typically based on clinical and biological anomalies but may be made or suggested by the pathologist when symptoms are atypical or when biochemical or genetic tests are challenging to interpret. For accurate diagnosis, it is crucial to freeze a portion of the samples. Special staining and electronic microscopy can also aid in the diagnostic process. As the diagnosis is multidisciplinary, collaboration with clinicians, biochemists and geneticists is essential.
Collapse
Affiliation(s)
- Sophie Collardeau-Frachon
- Institut de pathologie des hospices civils de Lyon, groupement hospitalier Est, 59, boulevard Pinel, 69677 Bron cedex, France.
| |
Collapse
|
5
|
Chen S, Yu W, Xing G, Song Z, Feng G. A new fluorescent probe with high selectivity and sensitivity for Cys detection in bovine serum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5248-5253. [PMID: 39011724 DOI: 10.1039/d4ay00910j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Cysteine (Cys) is one of the most basic mercaptans in the human body. As an important endogenous small molecule mercaptan, Cys plays a vital role in various physiological processes and can participate in maintaining redox balance to ensure homeostasis. Abnormal Cys levels can lead to a variety of diseases. However, the detection of cysteine may be interfered with by other small molecule biothiols. Therefore, the design of fluorescent probes based on the structural characteristics and reactivity of cysteine has become the focus of current research. In this paper, a fluorescent probe (3-(2H-benzo[d][1,2,3]triazol-2-yl)-2-oxo-2H-benzo[g]chromen-8-yl acrylate, BTAB) for Cys detection was synthesized with acrylic ester as the reaction site. Under the conditions of gradual optimization, BTAB can achieve selectivity and anti-interference ability for Cys detection. The linear range of Cys was 0.3-10 μM, and the detection limit was 0.154 μM. Finally, this probe was applied to detect the Cys content in bovine serum samples with satisfactory results.
Collapse
Affiliation(s)
- Shu Chen
- Department of Thoracic Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun City, Jilin Province, China
| | - Weiwei Yu
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China.
| | - Guangnan Xing
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China.
| | - Zhiguang Song
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China.
| | - Guodong Feng
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China.
| |
Collapse
|
6
|
Mitrotti A, Giliberti M, Di Leo V, di Bari I, Pontrelli P, Gesualdo L. Hidden genetics behind glomerular scars: an opportunity to understand the heterogeneity of focal segmental glomerulosclerosis? Pediatr Nephrol 2024; 39:1685-1707. [PMID: 37728640 PMCID: PMC11026212 DOI: 10.1007/s00467-023-06046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 09/21/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a complex disease which describes different kinds of kidney defects, not exclusively linked with podocyte defects. Since nephrin mutation was first described in association with early-onset nephrotic syndrome (NS), many advancements have been made in understanding genetic patterns associated with FSGS. New genetic causes of FSGS have been discovered, displaying unexpected genotypes, and recognizing possible site of damage. Many recent large-scale sequencing analyses on patients affected by idiopathic chronic kidney disease (CKD), kidney failure (KF) of unknown origin, or classified as FSGS, have revealed collagen alpha IV genes, as one of the most frequent sites of pathogenic mutations. Also, recent interest in complex and systemic lysosomal storage diseases, such as Fabry disease, has highlighted GLA mutations as possible causes of FSGS. Tubulointerstitial disease, recently classified by KDIGO based on genetic subtypes, when associated with UMOD variants, may phenotypically gain FSGS features, as well as ciliopathy genes or others, otherwise leading to completely different phenotypes, but found carrying pathogenic variants with associated FSGS phenotype. Thus, glomerulosclerosis may conceal different heterogeneous conditions. When a kidney biopsy is performed, the principal objective is to provide an accurate diagnosis. The broad spectrum of phenotypic expression and genetic complexity is demonstrating that a combined path of management needs to be applied. Genetic investigation should not be reserved only to selected cases, but rather part of medical management, integrating with clinical and renal pathology records. FSGS heterogeneity should be interpreted as an interesting opportunity to discover new pathways of CKD, requiring prompt genotype-phenotype correlation. In this review, we aim to highlight how FSGS represents a peculiar kidney condition, demanding multidisciplinary management, and in which genetic analysis may solve some otherwise unrevealed idiopathic cases. Unfortunately there is not a uniform correlation between specific mutations and FSGS morphological classes, as the same variants may be identified in familial cases or sporadic FSGS/NS or manifest a variable spectrum of the same disease. These non-specific features make diagnosis challenging. The complexity of FSGS genotypes requires new directions. Old morphological classification does not provide much information about the responsible cause of disease and misdiagnoses may expose patients to immunosuppressive therapy side effects, mistaken genetic counseling, and misguided kidney transplant programs.
Collapse
Affiliation(s)
- Adele Mitrotti
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy.
| | - Marica Giliberti
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Di Leo
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Ighli di Bari
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Liu T, Han X, Zhao W, Gao K, Min R, Tian Y, Sun X, Yin C. Lysosomal-targeted fluorescent probe based pH regulating reactivity for tracking cysteine dynamics under oxidative stress. J Mater Chem B 2024; 12:5157-5161. [PMID: 38715545 DOI: 10.1039/d4tb00478g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The ability to detect and visualize cellular events and associated biological analytes is essential for the understanding of their physiological and pathological functions. Cysteine (Cys) plays a crucial role in biological systems and lysosomal homeostasis. This puts forward higher requirements on the performance of the probe. Herein, we rationally designed a coumarin-based probe for the reversible, specific, sensitive, and rapid detection of Cys based on pH regulating reactivity. The obtained probe (ECMA) introduces a morpholine moiety to target lysosomes, and α,β-unsaturated-ketone with an electron-withdrawing CN group served as a reversible reaction site for Cys. Importantly, ECMA was successfully applied to the real-time monitoring of Cys dynamics in living cells. Furthermore, cell imaging clearly revealed that exogenous Cys could induce the up-regulation of lysosomal ROS, which provided a powerful tool for investigating the relationship between oxidative stress and lysosomal Cys.
Collapse
Affiliation(s)
- Tao Liu
- Department of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, P. R. China
| | - Xuwei Han
- Department of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Wenjing Zhao
- Department of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, P. R. China
| | - Ke Gao
- Department of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Runan Min
- Department of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Yuting Tian
- Department of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Xueyi Sun
- Department of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
8
|
Fountoglou A, Deltas C, Siomou E, Dounousi E. Genome-wide association studies reconstructing chronic kidney disease. Nephrol Dial Transplant 2024; 39:395-402. [PMID: 38124660 PMCID: PMC10899781 DOI: 10.1093/ndt/gfad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 12/23/2023] Open
Abstract
Chronic kidney disease (CKD) is a major health problem with an increasing epidemiological burden, and is the 16th leading cause of years of life lost worldwide. It is estimated that more than 10% of the population have a variable stage of CKD, while about 850 million people worldwide are affected. Nevertheless, public awareness remains low, clinical access is inappropriate in many circumstances and medication is still ineffective due to the lack of clear therapeutic targets. One of the main issues that drives these problems is the fact that CKD remains a clinical entity with significant causal ambiguity. Beyond diabetes mellitus and hypertension, which are the two major causes of kidney disease, there are still many gray areas in the diagnostic context of CKD. Genetics nowadays emerges as a promising field in nephrology. The role of genetic factors in CKD's causes and predisposition is well documented and thousands of genetic variants are well established to contribute to the high burden of disease. Next-generation sequencing is increasingly revealing old and new rare variants that cause Mendelian forms of chronic nephropathy while genome-wide association studies (GWAS) uncover common variants associated with CKD-defining traits in the general population. In this article we review how GWAS has revolutionized-and continues to revolutionize-the old concept of CKD. Furthermore, we present how the investigation of common genetic variants with previously unknown kidney significance has begun to expand our knowledge on disease understanding, providing valuable insights into disease mechanisms and perhaps paving the way for novel therapeutic targets.
Collapse
Affiliation(s)
- Anastasios Fountoglou
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Constantinos Deltas
- School of Medicine and biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Ekaterini Siomou
- Department of Pediatrics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
9
|
Zhang Y, Xu C, Sun H, Ai J, Ren M, Kong F. A new lysosome-targeted Cys probe and its application in biology and food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123345. [PMID: 37688878 DOI: 10.1016/j.saa.2023.123345] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Cysteine (Cys) is a sulfur-containing amino acid that plays an important role in living systems. The most common way to supplement the body with exogenous Cys is through the consumption of Cys-rich foods. Therefore, it is important to detect and analyze Cys in living systems and food samples. However, most of the Cys fluorescent probes developed so far are limited to the detection of the cellular environment only, and very few probes can take into account the detection of Cys in plant roots and food samples. In this paper, a novel fluorescent probe LN-NCS targeting the detection of Cys in lysosomes was designed and synthesized by modifying the naphthalimide fluorophore. The probe LN-NCS has a large Stokes shift (140 nm), low cytotoxicity, low detection limit (16.3 nM), and high selectivity, and probe LN-NCS reacts with Cys to produce the compound LN-NH2 with good fluorescence quantum yield (Ф = 0.81). Probe LN-NCS can be used to detect Cys in cells, zebrafish, plant roots, food samples, and environmental water samples. In addition, by modeling cellular inflammation, we have demonstrated that probe LN-NCS can detect changes in Cys concentration induced by cellular inflammation, providing a potential tool to better study the cellular inflammatory environment.
Collapse
Affiliation(s)
- Yukun Zhang
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chen Xu
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Hui Sun
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jindong Ai
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mingguang Ren
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Fangong Kong
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
10
|
Ojha PR, Kumar R. Intraepithelial Inclusions on Urinalysis Screening among COVID-19 Cases: Are they Covicytes?-A Hospital-Based Cohort Study with Narrative Review. J Cytol 2024; 41:34-40. [PMID: 38282809 PMCID: PMC10810077 DOI: 10.4103/joc.joc_102_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 01/30/2024] Open
Abstract
Title "Intraepithelial inclusions on urinalysis screening among COVID-19 cases: Are they Covicytes?-A hospital-based cohort study with narrative review." Context Coronavirus disease 2019 (COVID-19)-associated delayed acute kidney injury (AKI) is often reported in subsequent waves of the pandemic. Early intervention and regular follow-up influence the outcome and inhibit progression into chronic kidney disease (CKD). This is the first study to identify urinary cytomorphological abnormalities (Covicytes) and predict COVID-19-associated delayed AKI with a narrative review of the possible etiologies for intraepithelial inclusions. Settings and Design A hospital-based cohort study with a narrative review. Material and Methods Screening urinalysis to assess the cytomorphology of epithelial cells (ECs) and inclusions in Leishman and periodic acid-Schiff (PAS)-stained smears by two independent pathologists was performed in reverse transcriptase polymerase chain reaction (RT-PCR)-confirmed COVID-19 cases at a tertiary care center. Statistical Analysis Basic statistical tools were used for descriptive statistical analysis, and data were expressed in mean, proportion, and frequency. Results Cytomorphological abnormalities (48/188) were predominant among adult males. Leukocyturia (39/48) with positive nitrite test (28/39), high ECs (27/48) and squamous cell-to-tubular EC (SC:TEC) ratio, intraepithelial intracytoplasmic inclusions predominantly in TECs (Covicytes), and multiple well-visualized, perinuclear PAS-negative neutrophilic vacuoles (17/39) were found. The association with preexisting diabetes (31/48), hypertension (10/48), and disease severity was noted. Conclusions This study reported COVID-19-associated urinary cytomorphological abnormalities and interesting unique inclusions (Covicytes) that may be a result of underlying inflammatory changes, reactive hyperplasia, degenerative changes, or defective endocytosed vacuoles. The possible etiologies for renal inclusions were reviewed. We recommend compulsory baseline and follow-up urinary cytology screening for all COVID-19-suspected patients to detect and predict delayed AKI before clinical and biochemical manifestation during disease endemicity.
Collapse
Affiliation(s)
- Pushpanjali R. Ojha
- Department of Pathology, Rajendra Institute of Medical Sciences (RIMS), Ranchi, Jharkhand, India
| | - Rakesh Kumar
- Assistant Professor, Department of Emergency Medicine, HiTech Medical College and Hospital, Rourkela, Odisha, India
| |
Collapse
|
11
|
Esposito P, Caputo C, Repetto M, Somaschini A, Pietro B, Colomba P, Zizzo C, Parodi A, Zanetti V, Canepa M, Eustachi V, Sanguineri F, Mandich P, Viazzi F. Diagnosing Fabry nephropathy: the challenge of multiple kidney disease. BMC Nephrol 2023; 24:344. [PMID: 37990184 PMCID: PMC10664682 DOI: 10.1186/s12882-023-03388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
Fabry disease (FD) is an X-linked inherited lysosomal disorder due to a deficiency of the enzyme alpha-galactosidase A (α-gla) due to mutations in the GLA gene. These mutations result in plasma and lysosome accumulation of glycosphingolipids, leading to progressive organ damage and reduced life expectancy. Due to the availability of specific disease-modifying treatments, proper and timely diagnosis and therapy are essential to prevent irreversible complications. However, diagnosis of FD is often delayed because of the wide clinical heterogeneity of the disease and multiple organ involvement developing in variable temporal sequences. This observation is also valid for renal involvement, which may manifest with non-specific signs, such as proteinuria and chronic kidney disease, which are also common in many other nephropathies. Moreover, an additional confounding factor is the possibility of the coexistence of FD with other kidney disorders. Thus, suspecting and diagnosing FD nephropathy in patients with signs of kidney disease may be challenging for the clinical nephrologist. Herein, also through the presentation of a unique case of co-occurrence of autosomal dominant polycystic kidney disease and FD, we review the available literature on cases of coexistence of FD and other renal diseases and discuss the implications of these conditions. Moreover, we highlight the clinical, laboratory, and histological elements that may suggest clinical suspicion and address a proper diagnosis of Fabry nephropathy.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Internal Medicine, University of Genoa, Genoa, Italy.
- Unit of Nephrology, Dialysis, and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Carmela Caputo
- Unit of Nephrology and Dialysis, Ospedale San Paolo, Savona, Italy
| | - Monica Repetto
- Unit of Nephrology and Dialysis, Ospedale San Paolo, Savona, Italy
| | - Alberto Somaschini
- Division of Cardiology and Cardiac Intensive Care Unit, Ospedale San Paolo, Savona, Italy
| | - Bellone Pietro
- Division of Cardiology and Cardiac Intensive Care Unit, Ospedale San Paolo, Savona, Italy
| | - Paolo Colomba
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Carmela Zizzo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Angelica Parodi
- Unit of Nephrology, Dialysis, and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Valentina Zanetti
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Unit of Nephrology, Dialysis, and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Canepa
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Virginia Eustachi
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Sanguineri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Paola Mandich
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Unit of Nephrology, Dialysis, and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
12
|
Kulkarni K, Patel S, Ali R, Hussain T. Angiotensin II type 2 receptor activation preserves megalin in the kidney and prevents proteinuria in high salt diet fed rats. Sci Rep 2023; 13:4277. [PMID: 36922642 PMCID: PMC10017765 DOI: 10.1038/s41598-023-31454-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Proteinuria is a risk factor for and consequence of kidney injury. Angiotensin II type 2 receptor (AT2R) is an emerging reno-protective target and is anti-proteinuric under pathological conditions, including high salt-fed obese animals. However, the mechanisms remain unknown, particularly whether the anti-proteinuric activity of AT2R is independent of its anti-hypertensive and anti-inflammatory effects. In the present study, obese Zucker rats were fed high sodium (4%) diet (HSD) for 48 h, a time in which blood pressure does not change. HSD caused proteinuria without affecting glomerular slit diaphragm proteins (nephrin and podocin), glomerular filtration rate, inflammatory and fibrotic markers (TNFα, IL-6, and TGF-β), ruling out glomerular injury, inflammation and fibrosis but indicating tubular mechanisms of proteinuria. At cellular and molecular levels, we observed a glycogen synthase kinase (GSK)-3β-mediated megalin phosphorylation, and its subsequent endocytosis and lysosomal degradation in HSD-fed rat kidneys. Megalin is a major proximal tubular endocytic protein transporter. The AT2R agonist C21 (0.3 mg/kg/day, i.p.) administration prevented proteinuria and rescued megalin surface expression potentially by activating Akt-mediated phosphorylation and inactivation of GSK-3β in HSD-fed rat kidneys. Overall, AT2R has a direct anti-proteinuric activity, potentially via megalin regulation, and is suggested as a novel target to limit kidney injury.
Collapse
Affiliation(s)
- Kalyani Kulkarni
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA
| | - Sanket Patel
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA
| | - Riyasat Ali
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA.
| |
Collapse
|
13
|
Autophagy and kidney aging. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 179:10-15. [PMID: 36849016 DOI: 10.1016/j.pbiomolbio.2023.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/02/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Autophagy is a highly conserved intracellular degradation system in eukaryotes that maintains cellular and tissue homeostasis. Upon autophagy induction, cytoplasmic components are engulfed by a double-membrane organelle called the autophagosome that fuses with a lysosome to degrade its contents. In recent years, it has become clear that autophagy becomes dysregulated with aging, which leads to age-related diseases. Kidney function is particularly prone to age-related decline, and aging is the most significant risk factor for chronic kidney disease. This review first discuss the relationship between autophagy and kidney aging. Second, we describe how age-related dysregulation of autophagy occurs. Finally, we discuss the potential of autophagy-targeting drugs to ameliorate human kidney aging and the approaches necessary to discover such agents.
Collapse
|
14
|
Scorza SI, Milano S, Saponara I, Certini M, De Zio R, Mola MG, Procino G, Carmosino M, Moccia F, Svelto M, Gerbino A. TRPML1-Induced Lysosomal Ca 2+ Signals Activate AQP2 Translocation and Water Flux in Renal Collecting Duct Cells. Int J Mol Sci 2023; 24:ijms24021647. [PMID: 36675161 PMCID: PMC9861594 DOI: 10.3390/ijms24021647] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Lysosomes are acidic Ca2+ storage organelles that actively generate local Ca2+ signaling events to regulate a plethora of cell functions. Here, we characterized lysosomal Ca2+ signals in mouse renal collecting duct (CD) cells and we assessed their putative role in aquaporin 2 (AQP2)-dependent water reabsorption. Bafilomycin A1 and ML-SA1 triggered similar Ca2+ oscillations, in the absence of extracellular Ca2+, by alkalizing the acidic lysosomal pH or activating the lysosomal cation channel mucolipin 1 (TRPML1), respectively. TRPML1-dependent Ca2+ signals were blocked either pharmacologically or by lysosomes' osmotic permeabilization, thus indicating these organelles as primary sources of Ca2+ release. Lysosome-induced Ca2+ oscillations were sustained by endoplasmic reticulum (ER) Ca2+ content, while bafilomycin A1 and ML-SA1 did not directly interfere with ER Ca2+ homeostasis per se. TRPML1 activation strongly increased AQP2 apical expression and depolymerized the actin cytoskeleton, thereby boosting water flux in response to an hypoosmotic stimulus. These effects were strictly dependent on the activation of the Ca2+/calcineurin pathway. Conversely, bafilomycin A1 led to perinuclear accumulation of AQP2 vesicles without affecting water permeability. Overall, lysosomal Ca2+ signaling events can be differently decoded to modulate Ca2+-dependent cellular functions related to the dock/fusion of AQP2-transporting vesicles in principal cells of the CD.
Collapse
Affiliation(s)
- Simona Ida Scorza
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Serena Milano
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Ilenia Saponara
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Maira Certini
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Roberta De Zio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, 27100 Pavia, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
- Correspondence: ; Tel.: +39-0805443334
| |
Collapse
|
15
|
Mao Y, Nielsen P, Ali J. Passive and Active Microrheology for Biomedical Systems. Front Bioeng Biotechnol 2022; 10:916354. [PMID: 35866030 PMCID: PMC9294381 DOI: 10.3389/fbioe.2022.916354] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Microrheology encompasses a range of methods to measure the mechanical properties of soft materials. By characterizing the motion of embedded microscopic particles, microrheology extends the probing length scale and frequency range of conventional bulk rheology. Microrheology can be characterized into either passive or active methods based on the driving force exerted on probe particles. Tracer particles are driven by thermal energy in passive methods, applying minimal deformation to the assessed medium. In active techniques, particles are manipulated by an external force, most commonly produced through optical and magnetic fields. Small-scale rheology holds significant advantages over conventional bulk rheology, such as eliminating the need for large sample sizes, the ability to probe fragile materials non-destructively, and a wider probing frequency range. More importantly, some microrheological techniques can obtain spatiotemporal information of local microenvironments and accurately describe the heterogeneity of structurally complex fluids. Recently, there has been significant growth in using these minimally invasive techniques to investigate a wide range of biomedical systems both in vitro and in vivo. Here, we review the latest applications and advancements of microrheology in mammalian cells, tissues, and biofluids and discuss the current challenges and potential future advances on the horizon.
Collapse
Affiliation(s)
- Yating Mao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Paige Nielsen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| |
Collapse
|
16
|
Jia Y, Zhang L, Liu Z, Mao C, Ma Z, Li W, Yu F, Wang Y, Huang Y, Zhang W, Zheng J, Wang X, Xu Q, Zhang J, Feng W, Yun C, Liu C, Sun J, Fu Y, Cui Q, Kong W. Targeting macrophage TFEB-14-3-3 epsilon Interface by naringenin inhibits abdominal aortic aneurysm. Cell Discov 2022; 8:21. [PMID: 35228523 PMCID: PMC8885854 DOI: 10.1038/s41421-021-00363-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a lethal cardiovascular disease, and there is no proven drug treatment for this condition. In this study, by using the Connectivity Map (CMap) approach, we explored naringenin, a naturally occurring citrus flavonoid, as a putative agent for inhibiting AAA. We then validated the prediction with two independent mouse models of AAA, calcium phosphate (CaPO4)-induced C57BL/6J mice and angiotensin II-infused ApoE−/− mice. Naringenin effectively blocked the formation of AAAs and the progression of established AAAs. Transcription factor EB (TFEB) is the master regulator of lysosome biogenesis. Intriguingly, the protective role of naringenin on AAA was abolished by macrophage-specific TFEB depletion in mice. Unbiased interactomics, combined with isothermal titration calorimetry (ITC) and cellular thermal shift assays (CETSAs), further revealed that naringenin is directly bound to 14-3-3 epsilon blocked the TFEB-14-3-3 epsilon interaction, and therefore promoted TFEB nuclear translocation and activation. On one hand, naringenin activated lysosome-dependent inhibition of the NLRP3 inflammasome and repressed aneurysmal inflammation. On the other hand, naringenin induced TFEB-dependent transcriptional activation of GATA3, IRF4, and STAT6 and therefore promoted reparative M2 macrophage polarization. In summary, naturally derived naringenin or macrophage TFEB activation shows promising efficacy for the treatment of AAA.
Collapse
Affiliation(s)
- Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Lu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziyi Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wenqiang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yingbao Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yaqian Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Qingbo Xu
- Cardiovascular Division, Kings College London BHF Centre, London, SE5 9NU, UK
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Medicinal Chemistry & Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caihong Yun
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chuanju Liu
- Department of Orthopedic Surgery, New York University Medical Center, New York, NY, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Jinpeng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| |
Collapse
|
17
|
Activation of Transcription Factor EB Alleviates Tubular Epithelial Cell Injury via Restoring Lysosomal Homeostasis in Diabetic Nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2812493. [PMID: 35082964 PMCID: PMC8786470 DOI: 10.1155/2022/2812493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022]
Abstract
Disruption of lysosomal homeostasis contributes to the tubulopathy of diabetic nephropathy; however, its underlying mechanisms remain unclear. Herein, we report that decreased activity of transcription factor EB (TFEB) is responsible for the disturbed lysosome biogenesis and clearance in this pathological process. This was confirmed by the findings that insufficient lysosomal replenishment and damaged lysosomal clearance coincided with TFEB inactivation, which was mediated by mTOR hyperactivation in the renal tubular epithelial cells (TECs) of diabetic nephropathy. Furthermore, either TFEB overexpression or pharmacological activation of TFEB enhanced lysosomal clearance via promoting lysosomal biogenesis and protected TECs by reducing apoptosis in vitro. In addition, pharmacological activation of TFEB attenuated renal tubule injury, apoptosis, and inflammation in db/db mice. In conclusion, diabetes-induced mTOR activation represses TFEB function, thereby perturbing lysosomal homeostasis through impairing lysosomal biogenesis and clearance in TECs. Moreover, TFEB activation protects TECs from diabetic injuries via restoring lysosomal homeostasis.
Collapse
|
18
|
Sun J, Li H, Gu X, Tang BZ. Photoactivatable Biomedical Materials Based on Luminogens with Aggregation-Induced Emission (AIE) Characteristics. Adv Healthc Mater 2021; 10:e2101177. [PMID: 34637607 DOI: 10.1002/adhm.202101177] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Indexed: 12/17/2022]
Abstract
Fluorescence probes with aggregation-induced emission (AIE) property are fascinating and vital in biological fields due to their bright fluorescence in the solid state. In contrast, traditional AIE materials are obscured by the off-target effects and lack of spatial and temporal control. Photoactivatable materials with AIE characteristics, whose physicochemical behaviors can be remotely activated by light, provide great potential in biochemical information acquisition with high spatial and temporal resolution. By using AIE-featured photoactivatable fluorescence probes, accurate analysis of the targets of interest is possible. For example, where, when, and to what extent a process is started or stopped by manipulating the non-invasive light accurately. Thus, many researchers are enthusiastic about developing AIE-featured photoactivatable materials and mainly focus on developing novel molecules by rational molecular structure design, and exploring advanced applications by appropriate molecular functionalization. In this review, the recent achievements of photoactivatable materials with AIE characteristics from the aspects involving inherent mechanism of photoactivity, molecular design strategy, and the corresponding applications in biological fields, are summarized. The biological applications are highlighted and discussed, including photoactivatable bioimaging, diagnosis, and photo-controlled therapy. Finally, the challenges and prospects of the AIE-featured photoactivatable materials are also outlined and discussed.
Collapse
Affiliation(s)
- Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 China
| |
Collapse
|
19
|
Role of Glycation in Type 2 Diabetes Mellitus and Its Prevention through Nymphaea Species. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7240046. [PMID: 34746307 PMCID: PMC8566071 DOI: 10.1155/2021/7240046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/28/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022]
Abstract
The dysregulation of glucose metabolism that includes the modification of biomolecules with the help of glycation reaction results in the formation of advanced glycation end products (AGEs). The formation of AGEs may activate receptors for advanced glycation end products which induce intracellular signaling, ultimately enhancing oxidative stress, a well-known contributor to type 2 diabetes mellitus. In addition, AGEs are possible therapeutic targets for the treatment of type 2 diabetes mellitus and its complications. This review article highlights the antioxidant, anti-inflammatory, and antidiabetic properties of the Nymphaea species, and the screening of such aquatic plants for antiglycation activity may provide a safer alternative to the adverse effects related to glucotoxicity. Since oxidation and glycation are relatively similar to each other, therefore, there is a possibility that the Nymphaea species may also have antiglycating properties because of its powerful antioxidant properties. Herbal products and their derivatives are the preeminent resources showing prominent medicinal properties for most of the chronic diseases including type 2 diabetes mellitus. Among these, the Nymphaea species has also shown elevated activity in scavenging free radicals. This species has a load of phytochemical constituents which shows various therapeutic and nutritional value including anti-inflammatory and antioxidant profiles. To the best of our knowledge, this is the first article highlighting the possibility of an antiglycation value of the Nymphaea species by inhibiting AGEs in mediation of type 2 diabetes mellitus. We hope that in the next few years, the clinical and therapeutic potential may be explored and highlight a better perspective on the Nymphaea species in the inhibition of AGEs and its associated diseases such as type 2 diabetes mellitus.
Collapse
|
20
|
Gao L, Han S. Galectin Trafficking Pathway-Enabled Color-Switchable Detection of Lysosomal Membrane Permeabilization. Anal Chem 2021; 93:12639-12647. [PMID: 34491716 DOI: 10.1021/acs.analchem.1c02387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lysosomal membrane permeabilization (LMP) engaged in multiple human diseases is accompanied by relocation of cytosolic galectin into LMP+ lysosomes. We herein reported a galectin trafficking-targeted method to image LMP using two kinds of glyco-dendrimers, a sialic acid-terminated dendrimer labeled with pH-inert rhodamine and a lactose-terminated dendrimer labeled with fluorescein that becomes green-emissive in pH-elevated lysosomes. Albeit both accumulated in physiological lysosomes, the former is released from LMP+ lysosomes while the latter binds to galectin accumulated in LMP+ lysosomes and thus trapped in LMP+ lysosomes. Accordingly, LMP+ lysosomes exhibit loss of red fluorescence and turn-on green fluorescence due to loss of lysosomal acidity. This red-to-green color switch enables discernment of LMP+ lysosomes from physiological lysosomes and pH-elevated lysosomes and can be further utilized to detect LMP in distinct cell death pathways. These results suggest the utility of galectin trafficking pathway-integrated synthetic probes for detection of LMP, a key factor for diseased cells.
Collapse
Affiliation(s)
- Lei Gao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, and The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| | - Shoufa Han
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, and The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| |
Collapse
|
21
|
Chung S, Son M, Chae Y, Oh S, Koh ES, Kim YK, Shin SJ, Park CW, Jung SC, Kim HS. Fabry disease exacerbates renal interstitial fibrosis after unilateral ureteral obstruction via impaired autophagy and enhanced apoptosis. Kidney Res Clin Pract 2021; 40:208-219. [PMID: 34024086 PMCID: PMC8237117 DOI: 10.23876/j.krcp.20.264] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background Fabry disease is a rare X-linked genetic lysosomal disorder caused by mutations in the GLA gene encoding alpha-galactosidase A. Despite some data showing that profibrotic and proinflammatory cytokines and oxidative stress could be involved in Fabry disease-related renal injury, the pathogenic link between metabolic derangement within cells and renal injury remains unclear. Methods Renal fibrosis was triggered by unilateral ureteral obstruction (UUO) in mice with Fabry disease to investigate the pathogenic mechanism leading to fibrosis in diseased kidneys. Results Compared to kidneys of wild-type mice, lamellar inclusion bodies were recognized in proximal tubules of mice with Fabry disease. Sirius red and trichrome staining revealed significantly increased fibrosis in all UUO kidneys, though it was more prominent in obstructed Fabry kidneys. Renal messenger RNA levels of inflammatory cytokines and profibrotic factors were increased in all UUO kidneys compared to sham-operated kidneys but were not significantly different between UUO control and UUO Fabry mice. Protein levels of Nox2, Nox4, NQO1, catalase, SOD1, SOD2, and Nrf2 were not significantly different between UUO control and UUO Fabry kidneys, while the protein contents of LC3-II and LC3-I and expression of Beclin1 were significantly decreased in UUO kidneys of Fabry disease mouse models compared with wild-type mice. Notably, TUNEL-positive cells were elevated in obstructed kidneys of Fabry disease mice compared to wild-type control and UUO mice. Conclusion These findings suggest that impaired autophagy and enhanced apoptosis are probable mechanisms involved in enhanced renal fibrosis under the stimulus of UUO in Fabry disease.
Collapse
Affiliation(s)
- Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mina Son
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yura Chae
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Songhee Oh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Kyun Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
22
|
Shrestha S, Singhal S, Sens DA, Somji S, Davis BA, Guyer R, Breen S, Kalonick M, Garrett SH. Elevated glucose represses lysosomal and mTOR-related genes in renal epithelial cells composed of progenitor CD133+ cells. PLoS One 2021; 16:e0248241. [PMID: 33764985 PMCID: PMC7993790 DOI: 10.1371/journal.pone.0248241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Hyperglycemia is one of the major health concern in many parts of the world. One of the serious complications of high glucose levels is diabetic nephropathy. The preliminary microarray study performed on primary human renal tubular epithelial (hRTE) cells exposed to high glucose levels showed a significant downregulation of mTOR as well as its associated genes as well as lysosomal genes. Based on this preliminary data, the expression of various lysosomal genes as well as mTOR and its associated genes were analyzed in hRTE cells exposed to 5.5, 7.5, 11 and 16 mM glucose. The results validated the microarray analysis, which showed a significant decrease in the mRNA as well as protein expression of the selected genes as the concentration of glucose increased. Co-localization of lysosomal marker, LAMP1 with mTOR showed lower expression of mTOR as the glucose concentration increased, suggesting decrease in mTOR activity. Although the mechanism by which glucose affects the regulation of lysosomal genes is not well known, our results suggest that high levels of glucose may lead to decrease in mTOR expression causing the cells to enter an anabolic state with subsequent downregulation of lysosomal genes.
Collapse
Affiliation(s)
- Swojani Shrestha
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Sandeep Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Bethany A. Davis
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Rachel Guyer
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Spencer Breen
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Matthew Kalonick
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
23
|
Gu X, Yang H, Sheng X, Ko YA, Qiu C, Park J, Huang S, Kember R, Judy RL, Park J, Damrauer SM, Nadkarni G, Loos RJF, My VTH, Chaudhary K, Bottinger EP, Paranjpe I, Saha A, Brown C, Akilesh S, Hung AM, Palmer M, Baras A, Overton JD, Reid J, Ritchie M, Rader DJ, Susztak K. Kidney disease genetic risk variants alter lysosomal beta-mannosidase ( MANBA) expression and disease severity. Sci Transl Med 2021; 13:eaaz1458. [PMID: 33441424 PMCID: PMC8627675 DOI: 10.1126/scitranslmed.aaz1458] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/08/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023]
Abstract
More than 800 million people in the world suffer from chronic kidney disease (CKD). Genome-wide association studies (GWAS) have identified hundreds of loci where genetic variants are associated with kidney function; however, causal genes and pathways for CKD remain unknown. Here, we performed integration of kidney function GWAS and human kidney-specific expression quantitative trait analysis and identified that the expression of beta-mannosidase (MANBA) was lower in kidneys of subjects with CKD risk genotype. We also show an increased incidence of renal failure in subjects with rare heterozygous loss-of-function coding variants in MANBA using phenome-wide association analysis of 40,963 subjects with exome sequencing data. MANBA is a lysosomal gene highly expressed in kidney tubule cells. Deep phenotyping revealed structural and functional lysosomal alterations in human kidneys from subjects with CKD risk alleles and mice with genetic deletion of Manba Manba heterozygous and knockout mice developed more severe kidney fibrosis when subjected to toxic injury induced by cisplatin or folic acid. Manba loss altered multiple pathways, including endocytosis and autophagy. In the absence of Manba, toxic acute tubule injury induced inflammasome activation and fibrosis. Together, these results illustrate the convergence of common noncoding and rare coding variants in MANBA in kidney disease development and demonstrate the role of the endolysosomal system in kidney disease development.
Collapse
Affiliation(s)
- Xiangchen Gu
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Nephrology, Yueyang Hospital of Integrative Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hongliu Yang
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xin Sheng
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi-An Ko
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengxiang Qiu
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jihwan Park
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shizheng Huang
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel Kember
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Renae L Judy
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Joseph Park
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott M Damrauer
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Girish Nadkarni
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Hasso Plattner Institute of Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vy Thi Ha My
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kumardeep Chaudhary
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erwin P Bottinger
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Hasso Plattner Institute of Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ishan Paranjpe
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aparna Saha
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher Brown
- Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shreeram Akilesh
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Adriana M Hung
- Nashville VA Medical Center, Nashville, TN 37212, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Matthew Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aris Baras
- Regeneron Genetics Center (RGC), 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - John D Overton
- Regeneron Genetics Center (RGC), 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - Jeffrey Reid
- Regeneron Genetics Center (RGC), 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - Marylyn Ritchie
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Rader
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katalin Susztak
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Festa BP, Berquez M, Nieri D, Luciani A. Endolysosomal Disorders Affecting the Proximal Tubule of the Kidney: New Mechanistic Insights and Therapeutics. Rev Physiol Biochem Pharmacol 2021; 185:233-257. [PMID: 33649992 DOI: 10.1007/112_2020_57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Epithelial cells that line the proximal tubule of the kidney rely on an intertwined ecosystem of vesicular membrane trafficking pathways to ensure the reabsorption of essential nutrients. To function effectively and to achieve homeostasis, these specialized cells require the sorting and recycling of a wide array of cell surface proteins within the endolysosomal network, including signaling receptors, nutrient transporters, ion channels, and polarity markers. The dysregulation of the endolysosomal system can lead to a generalized proximal tubule dysfunction, ultimately causing severe metabolic complications and kidney disease.In this chapter, we highlight the biological functions of the genes that code endolysosomal proteins from the perspective of understanding - and potentially reversing - the pathophysiology of endolysosomal disorders affecting the proximal tubule of the kidney. These insights might ultimately lead to potential treatments for currently intractable diseases and transform our ability to regulate kidney homeostasis and health.
Collapse
Affiliation(s)
- Beatrice Paola Festa
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Marine Berquez
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Daniela Nieri
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Alessandro Luciani
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Zhang E, Shi Y, Han J, Han S. Organelle-Directed Metabolic Glycan Labeling and Optical Tracking of Dysfunctional Lysosomes Thereof. Anal Chem 2020; 92:15059-15068. [PMID: 33140967 DOI: 10.1021/acs.analchem.0c03029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolic glycan labeling (MGL) has been employed for diverse purposes, such as cell surface glycan imaging and tumor surface engineering. We herein reported organelle-specific MGL (OMGL) for selective tagging of the inner limiting membrane of lysosomes over the cell surface. This is operated via acidity-promoted accumulation of optical probes in lysosomes and bioorthogonal ligation of the trapped probes with 9-azidosialic acid (AzSia) metabolically installed on lysosomal membrane proteins. Overcoming the limitation of classical organelle probes to dissipate from stressed organelles, OMGL enables optical tracking of pH-elevated lysosomes in exocytosis and membrane-permeabilized lysosomes in different cell death pathways. Thus, OMGL offers a new tool to study lysosome biology.
Collapse
Affiliation(s)
- Enkang Zhang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces and The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Yilong Shi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Shoufa Han
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces and The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, Fujian Province 361005, China
| |
Collapse
|
26
|
Yun HR, Jo YH, Kim J, Nguyen NNY, Shin Y, Kim SS, Choi TG. Palmitoyl Protein Thioesterase 1 Is Essential for Myogenic Autophagy of C2C12 Skeletal Myoblast. Front Physiol 2020; 11:569221. [PMID: 33178040 PMCID: PMC7593845 DOI: 10.3389/fphys.2020.569221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023] Open
Abstract
Skeletal muscle differentiation is an essential process for the maintenance of muscle development and homeostasis. Reactive oxygen species (ROS) are critical signaling molecules involved in muscle differentiation. Palmitoyl protein thioesterase 1 (PPT1), a lysosomal enzyme, is involved in removing thioester-linked fatty acid groups from modified cysteine residues in proteins. However, the role of PPT1 in muscle differentiation remains to be elucidated. Here, we found that PPT1 plays a critical role in the differentiation of C2C12 skeletal myoblasts. The expression of PPT1 gradually increased in response to mitochondrial ROS (mtROS) during muscle differentiation, which was attenuated by treatment with antioxidants. Moreover, we revealed that PPT1 transactivation occurs through nuclear factor erythroid 2-regulated factor 2 (Nrf2) binding the antioxidant response element (ARE) in its promoter region. Knockdown of PPT1 with specific small interference RNA (siRNA) disrupted lysosomal function by increasing its pH. Subsequently, it caused excessive accumulation of autophagy flux, thereby impairing muscle fiber formation. In conclusion, we suggest that PPT1 is factor a responsible for myogenic autophagy in differentiating C2C12 myoblasts.
Collapse
Affiliation(s)
- Hyeong Rok Yun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Jieun Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Ngoc Ngo Yen Nguyen
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Sung Soo Kim,
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
- Tae Gyu Choi,
| |
Collapse
|
27
|
Jing X, Yu F, Lin W. A fluorescent probe for specific detection of cysteine in lysosomes via dual-color mode imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118555. [PMID: 32516703 DOI: 10.1016/j.saa.2020.118555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Biothiols, as part of the reactive sulfur species (RSS), are a class of bioactive molecules that play important physiological roles in human body. However, due to the similarity in structure and reaction sites of biothiols, it is difficult to differentiated detection them at the same time. In this work, a fluorescent probe CM-NBD combined coumarin derivative and 7-nitrobenzofurazan has been developed, which can effectively detect biothiols through simple ether cleavage. Because of a specific location group, CM-NBD can well localize in lysosomes with a high co-localization coefficient. Interesting, due to the weakly acidic environment of lysosomes, Cys can be distinguished from Hcy/GSH and H2S via dual-color mode. The probe is able not only to image exogenous biothiols but also to discriminate Cys from Hcy/GSH and H2S in cells and zebrafish model.
Collapse
Affiliation(s)
- Xinying Jing
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Faqi Yu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China.
| |
Collapse
|
28
|
Stroup BM, Marom R, Li X, Hsu CW, Chang CY, Truong LD, Dawson B, Grafe I, Chen Y, Jiang MM, Lanza D, Green JR, Sun Q, Barrish JP, Ani S, Christiansen AE, Seavitt JR, Dickinson ME, Kheradmand F, Heaney JD, Lee B, Burrage LC. A global Slc7a7 knockout mouse model demonstrates characteristic phenotypes of human lysinuric protein intolerance. Hum Mol Genet 2020; 29:2171-2184. [PMID: 32504080 PMCID: PMC7399531 DOI: 10.1093/hmg/ddaa107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Lysinuric protein intolerance (LPI) is an inborn error of cationic amino acid (arginine, lysine, ornithine) transport caused by biallelic pathogenic variants in SLC7A7, which encodes the light subunit of the y+LAT1 transporter. Treatments for the complications of LPI, including growth failure, renal disease, pulmonary alveolar proteinosis, autoimmune disorders and osteoporosis, are limited. Given the early lethality of the only published global Slc7a7 knockout mouse model, a viable animal model to investigate global SLC7A7 deficiency is needed. Hence, we generated two mouse models with global Slc7a7 deficiency (Slc7a7em1Lbu/em1Lbu; Slc7a7Lbu/Lbu and Slc7a7em1(IMPC)Bay/em1(IMPC)Bay; Slc7a7Bay/Bay) using CRISPR/Cas9 technology by introducing a deletion of exons 3 and 4. Perinatal lethality was observed in Slc7a7Lbu/Lbu and Slc7a7Bay/Bay mice on the C57BL/6 and C57BL/6NJ inbred genetic backgrounds, respectively. We noted improved survival of Slc7a7Lbu/Lbu mice on the 129 Sv/Ev × C57BL/6 F2 background, but postnatal growth failure occurred. Consistent with human LPI, these Slc7a7Lbu/Lbu mice exhibited reduced plasma and increased urinary concentrations of the cationic amino acids. Histopathological assessment revealed loss of brush border and lipid vacuolation in the renal cortex of Slc7a7Lbu/Lbu mice, which combined with aminoaciduria suggests proximal tubular dysfunction. Micro-computed tomography of L4 vertebrae and skeletal radiographs showed delayed skeletal development and suggested decreased mineralization in Slc7a7Lbu/Lbu mice, respectively. In addition to delayed skeletal development and delayed development in the kidneys, the lungs and liver were observed based on histopathological assessment. Overall, our Slc7a7Lbu/Lbu mouse model on the F2 mixed background recapitulates multiple human LPI phenotypes and may be useful for future studies of LPI pathology.
Collapse
Affiliation(s)
- Bridget M Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cheng-Yen Chang
- Department of Medicine-Pulmonary, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luan D Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Center for Healthy Aging, University Clinic, Dresden D-01307, Germany
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennie Rose Green
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - J P Barrish
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Safa Ani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Department of Medicine-Pulmonary, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
29
|
Ahn HS, Kim JH, Jeong H, Yu J, Yeom J, Song SH, Kim SS, Kim IJ, Kim K. Differential Urinary Proteome Analysis for Predicting Prognosis in Type 2 Diabetes Patients with and without Renal Dysfunction. Int J Mol Sci 2020; 21:ijms21124236. [PMID: 32545899 PMCID: PMC7352871 DOI: 10.3390/ijms21124236] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022] Open
Abstract
Renal dysfunction, a major complication of type 2 diabetes, can be predicted from estimated glomerular filtration rate (eGFR) and protein markers such as albumin concentration. Urinary protein biomarkers may be used to monitor or predict patient status. Urine samples were selected from patients enrolled in the retrospective diabetic kidney disease (DKD) study, including 35 with good and 19 with poor prognosis. After removal of albumin and immunoglobulin, the remaining proteins were reduced, alkylated, digested, and analyzed qualitatively and quantitatively with a nano LC-MS platform. Each protein was identified, and its concentration normalized to that of creatinine. A prognostic model of DKD was formulated based on the adjusted quantities of each protein in the two groups. Of 1296 proteins identified in the 54 urine samples, 66 were differentially abundant in the two groups (area under the curve (AUC): p-value < 0.05), but none showed significantly better performance than albumin. To improve the predictive power by multivariate analysis, five proteins (ACP2, CTSA, GM2A, MUC1, and SPARCL1) were selected as significant by an AUC-based random forest method. The application of two classifiers—support vector machine and random forest—showed that the multivariate model performed better than univariate analysis of mucin-1 (AUC: 0.935 vs. 0.791) and albumin (AUC: 1.0 vs. 0.722). The urinary proteome can reflect kidney function directly and can predict the prognosis of patients with chronic kidney dysfunction. Classification based on five urinary proteins may better predict the prognosis of DKD patients than urinary albumin concentration or eGFR.
Collapse
Affiliation(s)
- Hee-Sung Ahn
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
| | - Jong Ho Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - Hwangkyo Jeong
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul 05505, Korea;
| | - Sang Heon Song
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - Sang Soo Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - In Joo Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
- Correspondence: (I.J.K.); (K.K.); Tel.: +82-51-240-7224 (I.J.K.); +82-2-1688-7575 (K.K.)
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Clinical Proteomics Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Seoul 05505, Korea
- Bio-Medical Institute of Technology, Asan Medical Center, Seoul 05505, Korea
- Correspondence: (I.J.K.); (K.K.); Tel.: +82-51-240-7224 (I.J.K.); +82-2-1688-7575 (K.K.)
| |
Collapse
|
30
|
New zebrafish model for monitoring proximal tubule physiology in genetic and acquired renal Fanconi syndromes. Kidney Int 2020; 97:1097-1099. [PMID: 32444088 DOI: 10.1016/j.kint.2020.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 11/22/2022]
Abstract
Inherited and acquired disorders that affect proximal tubule endocytosis and lysosomal processing manifest with improper loss of solutes and proteins. The zebrafish pronephros is conserved with humans and is used to model numerous renal conditions, but has few quantitative measures for proximal tubule function. Here, Chen et al. developed a high-throughput assay to quantify proteinuria and lysosomal processing in transgenic zebrafish by labeling vitamin D protein, allowing for precise reporting of proximal tubule function.
Collapse
|
31
|
Wimalawansa SJ. Renal tubular lysosomal vacuoles are a generic toxic manifestation and not particularly associated with agrochemicals and heavy metal toxicity or specific to a disease. Kidney Int 2020; 97:1058. [DOI: 10.1016/j.kint.2020.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
|
32
|
Hua W, Zhao J, Wang X, Pei S, Gou S. A lysosome specific theranostic NO donor inhibits cancer cells by stimuli responsive molecular self-decomposition with an on-demand fluorescence pattern. Analyst 2019; 144:6681-6688. [PMID: 31599280 DOI: 10.1039/c9an01746a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anticancer mechanism of NO is difficult to study owing to its short lifetime and high reactivity. Thus, a theranostic anticancer NO donor assembled with NO on-demand release abilities, accurate lysosome location capabilities and signal feedback behavior was developed. Profiting from the theranostic properties, the specific mechanism was comprehensively studied. Spectral and cell imaging studies revealed that the as prepared NO donors could release NO in solution or within cancer cells. Fluorescence co-dyeing experiments demonstrated that Mo-Nap-NO entered lysosomes specifically and disrupted them after being triggered by light. Upon irradiation with 460 nm visible light, both the donors demonstrated considerable in vitro anticancer effects. A further mechanistic study showed that after entering the lysosome and being triggered by 460 nm irradiation, NO ruptured the lysosome, resulting in the release of cathepsin D into the cytosol, which activated the caspase3 mediated apoptosis pathway.
Collapse
Affiliation(s)
- Wuyang Hua
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Jian Zhao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Sinan Pei
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
33
|
Long Z, Chen L, Dang Y, Chen D, Lou X, Xia F. An ultralow concentration of two-photon fluorescent probe for rapid and selective detection of lysosomal cysteine in living cells. Talanta 2019; 204:762-768. [PMID: 31357363 DOI: 10.1016/j.talanta.2019.06.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/01/2019] [Accepted: 06/17/2019] [Indexed: 02/01/2023]
Abstract
Herein we reported a two-photon (TP) fluorescence "turn-on" probe MNPO, exhibiting high selectivity and sensitivity towards intracellular cysteine (Cys) with excellent lysosomal localization. The probe displayed fast response towards Cys over homocysteine (Hcy), glutathione (GSH), and other various analytes under physiological conditions. Low cytotoxicity made it successful for TP imaging of Cys in HeLa cells with an ultralow probe concentration of 250 nM, and a rapid response of only 10 min. Simultaneously, colocalization experiments in lysosome demonstrated its ability for specific in situ detection of lysosomal Cys in living cells, which shed light on its potential applications in biomedical applications. Beyond that MNPO was successfully applied for TP imaging of Cys in mice organ tissues such as heart, liver, and spleen, and the penetration depth of mice heart tissue was up to 184 μm, which disclosed the predominant TP characteristic. We believe that this study will provide some useful information toward diagnosis and treatment of pathogenesis associated with Cys or lysosomes in future.
Collapse
Affiliation(s)
- Zi Long
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Li Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Yecheng Dang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
34
|
Ren Y, Zhang L, Zhou Z, Luo Y, Wang S, Yuan S, Gu Y, Xu Y, Zha X. A new lysosome-targetable fluorescent probe with a large Stokes shift for detection of endogenous hydrogen polysulfides in living cells. Anal Chim Acta 2019; 1056:117-124. [DOI: 10.1016/j.aca.2018.12.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022]
|
35
|
Zhang H, Xu L, Li W, Chen W, Xiao Q, Huang J, Huang C, Sheng J, Song X. A lysosome-targetable fluorescent probe for the simultaneous sensing of Cys/Hcy and GSH from different emission channels. RSC Adv 2019; 9:7955-7960. [PMID: 35521186 PMCID: PMC9061761 DOI: 10.1039/c9ra00210c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
Abstract
A lysosome-specific fluorescent probe, Lyso-AC, for biothiols was developed by incorporation of a 4-nitrophenol moiety into a coumarin dye. The Cys/Hcy-triggered substitution-rearrangement cascade, and GSH-induced substitution reaction lead to the corresponding blue emissive amino-coumarin and yellow emissive thiol-coumarin, thereby enabling Cys/Hcy and GSH detection from distinct emissions. Moreover, this probe displayed an excellent lysosome targeting property with a 0.92 Pearson's colocalization coefficient by using Neutral Red as a reference. Significantly, biological experiments indicated Lyso-AC has the potential to monitor lysosome Cys/Hcy and GSH simultaneously in living HeLa cells from distinct emissions.
Collapse
Affiliation(s)
- Hui Zhang
- College of Chemistry and Materials Science, Guangxi Key Laboratry of Natural Polymer Chemistry and Physics, Nanning Normal University Nanning 530001 P. R. China +86 771 3908065 +86 771 3908065
- College of Chemistry & Chemical Engineering, Central South University Changsha Hunan 410083 P. R. China
| | - Lizhen Xu
- College of Chemistry and Materials Science, Guangxi Key Laboratry of Natural Polymer Chemistry and Physics, Nanning Normal University Nanning 530001 P. R. China +86 771 3908065 +86 771 3908065
| | - Wenxiu Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University 541004 Guilin Guangxi P. R. China
| | - Wenqiang Chen
- College of Chemistry and Materials Science, Guangxi Key Laboratry of Natural Polymer Chemistry and Physics, Nanning Normal University Nanning 530001 P. R. China +86 771 3908065 +86 771 3908065
| | - Qi Xiao
- College of Chemistry and Materials Science, Guangxi Key Laboratry of Natural Polymer Chemistry and Physics, Nanning Normal University Nanning 530001 P. R. China +86 771 3908065 +86 771 3908065
| | - Jun Huang
- College of Chemistry and Materials Science, Guangxi Key Laboratry of Natural Polymer Chemistry and Physics, Nanning Normal University Nanning 530001 P. R. China +86 771 3908065 +86 771 3908065
| | - Chusheng Huang
- College of Chemistry and Materials Science, Guangxi Key Laboratry of Natural Polymer Chemistry and Physics, Nanning Normal University Nanning 530001 P. R. China +86 771 3908065 +86 771 3908065
| | - Jiarong Sheng
- College of Chemistry and Materials Science, Guangxi Key Laboratry of Natural Polymer Chemistry and Physics, Nanning Normal University Nanning 530001 P. R. China +86 771 3908065 +86 771 3908065
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University Changsha Hunan 410083 P. R. China
| |
Collapse
|
36
|
Chu XH, Yang TT, Liu Y, Hong L, Jiao T, Meng X, Zhang DZ, Wang JL, Tang BP, Zhou CL, Liu QN, Zhang WW, He WF. Transcriptome analysis of differential expressed genes in hepatopancreas of Procambarus clarkii challenged with peptidoglycan. FISH & SHELLFISH IMMUNOLOGY 2019; 86:311-318. [PMID: 30465916 DOI: 10.1016/j.fsi.2018.11.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Procambarus clarkii is one of the most economically important species in Chinese aquaculture, and is widely cultured. Infection of P. clarkii populations with bacterial pathogens causes high mortality and great economic loss, therefore disease control is of significant economic importance. P. clarkii is a model system for studying immune responses in invertebrates, and its immune system consists solely of the innate response. In the present study, we examined gene expression related to immune function in P. clarkii in response to pathogen challenge. The transcriptome of hepatopancreas tissue from P. clarkii challenged with peptidoclycan (PGN) was analyzed and compared to control specimens. After assembly and annotation, 48,661 unigenes were identified with an average length of 671.54 bp. A total of 2533 differentially expressed genes (DEGs) were obtained, including 765 significantly up-regulated unigenes and 1757 significantly down-regulated unigenes. Gene ontology (GO) analysis demonstrated 19 biological process subcategories, 16 cellular component subcategories, and 17 molecular function subcategories that were enriched among these DEGs. Enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed enrichment among immune responses pathways. Taken together, this study not only enriches the existing P. clarkii transcriptome database, but also elucidates immune responses of crayfish that are activated in response to PGN challenge.
Collapse
Affiliation(s)
- Xiao-Hua Chu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Liang Hong
- Department of Infectious Disease, Ruian People's Hospital, Wenzhou, Zhejiang, 325200, PR China
| | - Ting Jiao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Xun Meng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Jia-Lian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China.
| | - Wei-Wei Zhang
- Department of Infectious Disease, Ruian People's Hospital, Wenzhou, Zhejiang, 325200, PR China.
| | - Wen-Fei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
37
|
Wang Y, Liu L, Zhou XL, Wu MY. Lysosome-Targeted Single Fluorescence Probe for Two-Channel Imaging Intracellular SO₂ and Biothiols. Molecules 2019; 24:E618. [PMID: 30754613 PMCID: PMC6384543 DOI: 10.3390/molecules24030618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
As the members of reactive sulfur species, SO₂ and biothiols play a significant role in physiological and pathological processes and directly influence numerous diseases. Furthermore, SO₂ and biothiols can provide a reductive environment for lysosomes to carry out their optimal functionality. To this end, the development of single fluorescent probes for imaging SO₂ and biothiols from different emission channels is highly desirable for understanding their physiological nature. Here, a lysosome-targeted fluorescent probe (BPO-DNSP) with a dual reaction site for SO₂ and biothiols was presented. BPO-DNSP can sensitively and selectively respond to SO₂ in the green channel with a large Stokes shift over 105 nm, and to biothiols in the near-infrared emission channel with a large Stokes shift over 109 nm. The emission shift for the two channels was as high as 170 nm. Colocalization experiments verified that BPO-DNSP can selectively enrich lysosomes. Notably, BPO-DNSP can not only be used to image intracellular SO₂ and biothiols from two different channels, but also to monitor the conversion of biothiols to SO₂ without adding exogenous enzymes in living HeLa cells.
Collapse
Affiliation(s)
- Yue Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Li Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Ming-Yu Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
38
|
A lysosome-targeting nanosensor for simultaneous fluorometric imaging of intracellular pH values and temperature. Mikrochim Acta 2018; 185:533. [DOI: 10.1007/s00604-018-3040-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
|
39
|
Burkovetskaya M, Bosch ME, Karpuk N, Fallet R, Kielian T. Caspase 1 activity influences juvenile Batten disease (CLN3) pathogenesis. J Neurochem 2018; 148:652-668. [PMID: 29873075 DOI: 10.1111/jnc.14480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) is an autosomal recessive lysosomal storage disease caused by loss-of-function mutations in CLN3. Symptoms appear between 5 and 10 years of age, beginning with blindness and seizures, followed by progressive cognitive and motor decline, and premature death. Glial activation and impaired neuronal activity are early signs of pathology in the Cln3Δex7/8 mouse model of JNCL, whereas neuron death occurs much later in the disease process. We previously reported that Cln3Δex7/8 microglia are primed toward a pro-inflammatory phenotype typified by exaggerated caspase 1 inflammasome activation and here we extend those findings to demonstrate heightened caspase activity in the Cln3Δex7/8 mouse brain. Based on the ability of caspase 1 to cleave a large number of substrates that have been implicated in JNCL pathology, we examined the functional implications of caspase 1 inflammasome activity by crossing Cln3Δex7/8 and caspase 1-deficient mice to create Cln3Δex7/8 /Casp-1-/- animals. Caspase 1 deletion influenced motor behavior deficits and astrocyte activation in the context of CLN3 mutation, since both were significantly reversed in Cln3Δex7/8 /Casp-1-/- mice, with phenotypes approaching that of wild-type animals. We also report a progressive age-dependent reduction in whisker length in Cln3Δex7/8 mice that was partially caspase 1-dependent. However, not all CLN3 phenotypes were reversed following caspase 1 deletion, since no significant differences in lysosomal accumulation or microglial activation were observed between Cln3Δex7/8 and Cln3Δex7/8 /Casp-1-/- mice. Although the molecular targets of aberrant caspase 1 activity in the context of CLN3 mutation remain to be identified, our studies suggest that caspase 1 may represent a potential therapeutic target to mitigate some attributes of CLN3 disease. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Maria Burkovetskaya
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Megan E Bosch
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nikolay Karpuk
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rachel Fallet
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
40
|
Wu MY, Wang Y, Liu YH, Yu XQ. Dual-site lysosome-targeted fluorescent probe for separate detection of endogenous biothiols and SO2 in living cells. J Mater Chem B 2018; 6:4232-4238. [DOI: 10.1039/c8tb01152d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel lysosome-targeted fluorescent probe was developed for the separate detection of endogenous biothiols and SO2 in living cells.
Collapse
Affiliation(s)
- Ming-Yu Wu
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yue Wang
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
41
|
Cocchiaro P, De Pasquale V, Della Morte R, Tafuri S, Avallone L, Pizard A, Moles A, Pavone LM. The Multifaceted Role of the Lysosomal Protease Cathepsins in Kidney Disease. Front Cell Dev Biol 2017; 5:114. [PMID: 29312937 PMCID: PMC5742100 DOI: 10.3389/fcell.2017.00114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Kidney disease is worldwide the 12th leading cause of death affecting 8–16% of the entire population. Kidney disease encompasses acute (short-lasting episode) and chronic (developing over years) pathologies both leading to renal failure. Since specific treatments for acute or chronic kidney disease are limited, more than 2 million people a year require dialysis or kidney transplantation. Several recent evidences identified lysosomal proteases cathepsins as key players in kidney pathophysiology. Cathepsins, originally found in the lysosomes, exert important functions also in the cytosol and nucleus of cells as well as in the extracellular space, thus participating in a wide range of physiological and pathological processes. Based on their catalytic active site residue, the 15 human cathepsins identified up to now are classified in three different families: serine (cathepsins A and G), aspartate (cathepsins D and E), or cysteine (cathepsins B, C, F, H, K, L, O, S, V, X, and W) proteases. Specifically in the kidney, cathepsins B, D, L and S have been shown to regulate extracellular matrix homeostasis, autophagy, apoptosis, glomerular permeability, endothelial function, and inflammation. Dysregulation of their expression/activity has been associated to the onset and progression of kidney disease. This review summarizes most of the recent findings that highlight the critical role of cathepsins in kidney disease development and progression. A better understanding of the signaling pathways governed by cathepsins in kidney physiopathology may yield novel selective biomarkers or therapeutic targets for developing specific treatments against kidney disease.
Collapse
Affiliation(s)
- Pasquale Cocchiaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Faculty of Medicine, Institut National de la Santé Et de la Recherche Médicale, "Défaillance Cardiaque Aigüe et Chronique", Nancy, France.,Université de Lorraine, Nancy, France.,Institut Lorrain du Coeur et des Vaisseaux, Center for Clinical Investigation 1433, Nancy, France.,CHRU de Nancy, Hôpitaux de Brabois, Nancy, France
| | - Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rossella Della Morte
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Anne Pizard
- Faculty of Medicine, Institut National de la Santé Et de la Recherche Médicale, "Défaillance Cardiaque Aigüe et Chronique", Nancy, France.,Université de Lorraine, Nancy, France.,Institut Lorrain du Coeur et des Vaisseaux, Center for Clinical Investigation 1433, Nancy, France.,CHRU de Nancy, Hôpitaux de Brabois, Nancy, France
| | - Anna Moles
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
42
|
Ko YA, Yi H, Qiu C, Huang S, Park J, Ledo N, Köttgen A, Li H, Rader DJ, Pack MA, Brown CD, Susztak K. Genetic-Variation-Driven Gene-Expression Changes Highlight Genes with Important Functions for Kidney Disease. Am J Hum Genet 2017; 100:940-953. [PMID: 28575649 DOI: 10.1016/j.ajhg.2017.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/05/2017] [Indexed: 01/22/2023] Open
Abstract
Chronic kidney disease (CKD) is a complex gene-environmental disease affecting close to 10% of the US population. Genome-wide association studies (GWASs) have identified sequence variants, localized to non-coding genomic regions, associated with kidney function. Despite these robust observations, the mechanism by which variants lead to CKD remains a critical unanswered question. Expression quantitative trait loci (eQTL) analysis is a method to identify genetic variation associated with gene expression changes in specific tissue types. We hypothesized that an integrative analysis combining CKD GWAS and kidney eQTL results can identify candidate genes for CKD. We performed eQTL analysis by correlating genotype with RNA-seq-based gene expression levels in 96 human kidney samples. Applying stringent statistical criteria, we detected 1,886 genes whose expression differs with the sequence variants. Using direct overlap and Bayesian methods, we identified new potential target genes for CKD. With respect to one of the target genes, lysosomal beta A mannosidase (MANBA), we observed that genetic variants associated with MANBA expression in the kidney showed statistically significant colocalization with variants identified in CKD GWASs, indicating that MANBA is a potential target gene for CKD. The expression of MANBA was significantly lower in kidneys of subjects with risk alleles. Suppressing manba expression in zebrafish resulted in renal tubule defects and pericardial edema, phenotypes typically induced by kidney dysfunction. Our analysis shows that gene-expression changes driven by genetic variation in the kidney can highlight potential new target genes for CKD development.
Collapse
|
43
|
Feng W, Mao Z, Liu L, Liu Z. A ratiometric two-photon fluorescent probe for imaging hydrogen sulfide in lysosomes. Talanta 2017; 167:134-142. [DOI: 10.1016/j.talanta.2017.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
|
44
|
Gao Q, Zhang W, Song B, Zhang R, Guo W, Yuan J. Development of a Novel Lysosome-Targeted Ruthenium(II) Complex for Phosphorescence/Time-Gated Luminescence Assay of Biothiols. Anal Chem 2017; 89:4517-4524. [DOI: 10.1021/acs.analchem.6b04925] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Quankun Gao
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wenzhu Zhang
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Run Zhang
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Weihua Guo
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
45
|
A probable new syndrome with the storage disease phenotype caused by the VPS33A gene mutation. Clin Dysmorphol 2017; 26:1-12. [DOI: 10.1097/mcd.0000000000000149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Yamamoto-Nonaka K, Koike M, Asanuma K, Takagi M, Oliva Trejo JA, Seki T, Hidaka T, Ichimura K, Sakai T, Tada N, Ueno T, Uchiyama Y, Tomino Y. Cathepsin D in Podocytes Is Important in the Pathogenesis of Proteinuria and CKD. J Am Soc Nephrol 2016; 27:2685-700. [PMID: 26823550 DOI: 10.1681/asn.2015040366] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 11/30/2015] [Indexed: 12/24/2022] Open
Abstract
Studies have revealed many analogies between podocytes and neurons, and these analogies may be key to elucidating the pathogenesis of podocyte injury. Cathepsin D (CD) is a representative aspartic proteinase in lysosomes. Central nervous system neurons in CD-deficient mice exhibit a form of lysosomal storage disease with a phenotype resembling neuronal ceroid lipofuscinoses. In the kidney, the role of CD in podocytes has not been fully explored. Herein, we generated podocyte-specific CD-knockout mice that developed proteinuria at 5 months of age and ESRD by 20-22 months of age. Immunohistochemical analysis of these mice showed apoptotic podocyte death followed by proteinuria and glomerulosclerosis with aging. Using electron microscopy, we identified, in podocytes, granular osmiophilic deposits (GRODs), autophagosome/autolysosome-like bodies, and fingerprint profiles, typical hallmarks of CD-deficient neurons. CD deficiency in podocytes also led to the cessation of autolysosomal degradation and accumulation of proteins indicative of autophagy impairment and the mitochondrial ATP synthase subunit c accumulation in the GRODs, again similar to changes reported in CD-deficient neurons. Furthermore, both podocin and nephrin, two essential components of the slit diaphragm, translocated to Rab7- and lysosome-associated membrane glycoprotein 1-positive amphisomes/autolysosomes that accumulated in podocyte cell bodies in podocyte-specific CD-knockout mice. We hypothesize that defective lysosomal activity resulting in foot process effacement caused this accumulation of podocin and nephrin. Overall, our results suggest that loss of CD in podocytes causes autophagy impairment, triggering the accumulation of toxic subunit c-positive lipofuscins as well as slit diaphragm proteins followed by apoptotic cell death.
Collapse
Affiliation(s)
- Kanae Yamamoto-Nonaka
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | - Katsuhiko Asanuma
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; TMK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miyuki Takagi
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | - Takuto Seki
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Teruo Hidaka
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | | | - Norihiro Tada
- Division of Genome Research, Research Institute for Diseases of Old Ages
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan; and
| | - Yasuhiko Tomino
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan;
| |
Collapse
|
47
|
A Two-Photon Fluorescent Probe for Lysosomal Thiols in Live Cells and Tissues. Sci Rep 2016; 6:19562. [PMID: 26794434 PMCID: PMC4726187 DOI: 10.1038/srep19562] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022] Open
Abstract
Lysosome-specific fluorescent probes are exclusive to elucidate the functions of lysosomal thiols. Moreover, two-photon microscopy offers advantages of less phototoxicity, better three dimensional spatial localization, deeper penetration depth and lower self-absorption. However, such fluorescent probes for thiols are still rare. In this work, an efficient two-photon fluorophore 1,8-naphthalimide-based probe conjugating a 2,4-dinitrobenzenesulfonyl chloride and morpholine was designed and synthesized, which exhibited high selectivity and sensitivity towards lysosomal thiols by turn-on fluorescence method quantitatively and was successfully applied to the imaging of thiols in live cells and tissues by two-photon microscopy.
Collapse
|
48
|
Zou XJ, Ma YC, Guo LE, Liu WX, Liu MJ, Zou CG, Zhou Y, Zhang JF. A lysosome-targeted fluorescent chemodosimeter for monitoring endogenous and exogenous hydrogen sulfide by in vivo imaging. Chem Commun (Camb) 2014; 50:13833-6. [DOI: 10.1039/c4cc05539j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|