1
|
Long H, Liu M, Rao Z, Guan S, Chen X, Huang X, Cao L, Han R. RNA-Seq-Based Transcriptome Analysis of Chinese Cordyceps Aqueous Extracts Protective Effect against Adriamycin-Induced mpc5 Cell Injury. Int J Mol Sci 2024; 25:10352. [PMID: 39408685 PMCID: PMC11476491 DOI: 10.3390/ijms251910352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Pharmacogenomic analysis based on drug transcriptome characteristics is widely used to identify mechanisms of action. The purpose of this study was to elucidate the molecular mechanism of protective effect against adriamycin (ADM)-induced mpc5 cell injury of Chinese cordyceps aqueous extracts (WCCs) by a systematic transcriptomic analysis. The phytochemicals of WCCs were analyzed via the "phenol-sulfuric acid method", high-performance liquid chromatography (HPLC), and HPLC-mass spectrometry (MS). We analyzed the drug-reaction transcriptome profiles of mpc5 cell after treating them with WCCs. RNA-seq analysis revealed that WCCs alleviated ADM-induced mpc5 cell injury via restoring the expression of certain genes to normal level mainly in the one-carbon pool by the folate pathway, followed by the relaxin, apelin, PI3K-Akt, and nucleotide-binding, oligomerization domain (NOD)-like receptor signaling pathway, enhancing DNA synthesis and repair, cell proliferation, fibrosis reduction, and immune regulation. Otherwise, WCCs also modulated the proliferation and survival of the mpc5 cell by regulating metabolic pathways, and partially restores the expression of genes related to human disease pathways. These findings provide an innovative understanding of the molecular mechanism of the protective effect of WCCs on ADM-induced mpc5 cell injury at the molecular transcription level, and Mthfd2, Dhfr, Atf4, Creb5, Apln, and Serpine1, etc., may be potential novel targets for treating nephrotic syndrome.
Collapse
Affiliation(s)
- Hailin Long
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Mengzhen Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zhongchen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Shanyue Guan
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xiaotian Chen
- Center for Industrial Analysis and Testing, Guangdong Academy of Sciences, Guangzhou 510650, China;
| | - Xiaoting Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| |
Collapse
|
2
|
Yang Z, Chen L, Huang Y, Dong J, Yan Q, Li Y, Qiu J, Li H, Zhao D, Liu F, Tang D, Dai Y. Proteomic profiling of laser capture microdissection kidneys from diabetic nephropathy patients. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124231. [PMID: 38996754 DOI: 10.1016/j.jchromb.2024.124231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Diabetic nephropathy (DN) remains the primary cause of end-stage renal disease (ESRD), warranting equal attention and separate analysis of glomerular, tubular, and interstitial lesions in its diagnosis and intervention. This study aims to identify the specific proteomics characteristics of DN, and assess changes in the biological processes associated with DN. 5 patients with DN and 5 healthy kidney transplant donor control individuals were selected for analysis. The proteomic characteristics of glomeruli, renal tubules, and renal interstitial tissue obtained through laser capture microscopy (LCM) were studied using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Significantly, the expression of multiple heat shock proteins (HSPs), tubulins, and heterogeneous nuclear ribonucleoproteins (hnRNPs) in glomeruli and tubules was significantly reduced. Differentially expressed proteins (DEPs) in the glomerulus showed significant enrichment in pathways related to cell junctions and cell movement, including the regulation of actin cytoskeleton and tight junction. DEPs in renal tubules were significantly enriched in glucose metabolism-related pathways, such as glucose metabolism, glycolysis/gluconeogenesis, and the citric acid cycle. Moreover, the glycolysis/gluconeogenesis pathway was a co-enrichment pathway in both DN glomeruli and tubules. Notably, ACTB emerged as the most crucial protein in the protein-protein interaction (PPI) analysis of DEPs in both glomeruli and renal tubules. In this study, we delve into the unique proteomic characteristics of each sub-region of renal tissue. This enhances our understanding of the potential pathophysiological changes in DN, particularly the potential involvement of glycolysis metabolic disorder, glomerular cytoskeleton and cell junctions. These insights are crucial for further research into the identification of disease biomarkers and the pathogenesis of DN.
Collapse
Affiliation(s)
- Zhiqian Yang
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China; Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Liangmei Chen
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Yingxin Huang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; Department of Nephrology, Xiaolan People's Hospital of Zhongshan, 528400, China
| | - Jingjing Dong
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China; Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Qiang Yan
- Department of Organ Transplantation, 924 Hospital, Guilin 541002, China
| | - Ya Li
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Jing Qiu
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Haitao Li
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Da Zhao
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, China
| | - Fanna Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| | - Donge Tang
- Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People' s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China.
| | - Yong Dai
- Comprehensive Health Industry Research Center, Taizhou Research Institute, Southern University of Science and Technology, Taizhou 317000, China; The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, China.
| |
Collapse
|
3
|
Yang YW, Poudel B, Frederick J, Dhillon P, Shrestha R, Ma Z, Wu J, Okamoto K, Kopp JB, Booten SL, Gattis D, Watt AT, Palmer M, Aghajan M, Susztak K. Antisense oligonucleotides ameliorate kidney dysfunction in podocyte specific APOL1 risk variant mice. Mol Ther 2022; 30:2491-2504. [PMID: 35450819 DOI: 10.1016/j.ymthe.2022.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022] Open
Abstract
Coding variants (named G1 and G2) in Apolipoprotein L1 (APOL1) can explain the most excess risk of kidney disease observed in African Americans. It has been proposed that risk variant APOL1 dose, such as increased risk variant APOL1 level serves as a trigger (second hit) for disease development. The goal of this study was to determine whether lowering risk variant APOL1 levels protects from disease development in podocyte specific transgenic mouse disease model. We administered antisense oligonucleotides (ASO) targeting APOL1 to podocyte specific G2APOL1 mice and observed efficient reduction of APOL1 levels. APOL1 ASO1, which more efficiently lowered APOL1 transcript levels, protected mice from albuminuria, glomerulosclerosis, tubulointerstitial fibrosis, and renal failure. The administration of APOL1 ASO1 was effective even for established disease in the NEFTA-rtTA/TRE-G2APOL1 (NEFTA/G2APOL1) mice. We observed a strong correlation between APOL1 transcript level and disease severity. We concluded that an APOL1 ASO1 may be an effective therapeutic approach for APOL1-associated glomerular disease.
Collapse
Affiliation(s)
- Ya-Wen Yang
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Bibek Poudel
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Julia Frederick
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Poonam Dhillon
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Rojesh Shrestha
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ziyuan Ma
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Junnan Wu
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Koji Okamoto
- Kidney Disease Section, NIDDK, NIH, Bethesda, MD, USA
| | | | | | | | | | - Matthew Palmer
- Department of Pathology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Katalin Susztak
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Kitsou K, Askiti V, Mitsioni A, Spoulou V. The immunopathogenesis of idiopathic nephrotic syndrome: a narrative review of the literature. Eur J Pediatr 2022; 181:1395-1404. [PMID: 35098401 DOI: 10.1007/s00431-021-04357-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/21/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
UNLABELLED Idiopathic nephrotic syndrome (INS) is a common glomerular disease in childhood, and the immunological involvement in the pathogenesis of non-genetic INS, although not fully elucidated, is evident. This narrative review aims to offer a concise and in-depth view of the current knowledge on the immunological mechanisms of the development of INS as well as the role of the immunological components of the disease in the responsiveness to treatment. T cell immunity appears to play a major role in the INS immunopathogenesis and has been the first to be linked to the disease. Various T cell immunophenotypes are implicated in INS, including T-helper-1, T-helper-2, T-helper-17, and T regulatory cells, and various cytokines have been proposed as surrogate biomarkers of the disease; however, no distinct T helper or cytokine profile has been conclusively linked to the disease. More recently, the recognition of the role of B cell mediated immunity and the various B cell subsets that are dysregulated in patients with INS have led to new hypotheses on the underlying immunological causes of INS. Finally, the disambiguation of the exact mechanisms of the INS development in the future may be the key to the development of more targeted personalized approaches in managing INS. CONCLUSIONS INS demonstrates particularly interesting immunopathogenetic pathways, in which multiple interactions between T cell and B cell immunity and the podocyte are involved. The disambiguation of these pathways will provide promising novel therapeutic targets in INS. WHAT IS KNOWN • INS is the most common glomerular disease in the paediatric population, and its onset and relapses have been linked to various immunological triggers. • Multiple immunological mechanisms have been implicated in the pathogenesis of INS; however, no single distinct immunological profile has been recognized. WHAT IS NEW • Th17 cells and Treg cells play an important role in the immune dysregulation in INS. • Transitional B cell levels as well as the transitional/memory B cell ratio have been correlated to nephrotic relapses and have been proposed as biomarkers of INS relapses in SSNS patients.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Immunobiology and Vaccinology Research Laboratory, First Department of Paediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Varvara Askiti
- Department of Nephrology, "P. and A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andromachi Mitsioni
- Department of Nephrology, "P. and A. Kyriakou" Children's Hospital, Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, First Department of Paediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Teh YM, Mualif SA, Lim SK. A comprehensive insight into autophagy and its potential signaling pathways as a therapeutic target in podocyte injury. Int J Biochem Cell Biol 2021; 143:106153. [PMID: 34974186 DOI: 10.1016/j.biocel.2021.106153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
As part of the glomerular filtration membrane, podocyte is terminally differentiated, structurally unique, and highly specialized in maintaining kidney function. Proteinuria caused by podocyte injury (foot process effacement) is the clinical symptom of various kidney diseases (CKD), including nephrotic syndrome. Podocyte autophagy has become a powerful therapeutic strategy target in ameliorating podocyte injury. Autophagy is known to be associated significantly with sirtuin-1, proteinuria, and podocyte injury. Various key findings in podocyte autophagy were reported in the past ten years, such as the role of endoplasmic reticulum (ER) stress in podocyte autophagy impairment, podocyte autophagy-related gene, essential roles of the signaling pathways: Mammalian Target of Rapamycin (mTOR)/ Phosphoinositide 3-kinase (PI3k)/ serine/threonine kinase 1 (Akt) in podocyte autophagy. These significant factors caused podocyte injury associated with autophagy impairment. Sirtuin-1 was reported to have a vital key role in mTOR signaling, 5'AMP-activated protein kinase (AMPK) regulation, autophagy activation, and various critical pathways associated with podocyte's function and health; it has potential value to podocyte injury pathogenesis investigation. From these findings, podocyte autophagy has become an attractive therapeutic strategy to ameliorate podocyte injury, and this review will provide an in-depth review on therapeutic targets he podocyte autophagy.
Collapse
Affiliation(s)
- Yoong Mond Teh
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Siti Aisyah Mualif
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia; Medical Device and Technology Centre (MEDiTEC), Universiti Teknologi Malaysia, Malaysia
| | - Soo Kun Lim
- Renal Division, Department of Medicine, Faculty of Medicine, University of Malaya (UM), Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Prasad N, Singh H, Jaiswal A, Chaturvedi S, Agarwal V. Overexpression of P-glycoprotein and MRP-1 are pharmacogenomic biomarkers to determine steroid resistant phenotype in childhood idiopathic nephrotic syndrome. THE PHARMACOGENOMICS JOURNAL 2021; 21:566-573. [PMID: 34011975 DOI: 10.1038/s41397-021-00233-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 02/02/2023]
Abstract
Steroid remains the keystone therapy for Idiopathic Nephrotic Syndrome (NS). Besides genetic factors and histological changes, pharmacogenomic factors also affect the steroid response. The upregulation of P-glycoprotein (P-gp) and Multidrug resistance-associated protein 1 (MRP-1) modulate the pharmacokinetics of steroids and may contribute to steroid resistance. Flow-cytometric analysis of P-gp, MRP-1 expression and functional activity on peripheral blood mononuclear cells (PBMCs) was carried out in steroid-sensitive nephrotic syndrome (SSNS) (n = 171, male 103, mean age = 8.54 ± 4.3); and steroid-resistant nephrotic syndrome (SRNS) (n = 83, male 43, mean age = 7.43 ± 4.6) patients. The genotypings of MDR-1 gene were carried out using PCR-RFLP. We observed that the percentage expression of P-gp (10.01 ± 2.09 and 3.79 ± 1.13, p < 0.001); and MRP-1 (15.91 ± 3.99 and 7.40 ± 2.33, p < 0.001) on lymphocyte gated population were significantly higher in SRNS than that of SSNS. The functional activity of P-gp and MRP-1 was also significantly escalated in SRNS as compared to SSNS (68.10 ± 13.35 and 28.93 ± 7.57, p < 0.001); (72.13 ± 8.34 and 31.56 ± 8.65, p < 0.001) respectively. AUC-ROC curve analysis revealed that P-gp and MRP-1 expression with a cut-off value of 7.13% and 9.62% predicted SRNS with the sensitivity of 90% and 80.7%; and specificity 90% and 80%, respectively. Moreover, MDR-1 homozygous mutant TT+AA for G2677T/A (rs2032582) was significantly associated with SRNS (p = 0.025, OR = 2.86 CI = 1.14-7.14). The expression of P-gp (9.68 ± 4.99 v/s 5.88 ± 3.38, p = 0.002) was significantly higher in the patients of homozygous mutant alleles compared to wildtype GG. The increased expression and functionality of P-gp and MRP-1 contribute to steroid resistance, and MDR-1 homozygous mutant G2677T/A promotes steroid resistance by inducing P-gp expression in NS.
Collapse
Affiliation(s)
- Narayan Prasad
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Harshit Singh
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Akhilesh Jaiswal
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Saurabh Chaturvedi
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
7
|
CD80 Insights as Therapeutic Target in the Current and Future Treatment Options of Frequent-Relapse Minimal Change Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6671552. [PMID: 33506028 PMCID: PMC7806396 DOI: 10.1155/2021/6671552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022]
Abstract
Minimal change disease (MCD) is the most common cause of idiopathic nephrotic syndrome in children, and it is well known for its multifactorial causes which are the manifestation of the disease. Proteinuria is an early consequence of podocyte injury and a typical sign of kidney disease. Steroid-sensitive patients react well with glucocorticoids, but there is a high chance of multiple relapses. CD80, also known as B7-1, is generally expressed on antigen-presenting cells (APCs) in steroid-sensitive MCD patients. Various glomerular disease models associated with proteinuria demonstrated that the detection of CD80 with the increase of urinary CD80 was strongly associated closely with frequent-relapse MCD patients. The role of CD80 in MCD became controversial because one contradicts finding. This review covers the treatment alternatives for MCD with the insight of CD80 as a potential therapeutic target. The promising effectiveness of CD20 (rituximab) antibody and CD80 inhibitor (abatacept) encourages further investigation of CD80 as a therapeutic target in frequent-relapse MCD patients. Therapeutic-based antibody towards CD80 (galiximab) had never been investigated in MCD or any kidney-related disease; hence, the role of CD80 is still undetermined. A new therapeutic approach towards MCD is essential to provide broader effective treatment options besides the general immunosuppressive agents with gruesome adverse effects.
Collapse
|
8
|
Bersie-Larson LM, Gyoneva L, Goodman DJ, Dorfman KD, Segal Y, Barocas VH. Glomerular filtration and podocyte tensional homeostasis: importance of the minor type IV collagen network. Biomech Model Mechanobiol 2020; 19:2433-2442. [PMID: 32462439 PMCID: PMC7606712 DOI: 10.1007/s10237-020-01347-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/13/2020] [Indexed: 03/05/2023]
Abstract
The minor type IV collagen chain, which is a significant component of the glomerular basement membrane in healthy individuals, is known to assemble into large structures (supercoils) that may contribute to the mechanical stability of the collagen network and the glomerular basement membrane as a whole. The absence of the minor chain, as in Alport syndrome, leads to glomerular capillary demise and eventually to kidney failure. An important consideration in this problem is that the glomerular capillary wall must be strong enough to withstand the filtration pressure and porous enough to permit filtration at reasonable pressures. In this work, we propose a coupled feedback loop driven by filtration demand and tensional homeostasis of the podocytes forming the outer portion of the glomerular capillary wall. Briefly, the deposition of new collagen increases the stiffness of basement membrane, helping to stress shield the podocytes, but the new collagen also decreases the permeability of the basement membrane, requiring an increase in capillary transmural pressure drop to maintain filtration; the resulting increased pressure outweighs the increased glomerular basement membrane stiffness and puts a net greater stress demand on the podocytes. This idea is explored by developing a multiscale simulation of the capillary wall, in which a macroscopic (µm scale) continuum model is connected to a set of microscopic (nm scale) fiber network models representing the collagen network and the podocyte cytoskeleton. The model considers two cases: healthy remodeling, in which the presence of the minor chain allows the collagen volume fraction to be increased by thickening fibers, and Alport syndrome remodeling, in which the absence of the minor chain allows collagen volume fraction to be increased only by adding new fibers to the network. The permeability of the network is calculated based on previous models of flow through a fiber network, and it is updated for different fiber radii and volume fractions. The analysis shows that the minor chain allows a homeostatic balance to be achieved in terms of both filtration and cell tension. Absent the minor chain, there is a fundamental change in the relation between the two effects, and the system becomes unstable. This result suggests that mechanobiological or mechanoregulatory therapies may be possible for Alport syndrome and other minor chain collagen diseases of the kidney.
Collapse
Affiliation(s)
- Lauren M Bersie-Larson
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, 55455, USA
| | - Lazarina Gyoneva
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, 55455, USA
| | - Daniel J Goodman
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, 55455, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Yoav Segal
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Van den Berge BT, Maas RJ. Nephron Number as Predictor of Corticosteroid Response in Adult Minimal Change Disease. Kidney Med 2020; 2:520-522. [PMID: 33090125 PMCID: PMC7568060 DOI: 10.1016/j.xkme.2020.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Bartholomeus T Van den Berge
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rutger J Maas
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Hosseiniyan Khatibi SM, Ardalan M, Abediazar S, Zununi Vahed S. The impact of steroids on the injured podocytes in nephrotic syndrome. J Steroid Biochem Mol Biol 2020; 196:105490. [PMID: 31586640 DOI: 10.1016/j.jsbmb.2019.105490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/03/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
Nephrotic syndrome (NS), a common chronic kidney disease, embraces a variety of kidney disorders. Though Glucocorticoids (GCs) are generally used in the treatment of NS, their mechanism of action is poorly understood. A plethora of evidence indicates that podocytes are considered as the main target cells for the therapeutic strategies to prevent NS. GCs regulate the transactivation and transrepression of genes in podocytes that affect their morphological and cytoskeletal features, motility, apoptosis and survival rate. Moreover, they prevent protein leakage through the glomerular barrier membrane by affecting the synthesis, trafficking and posttranslational modifications of slit diaphragms components, podocytes' intercellular junctions. The response to the treatment is variable among different ethnics and populations and resistance to the steroids is detected in almost 50% of adult patients. Not only do pharmacokinetics and pharmacogenetics of steroids play a role in GC resistance but also the genetic variations in one or more podocyte related genes are connected with the steroid resistance in cases with NS. The focus of this review is to explain the underlying cellular and molecular mechanisms of GCs in podocytes. Understanding the mechanisms by which the GCs and GCs receptors in podocytes regulate the gene expression network and crosstalk with other molecular pathways would guarantee an optimum therapeutic benefit of steroid treatment.
Collapse
Affiliation(s)
| | | | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
11
|
Müller-Deile J, Schenk H, Niggemann P, Bolaños-Palmieri P, Teng B, Higgs A, Staggs L, Haller H, Schroder P, Schiffer M. Mutation of microphthalmia-associated transcription factor (mitf) in zebrafish sensitizes for glomerulopathy. Biol Open 2019; 8:bio.040253. [PMID: 30718228 PMCID: PMC6451330 DOI: 10.1242/bio.040253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Different glomerular diseases that affect podocyte homeostasis can clinically present as nephrotic syndrome with massive proteinuria, hypoalbuminemia, hyperlipidemia and edema. Up to now, no drugs that specifically target the actin cytoskeleton of podocytes are on the market and model systems for library screenings to develop anti-proteinuric drugs are of high interest. We developed a standardized proteinuria model in zebrafish using puromycin aminonucleoside (PAN) via treatment in the fish water to allow for further drug testing to develop anti-proteinuric drugs for the treatment of glomerular diseases. We noticed that fish that carry the nacre-mutation show a significantly higher susceptibility for the disruption of the glomerular filtration barrier following PAN treatment, which results in a more pronounced proteinuria phenotype. Nacre zebrafish inherit a mutation yielding a truncated version of microphthalmia-associated transcription factor/melanogenesis associated transcription factor (mitf). We hypothesized that the nacre mutation may lead to reduced formin expression and defects in cytoskeletal rearrangement. Based on the observations in zebrafish, we carried out a PAN treatment on cultured human podocytes after knockdown with MITF siRNA causing a rearrangement of the actin cytoskeleton.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Heiko Schenk
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Philipp Niggemann
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Patricia Bolaños-Palmieri
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Beina Teng
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Alysha Higgs
- Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Lynne Staggs
- Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Patricia Schroder
- Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Mario Schiffer
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany .,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen 91054, Germany
| |
Collapse
|
12
|
Lane BM, Cason R, Esezobor CI, Gbadegesin RA. Genetics of Childhood Steroid Sensitive Nephrotic Syndrome: An Update. Front Pediatr 2019; 7:8. [PMID: 30761277 PMCID: PMC6361778 DOI: 10.3389/fped.2019.00008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Advances in genome science in the last 20 years have led to the discovery of over 50 single gene causes and genetic risk loci for steroid resistant nephrotic syndrome (SRNS). Despite these advances, the genetic architecture of childhood steroid sensitive nephrotic syndrome (SSNS) remains poorly understood due in large part to the varying clinical course of SSNS over time. Recent exome and genome wide association studies from well-defined cohorts of children with SSNS identified variants in multiple MHC class II molecules such as HLA-DQA1 and HLA-DQB1 as risk factors for SSNS, thus stressing the central role of adaptive immunity in the pathogenesis of SSNS. However, evidence suggests that unknown second hit risk loci outside of the MHC locus and environmental factors also make significant contributions to disease. In this review, we examine what is currently known about the genetics of SSNS, the implications of recent findings on our understanding of pathogenesis of SSNS, and how we can utilize these results and findings from future studies to improve the management of children with nephrotic syndrome.
Collapse
Affiliation(s)
- Brandon M. Lane
- Division of Nephrology, Departments of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Rachel Cason
- Division of Nephrology, Departments of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | | | - Rasheed A. Gbadegesin
- Division of Nephrology, Departments of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
13
|
Actin dynamics at focal adhesions: a common endpoint and putative therapeutic target for proteinuric kidney diseases. Kidney Int 2018; 93:1298-1307. [PMID: 29678354 DOI: 10.1016/j.kint.2017.12.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 01/02/2023]
Abstract
Proteinuria encompasses diverse causes including both genetic diseases and acquired forms such as diabetic and hypertensive nephropathy. The basis of proteinuria is a disturbance in size selectivity of the glomerular filtration barrier, which largely depends on the podocyte: a terminally differentiated epithelial cell type covering the outer surface of the glomerulus. Compromised podocyte structure is one of the earliest signs of glomerular injury. The phenotype of diverse animal models and podocyte cell culture firmly established the essential role of the actin cytoskeleton in maintaining functional podocyte structure. Podocyte foot processes, actin-based membrane extensions, contain 2 molecularly distinct "hubs" that control actin dynamics: a slit diaphragm and focal adhesions. Although loss of foot processes encompasses disassembly of slit diaphragm multiprotein complexes, as long as cells are attached to the glomerular basement membrane, focal adhesions will be the sites in which stress due to filtration flow is counteracted by forces generated by the actin network in foot processes. Numerous studies within last 20 years have identified actin binding and regulatory proteins as well as integrins as essential components of signaling and actin dynamics at focal adhesions in podocytes, suggesting that some of them may become novel, druggable targets for proteinuric kidney diseases. Here we review evidence supporting the idea that current treatments for chronic kidney diseases beneficially and directly target the podocyte actin cytoskeleton associated with focal adhesions and suggest that therapeutic reagents that target the focal adhesion-regulated actin cytoskeleton in foot processes have potential to modernize treatments for chronic kidney diseases.
Collapse
|
14
|
Cao S, Liu YG. [Research advances in the association between transient receptor potential cation channel 6 and kidney disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:72-76. [PMID: 29335087 PMCID: PMC7390320 DOI: 10.7499/j.issn.1008-8830.2018.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Transient receptor potential cation channel 6 (TRPC6) is a member of the transient receptor superfamily encoded by the TRPC6 gene and is widely expressed in tissues and organs of the human body, especially in the glomerular podocytes. TRPC6 interacts with various slit diaphragm (SD) proteins including podocin, nephrin, ACTN4, and CD2AP to maintain the normal structure and function of glomerular podocytes. Foot process fusion caused by podocyte damage due to various factors is the most important morphological change in kidney disease. This article reviews the biological function of TRPC6 and its effect on kidney disease.
Collapse
Affiliation(s)
- Shan Cao
- Graduate School of Youjiang University for Nationalities, Baise, Gangxi 533000, China.
| | | |
Collapse
|
15
|
Abstract
Unique challenges exist in the diagnosis and treatment of glomerular diseases with their onset during childhood. Mounting evidence supports the notion that earlier onset cases occur due to larger numbers of genetic risk alleles. Nearly all causes of adult-onset glomerulonephritis, nephrotic syndrome, and thrombotic microangiopathy have also been described in children, although the prevalence of specific causes differs. Postinfectious glomerulonephritis, Henoch-Schönlein purpura nephritis, and minimal change disease remain the most common causes of glomerular disease in younger children in the United States and can be diagnosed clinically without need for biopsy. IgA nephropathy is the most common pediatric glomerular disease diagnosed by kidney biopsy and is considered the most common chronic glomerulopathy worldwide. In both developing and developed countries, there is a strong relationship between infectious diseases and nephritis onset or relapse. Although research has led to a better understanding of how to classify and manage glomerular diseases in children, the need for disease-specific biomarkers of activity and chronicity remains a hurdle. The strength of the immune system and the growth and maturation that occurs during adolescence are unique and require age-specific approaches to disease management.
Collapse
|
16
|
Müller-Deile J, Schiffer M. Podocytes from the diagnostic and therapeutic point of view. Pflugers Arch 2017; 469:1007-1015. [PMID: 28508947 DOI: 10.1007/s00424-017-1993-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 01/23/2023]
Abstract
The central role of podocytes in glomerular diseases makes this cell type an interesting diagnostic tool as well as a therapeutic target. In this review, we discuss the current literature on the use of podocytes and podocyte-specific markers as non-invasive diagnostic tools in different glomerulopathies. Furthermore, we highlight the direct effects of drugs currently used to treat primary glomerular diseases and describe their direct cellular effects on podocytes. A new therapeutic potential is seen in drugs targeting the podocytic actin cytoskeleton which is essential for podocyte foot process structure and function. Incubation of cultured human podocyte cell lines with sera from patients with active glomerular diseases is currently also used to identify novel circulating factors with pathophysiological relevance for the glomerular filtration barrier. In addition, treatment of detached urinary podocytes from patients with substances that restore their cytoskeleton might serve as a novel personalized tool to estimate their potential for podocyte recovery ex vivo.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Mario Schiffer
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
17
|
Beckerman P, Bi-Karchin J, Park ASD, Qiu C, Dummer PD, Soomro I, Boustany-Kari CM, Pullen SS, Miner JH, Hu CAA, Rohacs T, Inoue K, Ishibe S, Saleem MA, Palmer MB, Cuervo AM, Kopp JB, Susztak K. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat Med 2017; 23:429-438. [PMID: 28218918 DOI: 10.1038/nm.4287] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
African Americans have a heightened risk of developing chronic and end-stage kidney disease, an association that is largely attributed to two common genetic variants, termed G1 and G2, in the APOL1 gene. Direct evidence demonstrating that these APOL1 risk alleles are pathogenic is still lacking because the APOL1 gene is present in only some primates and humans; thus it has been challenging to demonstrate experimental proof of causality of these risk alleles for renal disease. Here we generated mice with podocyte-specific inducible expression of the APOL1 reference allele (termed G0) or each of the risk-conferring alleles (G1 or G2). We show that mice with podocyte-specific expression of either APOL1 risk allele, but not of the G0 allele, develop functional (albuminuria and azotemia), structural (foot-process effacement and glomerulosclerosis) and molecular (gene-expression) changes that closely resemble human kidney disease. Disease development was cell-type specific and likely reversible, and the severity correlated with the level of expression of the risk allele. We further found that expression of the risk-variant APOL1 alleles interferes with endosomal trafficking and blocks autophagic flux, which ultimately leads to inflammatory-mediated podocyte death and glomerular scarring. In summary, this is the first demonstration that the expression of APOL1 risk alleles is causal for altered podocyte function and glomerular disease in vivo.
Collapse
Affiliation(s)
- Pazit Beckerman
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jing Bi-Karchin
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ae Seo Deok Park
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chengxiang Qiu
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patrick D Dummer
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Irfana Soomro
- Division of Nephrology, New York University, New York, New York, USA
| | - Carine M Boustany-Kari
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Steven S Pullen
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chien-An A Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Health Sciences Center, Albuquerque, New Mexico, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology &Neuroscience, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Kazunori Inoue
- Division of Nephrology, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Shuta Ishibe
- Division of Nephrology, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Moin A Saleem
- Bristol Renal and Children's Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Matthew B Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Gamal Y, Badawy A, Swelam S, Tawfeek MSK, Gad EF. Glomerular Glucocorticoid Receptors Expression and Clinicopathological Types of Childhood Nephrotic Syndrome. Fetal Pediatr Pathol 2017; 36:16-26. [PMID: 27690709 DOI: 10.1080/15513815.2016.1225872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glucocorticoids are primary therapy of idiopathic nephrotic syndrome (INS). However, not all children respond to steroid therapy. We assessed glomerular glucocorticoid receptor expression in fifty-one children with INS and its relation to response to steroid therapy and to histopathological type. Clinical, laboratory and glomerular expression of glucocorticoid receptors were compared between groups with different steroid response. Glomerular glucocorticoid expression was slightly higher in controls than in minimal change early responders, which in turn was significantly higher than in minimal change late responders. There was significantly lower glomerular glucocorticoid receptor expression in steroid-resistance compared to early responders, late responders and controls. Glomerular glucocorticoid expression was significantly higher in all minimal change disease (MCD) compared to focal segmental glomerulosclerosis. In INS, response to glucocorticoid is dependent on glomerular expression of receptors and peripheral expression. Evaluation of glomerular glucocorticoid receptor expression at time of diagnosis of NS can predict response to steroid therapy.
Collapse
Affiliation(s)
- Yasser Gamal
- a Pathology Department , Assiut University Faculty of Medicine , Assiut , Egypt
| | - Ahlam Badawy
- b Pediatric Department , Assiut University Faculty of Medicine , Assiut , Egypt
| | - Salwa Swelam
- c Pediatric Department , Minia University Faculty of Medicine , El Minia , Egypt
| | - Mostafa S K Tawfeek
- b Pediatric Department , Assiut University Faculty of Medicine , Assiut , Egypt
| | - Eman Fathalla Gad
- b Pediatric Department , Assiut University Faculty of Medicine , Assiut , Egypt
| |
Collapse
|
19
|
Clément L, Macé C. Le ManNAc, une nouvelle thérapie dans la néphropathie à lésions glomérulaires minimes. Med Sci (Paris) 2016; 32:606-11. [DOI: 10.1051/medsci/20163206024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
|
21
|
Trimarchi H, Canzonieri R, Schiel A, Politei J, Stern A, Andrews J, Paulero M, Rengel T, Aráoz A, Forrester M, Lombi F, Pomeranz V, Iriarte R, Young P, Muryan A, Zotta E. Podocyturia is significantly elevated in untreated vs treated Fabry adult patients. J Nephrol 2016; 29:791-797. [PMID: 26842625 DOI: 10.1007/s40620-016-0271-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/18/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Proteinuria suggests kidney involvement in Fabry disease. We assessed podocyturia, an early biomarker, in controls and patients with and without enzyme therapy, correlating podocyturia with proteinuria and renal function. METHODS Cross-sectional study (n = 67): controls (Group 1, n = 30) vs. Fabry disease (Group 2, n = 37) subdivided into untreated (2A, n = 19) and treated (2B, n = 18). Variables evaluated: age, gender, creatinine, CKD-EPI, proteinuria, podocyte count/10 20× microscopy power fields, podocytes/100 ml urine, podocytes/g creatininuria (results expressed as median and range). RESULTS Group 1 vs. 2 did not differ concerning age, gender and CKD-EPI, but differed regarding proteinuria and podocyturia. Group 2A vs. 2B: age: 29 (18-74) vs. 43 (18-65) years (p = ns); gender: males n = 3 (16 %) vs. n = 9 (50 %). Proteinuria was significantly higher in Fabry treated patients, while CKD-EPI and podocyturia were significantly elevated in untreated individuals. Significant correlations: group 2A: age-proteinuria, ρ = 0.62 (p = 0.0044); age-CKD-EPI, ρ = -0.84 (p < 0.0001); podocyturia-podocytes/100 ml urine, ρ = 0.99 (p = 0.0001); podocyturia-podocytes/g creatininuria ρ = 0.86 (p = 0.0003), podocytes/100 ml urine-podocytes/g urinary creatinine, ρ = 0.84 (p = 0.0004); proteinuria-CKD-EPI, ρ = -0.68 (p = 0.0013). Group 2B: podocyturia-podocytes/100 ml urine, ρ = 0.88 (p < 0.0001); podocyturia-podocytes/g creatininuria, ρ = 0.84 (p < 0.0001); podocytes/100 ml urine-podocytes/g creatininuria, ρ = 0.94 (p < 0.0001); CKD-EPI-proteinuria, ρ = -0.66 (p = 0.0028). CONCLUSIONS Patients with Fabry disease display heavy podocyturia; those untreated present significantly higher podocyturia, lower proteinuria and better renal function than those who are treated, suggesting that therapy may be started at advanced stages. Podocyturia may antedate proteinuria, and enzyme therapy may protect against podocyte loss.
Collapse
Affiliation(s)
- Hernán Trimarchi
- Nephrology, Hospital Británico de Buenos Aires, Buenos Aires, Argentina.
- Servicio de Nefrología, Hospital Británico de Buenos Aires, Perdriel 74, 1280, Buenos Aires, Argentina.
| | - Romina Canzonieri
- Biochemistry Services, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Amalia Schiel
- Biochemistry Services, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Juan Politei
- Neurology Department, Fundación para el Estudio de las Enfermedades Metabólicas FESEN, Buenos Aires, Argentina
| | - Aníbal Stern
- Biochemistry Services, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - José Andrews
- Nephrology, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Matías Paulero
- Nephrology, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Tatiana Rengel
- Nephrology, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Alicia Aráoz
- IFIBIO Houssay, UBA CONICET Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Forrester
- Nephrology, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Lombi
- Nephrology, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Vanesa Pomeranz
- Nephrology, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Romina Iriarte
- Nephrology, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Young
- Internal Medicine, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Alexis Muryan
- Biochemistry Services, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Elsa Zotta
- IFIBIO Houssay, UBA CONICET Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|