1
|
Cananzi M, Jørgensen MH, Buescher G, De Bruyne R, Samyn M. Current practice in the management of paediatric autoimmune liver disease in Europe. J Pediatr Gastroenterol Nutr 2025; 80:260-270. [PMID: 39618087 DOI: 10.1002/jpn3.12424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 02/04/2025]
Abstract
OBJECTIVE Paediatric autoimmune liver disease (pAILD) is a rare condition with serious health implications. Notwithstanding treatment advancements, areas of uncertainty and knowledge gaps still exist. We here investigated the real-life approach to pAILD management in Europe. METHODS A survey was distributed to members of the European Rare Liver Disease Reference Network (ERN RARE-LIVER) and the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Hepatology Interest Group. Information was gathered regarding clinical activity, medications used, and access to paediatric drug formulations at each site. RESULTS Thirty-six centres from 22 European countries responded to the survey. The majority are exclusively paediatric units (86%). Among participants, 80% follow <50 children with pAILD, of which 25%-50% are <10 years old in 44% of centres. All centres use predniso(lo)ne as first-line therapy, alone (15/36) or with azathioprine (21/36). Azathioprine and mycophenolate are the preferred second-line options in centres using first-line steroid monotherapy (11/15) or combined steroid-azathioprine (19/21), respectively. Tacrolimus is used as third-line agent in 15/36 centres. Proactive measurement of drug metabolites and target levels vary widely among centres. Paediatric predniso(lo)ne formulations are commercially available in 7/22 European countries, azathioprine in 3, mycophenolate in 14, tacrolimus in 15 and ursodeoxycholic acid in 14. When paediatric formulations are unavailable, children are treated with magisterial preparations or 'solid' formulations (crushed or intact). CONCLUSIONS Treatment of pAILD in Europe varies widely in terms of medications used and treatment monitoring. Availability of paediatric drug formulations across Europe is limited. Collaborative initiatives are needed to define evidence-based strategies for management of pAILD and to promote an equal, age-appropriate treatment for affected children.
Collapse
Affiliation(s)
- Mara Cananzi
- Unit of Paediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of the Child with Liver Transplantation, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | | | - Gustav Buescher
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ruth De Bruyne
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Ghent University Hospital, Belgium
| | - Marianne Samyn
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital NHS Trust, London, UK
| |
Collapse
|
2
|
Rexiti K, Jiang X, Kong Y, Chen X, Liu H, Peng H, Wei X. Population pharmacokinetics of mycophenolic acid and dose optimisation in adult Chinese kidney transplant recipients. Xenobiotica 2023; 53:603-612. [PMID: 37991412 DOI: 10.1080/00498254.2023.2287168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
1. This study aimed to establish a population pharmacokinetic (PPK) model of mycophenolic acid (MPA), quantify the effect of clinical factors and pharmacogenomics of MPA, and optimise the dosage for adult kidney transplant recipients.2. One-hundred and four adult renal transplant patients were enrolled. The PPK model was established using the Phoenix® NMLE software and the stepwise methods were filtered for significant covariates. Monte Carlo simulations were performed to optimise the dosage regimen.3. A two-compartment model with first-order absorption and elimination (including lag time) provided a more accurate description of MPA pharmacokinetics. Serum albumin (ALB) significantly affected the central apparent clearance (CL/F), whereas post-transplant time and creatinine clearance were associated with a central apparent volume of distribution (V/F). The estimated population values obtained by the final model were 17.5 L/h and 93.97 L for CL/F and V/F, respectively. Simulation results revealed that larger mycophenolate mofetil doses are required as the ALB concentration decreases. This study established a PPK model of MPA and validated it using various methods. ALB significantly affected CL/F and recommended optimal dose strategies were given based on the final model. These results provide a reference for the personalised therapy of MPA for kidney transplant patients.
Collapse
Affiliation(s)
- Kaisaner Rexiti
- School of Pharmacy, Nanchang University, Nanchang, China
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuehui Jiang
- Department of Pharmacy, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, China
| | - Ying Kong
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu Chen
- School of Pharmacy, Nanchang University, Nanchang, China
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Liu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongwei Peng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Wei
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Rong Y, Wichart J, Hamiwka L, Kiang TKL. Significant Effects of Renal Function on Mycophenolic Acid Total Clearance in Pediatric Kidney Transplant Recipients with Population Pharmacokinetic Modeling. Clin Pharmacokinet 2023; 62:1289-1303. [PMID: 37493886 DOI: 10.1007/s40262-023-01280-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Mycophenolic acid (MPA) is an immunosuppressant commonly prescribed in pediatric kidney transplantation to prevent graft rejection. Large variabilities in MPA plasma exposures have been observed in this population, which could result in severe adverse effects. The majority of the MPA pharmacokinetic data have been reported in adult populations, whereas information in pediatric patients is still very limited. The objective of this study was to establish a novel, nonlinear mixed-effects model for MPA and investigate the clinical variables affecting MPA population pharmacokinetics in pediatric kidney transplant recipients. METHODS Data were collected retrospectively from pediatric kidney transplant patients (≤ 18 years when MPA concentrations were initially collected; on oral administration of mycophenolate mofetil) in Calgary, Alberta, Canada. Nonlinear mixed-effect modeling was conducted using stochastic approximation expectation-maximization in Monolix 2021R2 (Lixoft SAS, France) to determine population pharmacokinetic estimates, interindividual variabilities, and interoccasional variabilities. Covariate models were constructed using the Model Proposal function in Monolix in conjunction with a systematic stepwise inclusion/elimination protocol. The best model was selected based on objective function values, relative standard errors, goodness-of-fit plots, prediction-corrected visual predictive checks, and numerical predictive checks. RESULTS A total of 50 pediatric kidney transplant patients (25 female) with 219 MPA plasma concentration-time profiles were included. The average age (± standard deviation) and posttransplant time for the sample population were 12.8 ± 4.8 years and 762 ± 1160 days, respectively. The majority of study subjects (i.e., > 85% based on all occasions) were co-administered tacrolimus. A two-compartment, first-order absorption with lag time and linear elimination structural model with lognormal distributed proportional residual errors best described the MPA concentration-time data. The absorption rate constant (2.52 h-1 or 0.042 min-1), lag time (0.166 h or 9.96 min), volumes of distributions of the central (22.8 L) and peripheral (216 L) compartments, and intercompartment clearance (17.6 L h-1 or 0.293 L min-1) were consistent with literature values; whereas total MPA clearance (0.72 L h-1 or 0.012 L min-1) was relatively reduced, likely due to the general lack of cyclosporine interactions and the stabilized graft functions from significantly longer posttransplant time in our sample population. Of the clinical variables tested, only estimated glomerular filtration rate (eGFR) was identified a significant covariate affecting total MPA clearance with a positive, exponential relationship. The final population pharmacokinetic model was successfully evaluated/validated using a variety of complementary methods. CONCLUSION We have successfully constructed and validated a novel population pharmacokinetic model of MPA in pediatric kidney transplant patients. A positive, nonlinear relationship between eGFR and total MPA clearance identified in our model is likely attributed to multiple concurrent mechanisms, which warrant further systematic investigations.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Room 3-142D, 11361-87 Avenue, Edmonton, AB, T6G 2E1, Canada
| | - Jenny Wichart
- Alberta Health Services, Pharmacy Services, Calgary, AB, Canada
| | - Lorraine Hamiwka
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Room 3-142D, 11361-87 Avenue, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
4
|
Drevland OM, Robertsen I, Theie Gustavsen M, Kveim HK, Herberg Hovd M, Midtvedt K, Åsberg A. Impact of Fasting Status and Circadian Variation on the Pharmacokinetics of Mycophenolate Mofetil and the Glucuronide Metabolite in Renal Transplant Recipients. Transplant Direct 2023; 9:e1448. [PMID: 36875939 PMCID: PMC9977486 DOI: 10.1097/txd.0000000000001448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
Mycophenolate mofetil (MMF) is an immunosuppressive prodrug often used to prevent allograft rejection following solid organ transplantation. After oral administration, MMF is rapidly hydrolyzed to the active metabolite mycophenolate acid (MPA), which is inactivated by glucuronosyltransferase to the mycophenolic acid glucuronide metabolite (MPAG). The aim was 2-fold: to investigate the impact of circadian variation and fasting versus nonfasting status on MPA and MPAG pharmacokinetics in renal transplant recipients (RTRs). Methods RTRs with stable graft function treated with tacrolimus, prednisolone, and MMF (750 mg BID) were included in this open, nonrandomized study. Two 12-h pharmacokinetic investigations were conducted in succession following morning and evening doses, both in a fasting and in a real-life nonfasting condition. Results A total of 30 (22 men) RTRs performed one 24-h investigation, and 16 repeated the investigation within 1 mo. In a real-life nonfasting state, MPA area under the curve (AUC)0-12 and C 0 failed to meet the bioequivalence criteria. Following the evening dose, mean MPA AUC12-24 was 16% lower (P < 0.001) compared with AUC0-12, and a shorter T max was observed (P = 0.09). Under fasting conditions, MPA AUC12-24 was 13% lower than AUC0-12, and the absorption rate was slower after the evening dose (P < 0.05). MPAG displayed circadian variation only under real-life conditions with lower AUC0-12 following the evening dose (P < 0.001). Conclusions Both MPA and MPAG showed circadian variation with somewhat lower systemic exposures following the evening dose with limited clinical relevance in the dosing of MMF in RTRs. Fasting status affects MMF absorption rate differently, but with similar results in systemic exposure.
Collapse
Affiliation(s)
| | - Ida Robertsen
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Marte Theie Gustavsen
- Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | | | | | - Karsten Midtvedt
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Fingerprick Microsampling Methods Can Replace Venepuncture for Simultaneous Therapeutic Drug Monitoring of Tacrolimus, Mycophenolic Acid, and Prednisolone Concentrations in Adult Kidney Transplant Patients. Ther Drug Monit 2023; 45:69-78. [PMID: 36097333 DOI: 10.1097/ftd.0000000000001024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Kidney transplant patients undergo repeated and frequent venepunctures during allograft management. Microsampling methods that use a fingerprick draw of capillary blood, such as dried blood spots (DBS) and volumetric absorptive microsamplers (VAMS), have the potential to reduce the burden and volume of blood loss with venepuncture. METHODS This study aimed to examine microsampling approaches for the simultaneous measurement of tacrolimus, mycophenolic acid, mycophenolic acid glucuronide (MPAG), and prednisolone drug concentrations compared with standard venepuncture in adult kidney transplant patients. DBS and VAMS were simultaneously collected with venepuncture samples from 40 adult kidney transplant patients immediately before and 2 hours after immunosuppressant dosing. Method comparison was performed using Passing-Bablok regression, and bias was assessed using Bland-Altman analysis. Drug concentrations measured through microsampling and venepuncture were also compared by estimating the median prediction error (MPE) and median absolute percentage prediction error (MAPE). RESULTS Passing-Bablok regression showed a systematic difference between tacrolimus DBS and venepuncture [slope of 1.06 (1.01-1.13)] and between tacrolimus VAMS and venepuncture [slope of 1.08 (1.03-1.13)]. Tacrolimus values were adjusted for this difference, and the corrected values showed no systematic differences. Moreover, no systematic differences were observed when comparing DBS or VAMS with venepuncture for mycophenolic acid and prednisolone. Tacrolimus (corrected), mycophenolic acid, and prednisolone microsampling values met the MPE and MAPE predefined acceptability limits of <15% when compared with the corresponding venepuncture values. DBS and VAMS, collected in a controlled environment, simultaneously measured multiple immunosuppressants. CONCLUSIONS This study demonstrates that accurate results of multiple immunosuppressant concentrations can be generated through the microsampling approach, with a preference for VAMS over DBS.
Collapse
|
6
|
Filler G, Gipson DS, Iyamuremye D, Díaz González de Ferris ME. Artificial Intelligence in Pediatric Nephrology-A Call for Action. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:17-24. [PMID: 36723276 DOI: 10.1053/j.akdh.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022]
Abstract
Artificial intelligence is playing an increasingly important role in many fields of clinical care to assist health care providers in patient management. In adult-focused nephrology, artificial intelligence is beginning to be used to improve clinical care, hemodialysis prescriptions, and follow-up of transplant recipients. This article provides an overview of medical artificial intelligence applications relevant to pediatric nephrology. We describe the core concepts of artificial intelligence and machine learning and cover the basics of neural networks and deep learning. We also discuss some examples for clinical applications of artificial intelligence in pediatric nephrology, including neonatal kidney function, early recognition of acute kidney injury, renally cleared drug dosing, intrapatient variability, urinary tract infection workup in infancy, and longitudinal disease progression. Furthermore, we consider the future of artificial intelligence in clinical pediatric nephrology and its potential impact on medical practice and address the ethical issues artificial intelligence raises in terms of clinical decision-making, health care provider-patient relationship, patient privacy, and data collection. This article also represents a call for action involving those of us striving to provide optimal services for children, adolescents, and young adults with chronic conditions.
Collapse
Affiliation(s)
- Guido Filler
- Division of Pediatric Nephrology, Departments of Paediatrics, Western University, London, Ontario, Canada; Departments of Medicine, Western University, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
| | - Debbie S Gipson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | | |
Collapse
|
7
|
Taha K, Sharma A, Kroeker K, Ross C, Carleton B, Wishart D, Medeiros M, Blydt-Hansen TD. Noninvasive testing for mycophenolate exposure in children with renal transplant using urinary metabolomics. Pediatr Transplant 2022; 27:e14460. [PMID: 36582125 DOI: 10.1111/petr.14460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/11/2022] [Accepted: 11/18/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Despite the common use of mycophenolate in pediatric renal transplantation, lack of effective therapeuic drug monitoring increases uncertainty over optimal drug exposure and risk for adverse reactions. This study aims to develop a novel urine test to estimate MPA exposure based using metabolomics. METHODS Urine samples obtained on the same day of MPA pharmacokinetic testing from two prospective cohorts of pediatric kidney transplant recipients were assayed for 133 unique metabolites by mass spectrometry. Partial least squares (PLS) discriminate analysis was used to develop a top 10 urinary metabolite classifier that estimates MPA exposure. An independent cohort was used to test pharmacodynamic validity for allograft inflammation (urinary CXCL10 levels) and eGFR ratio (12mo/1mo eGFR) at 1 year. RESULTS Fifty-two urine samples from separate children (36.5% female, 12.0 ± 5.3 years at transplant) were evaluated at 1.6 ± 2.5 years post-transplant. Using all detected metabolites (n = 90), the classifier exhibited strong association with MPA AUC by principal component regression (r = 0.56, p < .001) and PLS (r = 0.75, p < .001). A practical classifier (top 10 metabolites; r = 0.64, p < .001) retained similar accuracy after cross-validation (LOOCV; r = 0.52, p < .001). When applied to an independent cohort (n = 97 patients, 1053 samples), estimated mean MPA exposure over Year 1 was inversely associated with mean urinary CXCL10:Cr (r = -0.28, 95% CI -0.45, -0.08) and exhibited a trend for association with eGFR ratio (r = 0.35, p = .07), over the same time period. CONCLUSIONS This urinary metabolite classifier can estimate MPA exposure and correlates with allograft inflammation. Future studies with larger samples are required to validate and evaluate its clinical application.
Collapse
Affiliation(s)
- Khalid Taha
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Vancouver, Vancouver, British Columbia, Canada
| | - Atul Sharma
- Department of Pediatrics and Child Health, University of Manitoba, Children's Hospital at Health Sciences Center, Winnipeg, Manitoba, Canada
| | - Kristine Kroeker
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Colin Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, BC Children's Hospital Vancouver, Vancouver, British Columbia, Canada
| | - Bruce Carleton
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Vancouver, Vancouver, British Columbia, Canada
| | - David Wishart
- Departments of Computing Science and Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mara Medeiros
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Tom D Blydt-Hansen
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Vancouver, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Sobiak J, Resztak M, Zachwieja J, Ostalska-Nowicka D. Inosine monophosphate dehydrogenase activity and mycophenolate pharmacokinetics in children with nephrotic syndrome treated with mycophenolate mofetil. Clin Exp Pharmacol Physiol 2022; 49:1197-1208. [PMID: 35877984 DOI: 10.1111/1440-1681.13706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022]
Abstract
Some studies have shown that the area under the concentration-time curve (AUC) of mycophenolic acid (MPA) should be higher for children with nephrotic syndrome (NS) than after renal transplantation. The pharmacodynamic aspect of MPA, the activity of inosine monophosphate dehydrogenase (IMPDH), has not been studied in children with NS. The study included 21 children (4-16 years) with NS treated with mycophenolate mofetil. MPA and its glucuronide plasma concentrations were determined using validated high-performance liquid chromatography (HPLC-UV). The separate HPLC-UV method was applied for IMPDH activity determination. The variability was expressed by the coefficient of variation (CV). IMPDH activity and MPA concentration (Ctrough ) before the morning dose amounted to 29.95 μmol·s-1 ·mol-1 AMP (range, 6.71-98.60 μmol·s-1 ·mol-1 AMP) and 1.72 μg/mL (range, 0.39-4.34 μg/mL), respectively, whereas the area under the effect-time curve from 0 to 4 h and MPA AUC0-4 were 130.36 μmol·s-1 ·mol-1 AMP∙h (range, 23.58-306.57 μmol·s-1 ·mol-1 AMP∙h) and 24.63 μg·h/mL (range, 12.21-67.48 μg·h/mL), respectively. IMPDH activity decreased concomitantly with MPA concentration increase, however, the variability of the pharmacodynamic parameters was greater than of the pharmacokinetics. The median degree of maximum IMPDH inhibition was 61%. MPA Ctrough and predicted AUC were lower than in our previous study. Only a few MPA pharmacokinetic parameters correlated with the pharmacodynamics. IMPDH activity did not correlate with children's age and did not differ between boys and girls. MPA clearance was the highest in younger children (median 10.54 L/m2 /h) and cholesterol correlated negatively with children's age (r=-0.659, p=0.003). IMPDH minimum activity and the degree of maximum IMPDH inhibition were similar to those obtained in renal transplant recipients. IMPDH activity does not undergo developmental or gender-specific regulation in children with NS. MPA underexposure might be more frequent in younger children, especially with high cholesterol and triglycerides levels due to high MPA clearance.
Collapse
Affiliation(s)
- Joanna Sobiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences
| | - Jacek Zachwieja
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences
| | | |
Collapse
|
9
|
Jiang Z, Hu N. Effect of UGT polymorphisms on pharmacokinetics and adverse reactions of mycophenolic acid in kidney transplant patients. Pharmacogenomics 2021; 22:1019-1040. [PMID: 34581204 DOI: 10.2217/pgs-2021-0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycophenolic acid (MPA) is a common immunosuppressive drug for kidney transplantation patients, and is characterized by a narrow therapeutic index and significant individual variability. UGTs are the main enzymes responsible for the metabolism of MPA. Although, many studies have focused on the relationship between UGT polymorphisms and pharmacokinetics and adverse reactions of MPA, the conclusion are controversial. We reviewed the relevant literature and summarized the significant influences of UGT polymorphisms, such as UGT1A8 (rs1042597, rs17863762), UGT1A9 (rs72551330, rs6714486, rs17868320, rs2741045, rs2741045) and UGT2B7 (rs7438135, rs7439366, rs7662029), on the pharmacokinetics of MPA and its metabolites and adverse reactions. The review provides a reference for guiding the individualized administration of MPA and reducing adverse reactions to MPA.
Collapse
Affiliation(s)
- Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Jiangsu Province, Changzhou, 213000, China
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Jiangsu Province, Changzhou, 213000, China
| |
Collapse
|
10
|
Sobiak J, Resztak M. A Systematic Review of Multiple Linear Regression-Based Limited Sampling Strategies for Mycophenolic Acid Area Under the Concentration-Time Curve Estimation. Eur J Drug Metab Pharmacokinet 2021; 46:721-742. [PMID: 34480746 PMCID: PMC8599354 DOI: 10.1007/s13318-021-00713-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
Background and Objective One approach of therapeutic drug monitoring in the case of mycophenolic acid (MPA) is a limited sampling strategy (LSS), which allows the evaluation of the area under the concentration–time curve (AUC) based on few concentrations. The aim of this systematic review was to review the MPA LSSs and define the most frequent time points for MPA determination in patients with different indications for mycophenolate mofetil (MMF) administration. Methods The literature was comprehensively searched in July 2021 using PubMed, Scopus, and Medline databases. Original articles determining multiple linear regression (MLR)-based LSSs for MPA and its free form (fMPA) were included. Studies on enteric-coated mycophenolic sodium, previously established LSS, Bayesian estimator, and different than twice a day dosing were excluded. Data were analyzed separately for (1) adult renal transplant recipients, (2) adults with other than renal transplantation indication, and (3) for pediatric patients. Results A total of 27, 17, and 11 studies were found for groups 1, 2, and 3, respectively, and 126 MLR-based LSS formulae (n = 120 for MPA, n = 6 for fMPA) were included in the review. Three time-point equations were the most frequent. Four MPA LSSs: 2.8401 + 5.7435 × C0 + 0.2655 × C0.5 + 1.1546 × C1 + 2.8971 × C4 for adult renal transplant recipients, 1.783 + 1.248 × C1 + 0.888 × C2 + 8.027 × C4 for adults after islet transplantation, 0.10 + 11.15 × C0 + 0.42 × C1 + 2.80 × C2 for adults after heart transplantation, and 8.217 + 3.163 × C0 + 0.994 × C1 + 1.334 × C2 + 4.183 × C4 for pediatric renal transplant recipients, plus one fMPA LSS, 34.2 + 1.12 × C1 + 1.29 × C2 + 2.28 × C4 + 3.95 × C6 for adult liver transplant recipients, seemed to be the most promising and should be validated in independent patient groups before introduction into clinical practice. The LSSs for pediatric patients were few and not fully characterized. There were only a few fMPA LSSs although fMPA is a pharmacologically active form of the drug. Conclusions The review includes updated MPA LSSs, e.g., for different MPA formulations (suspension, dispersible tablets), generic form, and intravenous administration for adult and pediatric patients, and emphasizes the need of individual therapeutic approaches according to MMF indication. Five MLR-based MPA LSSs might be implemented into clinical practice after evaluation in independent groups of patients. Further studies are required, e.g., to establish fMPA LSS in pediatric patients.
Collapse
Affiliation(s)
- Joanna Sobiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland.
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland
| |
Collapse
|
11
|
Taddeo A, Prim D, Bojescu ED, Segura JM, Pfeifer ME. Point-of-Care Therapeutic Drug Monitoring for Precision Dosing of Immunosuppressive Drugs. J Appl Lab Med 2021; 5:738-761. [PMID: 32533157 DOI: 10.1093/jalm/jfaa067] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/03/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Immunosuppressive drugs (ISD) are an essential tool in the treatment of transplant rejection and immune-mediated diseases. Therapeutic drug monitoring (TDM) for determination of ISD concentrations in biological samples is an important instrument for dose personalization for improving efficacy while reducing side effects. While currently ISD concentration measurements are performed at specialized, centralized facilities, making the process complex and laborious for the patient, various innovative technical solutions have recently been proposed for bringing TDM to the point-of-care (POC). CONTENT In this review, we evaluate current ISD-TDM and its value, limitations, and proposed implementations. Then, we discuss the potential of POC-TDM in the era of personalized medicine, and provide an updated review on the unmet needs and available technological solutions for the development of POC-TDM devices for ISD monitoring. Finally, we provide concrete suggestions for the generation of a meaningful and more patient-centric process for ISD monitoring. SUMMARY POC-based ISD monitoring may improve clinical care by reducing turnaround time, by enabling more frequent measurements in order to obtain meaningful pharmacokinetic data (i.e., area under the curve) faster reaction in case of problems and by increasing patient convenience and compliance. The analysis of the ISD-TDM field prompts the evolution of POC testing toward the development of fully integrated platforms able to support clinical decision-making. We identify 4 major areas requiring careful combined implementation: patient usability, data meaningfulness, clinicians' acceptance, and cost-effectiveness.
Collapse
Affiliation(s)
- Adriano Taddeo
- Institute of Life Technologies - School of Engineering, HES-SO//University of Applied Sciences, Western Switzerland, Sion, Switzerland
| | - Denis Prim
- Institute of Life Technologies - School of Engineering, HES-SO//University of Applied Sciences, Western Switzerland, Sion, Switzerland
| | - Elena-Diana Bojescu
- Institute of Life Technologies - School of Engineering, HES-SO//University of Applied Sciences, Western Switzerland, Sion, Switzerland
| | - Jean-Manuel Segura
- Institute of Life Technologies - School of Engineering, HES-SO//University of Applied Sciences, Western Switzerland, Sion, Switzerland
| | - Marc E Pfeifer
- Institute of Life Technologies - School of Engineering, HES-SO//University of Applied Sciences, Western Switzerland, Sion, Switzerland
| |
Collapse
|
12
|
Vnučák M, Graňák K, Skálová P, Laca Ľ, Mokáň M, Dedinská I. Effect of mycophenolic acid and tacrolimus on the incidence of infectious complications after kidney transplantation. Int Immunopharmacol 2021; 98:107908. [PMID: 34182244 DOI: 10.1016/j.intimp.2021.107908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Infectious complications remain a common cause of mortality after kidney transplantation (KTx). Goal of effective immunosuppressive treatment (IS) must be balanced between decreasing incidence of acute kidney rejection (AKR) and avoiding the incidence of infections, at the same time. MATERIALS AND METHODS The aim of our analysis was to identify the risk of fixed daily dose (DD) of mycophenolic acid (MPA) and levels of tacrolimus (TAC) in the development of a single, recurrent infection and AKR after KTx. RESULTS Our analysis consisted of 100 patients after KTx (66 males, 34 females). MPA DD > 1080 mg was a risk factor (RF) for recurrent infection in general (OR 1.2964;P = 0.0277), for recurrent bacterial infection from 1st to 6th month (OR 1.2674;P = 0.0151), recurrent bacterial infection (OR 1.2574;P = 0.0436), single viral infection (OR 1.2640;P = 0.0398) from 6th-12th month after KTx. MPA DD > 1080 mg and levels of TAC above recommended levels were not independent RF for the incidence of the infection. CONCLUSION MPA DD > 1080 mg as a RF for recurrent infection starting in the 1st month after KTx with significant association between the incidence of infections and MPA DD and TAC levels, without increased risk of AKR. In the centers with fixed dosing of IS, this can lead to lowering the risk of infections by decreasing MPA DD 1 month after KTx without increasing risk of infections.
Collapse
Affiliation(s)
- Matej Vnučák
- Department of Surgery and Transplantation Centre, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin 03601, Slovakia
| | - Karol Graňák
- Department of Surgery and Transplantation Centre, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin 03601, Slovakia.
| | - Petra Skálová
- Department of Surgery and Transplantation Centre, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin 03601, Slovakia
| | - Ľudovít Laca
- Department of Surgery and Transplantation Centre, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin 03601, Slovakia
| | - Marián Mokáň
- 1(st) Department of Internal Diseases, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin 03601, Slovakia
| | - Ivana Dedinská
- Department of Surgery and Transplantation Centre, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin 03601, Slovakia
| |
Collapse
|
13
|
The Evaluation of Multiple Linear Regression-Based Limited Sampling Strategies for Mycophenolic Acid in Children with Nephrotic Syndrome. Molecules 2021; 26:molecules26123723. [PMID: 34207320 PMCID: PMC8235059 DOI: 10.3390/molecules26123723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
We evaluated mycophenolic acid (MPA) limited sampling strategies (LSSs) established using multiple linear regression (MLR) in children with nephrotic syndrome treated with mycophenolate mofetil (MMF). MLR-LSS is an easy-to-determine approach of therapeutic drug monitoring (TDM). We assessed the practicability of different LSSs for the estimation of MPA exposure as well as the optimal time points for MPA TDM. The literature search returned 29 studies dated 1998–2020. We applied 53 LSSs (n = 48 for MPA, n = 5 for free MPA [fMPA]) to predict the area under the time-concentration curve (AUCpred) in 24 children with nephrotic syndrome, for whom we previously determined MPA and fMPA concentrations, and compare the results with the determined AUC (AUCtotal). Nine equations met the requirements for bias and precision ±15%. The MPA AUC in children with nephrotic syndrome was predicted the best by four time-point LSSs developed for renal transplant recipients. Out of five LSSs evaluated for fMPA, none fulfilled the ±15% criteria for bias and precision probably due to very high percentage of bound MPA (99.64%). MPA LSS for children with nephrotic syndrome should include blood samples collected 1 h, 2 h and near the second MPA maximum concentration. MPA concentrations determined with the high performance liquid chromatography after multiplying by 1.175 may be used in LSSs based on MPA concentrations determined with the immunoassay technique. MPA LSS may facilitate TDM in the case of MMF, however, more studies on fMPA LSS are required for children with nephrotic syndrome.
Collapse
|
14
|
Na Takuathung M, Sakuludomkan W, Koonrungsesomboon N. The Impact of Genetic Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Mycophenolic Acid: Systematic Review and Meta-analysis. Clin Pharmacokinet 2021; 60:1291-1302. [PMID: 34105062 DOI: 10.1007/s40262-021-01037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Mycophenolic acid (MPA) is among the most commonly prescribed medications for immunosuppression following organ transplantation. Highly variable MPA exposure and drug response are observed among individuals receiving the same dosage of the drug. Identification of candidate genes whose polymorphisms could be used to predict MPA exposure and clinical outcome is of clinical value. OBJECTIVES This study aimed to determine the impact of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of MPA in humans by means of a systematic review and meta-analysis. METHODS A systematic search was conducted on PubMed, EMBASE, Web of Sciences, Scopus, and the Cochrane Library databases. A meta-analysis was conducted to determine any associations between genetic polymorphisms and pharmacokinetic or pharmacodynamic parameters of MPA. Pooled-effect estimates were calculated by means of the random-effects model. RESULTS A total of 37 studies involving 3844 individuals were included in the meta-analysis. Heterozygous carriers of the UGT1A9 -275T>A polymorphism were observed to have a significantly lower MPA exposure than wild-type individuals. Four single nucleotide polymorphisms (SNPs), namely UGT1A9 -2152C>T, UGT1A8 518C>G, UGT2B7 211G>T, and SLCO1B1 521T>C, were also significantly associated with altered MPA pharmacokinetics. However, none of the investigated SNPs, including SNPs in the IMPDH gene, were found to be associated with the clinical efficacy of MPA. The only SNP that was associated with adverse outcomes was SLCO1B3 344T>G. CONCLUSIONS The present systematic review and meta-analysis identified six SNPs that were significantly associated with pharmacokinetic variability or adverse effects of MPA. Our findings represent the basis for future research and clinical implications with regard to the role of pharmacogenetics in MPA pharmacokinetics and drug response.
Collapse
Affiliation(s)
- Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - Wannachai Sakuludomkan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research (MSTR) Center, , Chiang Mai University, Muang, Chiang Mai, Thailand.
| |
Collapse
|
15
|
The Application of Inosine 5'-Monophosphate Dehydrogenase Activity Determination in Peripheral Blood Mononuclear Cells for Monitoring Mycophenolate Mofetil Therapy in Children with Nephrotic Syndrome. Pharmaceuticals (Basel) 2020; 13:ph13080200. [PMID: 32824803 PMCID: PMC7463457 DOI: 10.3390/ph13080200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 11/16/2022] Open
Abstract
In pediatric nephrotic syndrome, recommended mycophenolic acid (MPA) pharmacokinetics are higher than those for transplant recipients. In MPA therapeutic monitoring, inosine-5'-monophosphate dehydrogenase (IMPDH) activity may be useful. We modified the method established for renal transplant recipients and determined IMPDH activity in peripheral blood mononuclear cells (PBMCs) from healthy volunteers and children (4-16 years) with nephrotic syndrome treated with mycophenolate mofetil (MMF). From children, four blood samples were collected, and MPA concentrations were also determined. IMPDH activity was calculated using xanthosine monophosphate (XMP) normalized with adenosine monophosphate (AMP), both determined with the HPLC-UV method. The modified method was accurate, precise, and linear for AMP and XMP within 0.50-50.0 μmoL/L. Mean IMPDH activity in volunteers was 45.97 ± 6.24 µmoL·s-1·moL-1 AMP, whereas for children, the values were variable and amounted to 39.23 ± 27.40 µmoL·s-1·moL-1 AMP and 17.97 ± 15.24 µmoL·s-1·moL-1 AMP before the next MMF dose and 1 h afterward, respectively. The modified method may be applied to IMPDH activity determination in children with nephrotic syndrome treated with MMF. IMPDH activity should be determined after one thawing of PBMCs due to the change in AMP and XMP concentrations after subsequent thawing. For children, the lowest IMPDH activity was observed concomitantly with the highest MPA concentration.
Collapse
|
16
|
Metz DK, Holford N, Kausman JY, Walker A, Cranswick N, Staatz CE, Barraclough KA, Ierino F. Optimizing Mycophenolic Acid Exposure in Kidney Transplant Recipients: Time for Target Concentration Intervention. Transplantation 2019; 103:2012-2030. [PMID: 31584924 PMCID: PMC6756255 DOI: 10.1097/tp.0000000000002762] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/24/2022]
Abstract
The immunosuppressive agent mycophenolate is used extensively in kidney transplantation, yet dosing strategy applied varies markedly from fixed dosing ("one-dose-fits-all"), to mycophenolic acid (MPA) trough concentration monitoring, to dose optimization to an MPA exposure target (as area under the concentration-time curve [MPA AUC0-12]). This relates in part to inconsistent results in prospective trials of concentration-controlled dosing (CCD). In this review, the totality of evidence supporting mycophenolate CCD is examined: pharmacological characteristics, observational data linking exposure to efficacy and toxicities, and randomized controlled trials of CCD, with attention to dose optimization method and exposure achieved. Fixed dosing of mycophenolate consistently leads to underexposure associated with rejection, as well as overexposure associated with toxicities. When CCD is driven by pharmacokinetic calculation to a target concentration (target concentration intervention), MPA exposure is successfully controlled and clinical benefits are seen. There remains a need for consensus on practical aspects of mycophenolate target concentration intervention in contemporary tacrolimus-containing regimens and future research to define maintenance phase exposure targets. However, given ongoing consequences of both overimmunosuppression and underimmunosuppression in kidney transplantation, impacting short- and long-term outcomes, these should be a priority. The imprecise "one-dose-fits-all" approach should be replaced by the clinically proven MPA target concentration strategy.
Collapse
Affiliation(s)
- David K. Metz
- Department of Nephrology, Royal Children’s Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Clinical Pharmacology Unit, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Nick Holford
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Joshua Y. Kausman
- Department of Nephrology, Royal Children’s Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Amanda Walker
- Department of Nephrology, Royal Children’s Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Noel Cranswick
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Clinical Pharmacology Unit, Royal Children’s Hospital, Melbourne, VIC, Australia
| | | | - Katherine A. Barraclough
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Department of Nephrology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Francesco Ierino
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Department of Nephrology, St Vincent’s Health, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Doi Y, Kitayama H, Yamada M, Miyama Y. Severe Complications from an Unexpectedly High Serum Mycophenolic Acid Concentration in a Patient with Renal Failure Secondary to Lupus Nephritis: A Case Report. Case Rep Nephrol Dial 2019; 9:72-78. [PMID: 31259182 PMCID: PMC6587195 DOI: 10.1159/000500516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/20/2019] [Indexed: 01/06/2023] Open
Abstract
Mycophenolate mofetil (MMF) is used widely to treat lupus nephritis and is considered safer than other immunosuppressive drugs. Reports on severe complications related to MMF are sparse. We report a case of a patient with lupus nephritis in whom severe complications were possibly caused by MMF. The patient was a 17-year-old girl who received a diagnosis of lupus nephritis at the age of 14 years and had been taking steroid and immunosuppressive agents since then. One week after starting MMF 1 g/day instead of mizoribine owing to symptom relapse and serologic data deterioration, she presented with seizure, accompanied by leukopenia, thrombocytopenia, and renal failure. We discontinued MMF because she had extremely high serum mycophenolate acid concentration (88 µg/mL). A few weeks later, she recovered without any complications and was discharged. Although rare, clinicians should be aware that serum mycophenolate acid concentration may become extremely high in the setting of acute kidney injury. In such circumstances, they should perform serum concentration monitoring to avoid possible adverse events.
Collapse
Affiliation(s)
- Yuji Doi
- Shizuoka Children's Hospital, Shizuoka, Japan
| | | | | | | |
Collapse
|
18
|
Nosadini M, Gadian J, Lim M, Sartori S, Thomas T, Dale RC. Mycophenolate mofetil in paediatric autoimmune or immune-mediated diseases of the central nervous system: clinical experience and recommendations. Dev Med Child Neurol 2019; 61:458-468. [PMID: 30221751 DOI: 10.1111/dmcn.14020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 12/14/2022]
Abstract
AIM To gather data on mycophenolate mofetil (MMF) in paediatric autoimmune/immune-mediated central nervous system (CNS) conditions, focusing on safety and factors that may affect MMF efficacy. METHOD Retrospective, multicentre study based on four paediatric neurology centres. RESULTS Forty-four children were included (30 females, 14 males): 19 had proven/suspected autoimmune encephalitis, 14 had inflammatory demyelinating CNS diseases, and 11 had other autoimmune/immune-mediated CNS conditions. Before MMF, all received first-line immune therapies, and 17 had second-line rituximab and/or cyclophosphamide. MMF was started at a median of 9.5 months from disease onset (range 1-127mo) (median age 9y 4mo, range 1y 5mo-16y 5mo), and was used for median 18 months (range 0.3-73mo). On MMF, 31 patients were relapse-free, whereas eight relapsed (excluding patients with chronic-progressive course). Relapses on MMF were associated with medication weaning/cessation, or with suboptimal MMF dosage/duration. Adverse events of MMF occurred in eight patients: six moderate (gastrointestinal, movement disorder, dermatological) and two severe (infectious). INTERPRETATION MMF use in paediatric neuroimmunology is heterogeneous, although relatively safe. We have identified factors that may affect MMF efficacy and provide recommendations on MMF usage. WHAT THIS PAPER ADDS Mycophenolate mofetil (MMF) use was heterogeneous with relatively common adverse events, although mostly not severe. MMF treatment reduced median annualized relapse rate, although 20% of patients relapsed on MMF. A high relapse rate pre-MMF and late MMF start were associated with higher probability of relapsing on MMF. Most relapses were associated with suboptimal MMF dosage, short MMF duration, or concurrent medication weaning/discontinuation.
Collapse
Affiliation(s)
- Margherita Nosadini
- Neuroimmunology Group, Institute for Neuroscience and Muscle Research, Kids Research at the Children's Hospital at Westmead, University of Sydney, Westmead, Australia.,Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Jonathan Gadian
- Children's Neurosciences Centre, Guy's & St Thomas' NHS Foundation Trust, Kings Health Partners Academic Health Science Centre, Evelina London Children's Hospital, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ming Lim
- Children's Neurosciences Centre, Guy's & St Thomas' NHS Foundation Trust, Kings Health Partners Academic Health Science Centre, Evelina London Children's Hospital, London, UK
| | - Stefano Sartori
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | | | - Russell C Dale
- Neuroimmunology Group, Institute for Neuroscience and Muscle Research, Kids Research at the Children's Hospital at Westmead, University of Sydney, Westmead, Australia
| |
Collapse
|
19
|
Berger I, Haubrich K, Ensom MHH, Carr R. RELATE: Relationship of limited sampling strategy and adverse effects of mycophenolate mofetil in pediatric renal transplant patients. Pediatr Transplant 2019; 23:e13355. [PMID: 30689262 DOI: 10.1111/petr.13355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/09/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
MMF, a prodrug converted to the active form MPA, is an immunosuppressant used to prevent rejection in solid organ transplant recipients. MPA exposure, defined by AUC, can be estimated using limited sampling strategies (LSS). The relationship between MPA AUC and clinical outcomes has not been studied in pediatrics. The objectives were to describe the relationship of MPA AUC (estimated via LSS) with adverse effects and rates of rejection, and to compare clinical outcomes between different MPA monitoring practices. Descriptive statistics were used to summarize demographics, adverse effects, and rejection. Thirty-three patients (91 trough concentrations and 12 LSS sets) aged 2-20 years old were included. The estimated median MPA AUCs (David-Neto and Filler) were higher for those who did not have any adverse effects reported (65.85 and 85.05 mg*h/L, respectively) compared to those who had an adverse effect (60.75 and 54.2 mg*h/L, respectively). The median trough concentration when no adverse effects occurred was comparable to when adverse effects occurred. The median MPA AUC at which rejection occurred was lower than in those without rejection. The median trough concentration at which rejection occurred was higher than those without rejection (3.1 mg/L compared to 1.9 mg/L). The occurrence of adverse effects or rejection was not shown to be related to measured MPA trough or AUC outside of the target therapeutic range. The value of MPA concentration monitoring remains unclear; therefore, the practice of monitoring MPA AUC by LSS or trough concentrations should be reconsidered.
Collapse
Affiliation(s)
- Iona Berger
- Lower Mainland Pharmacy Services, Children's & Women's Health Centre of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn Haubrich
- Lower Mainland Pharmacy Services, Children's & Women's Health Centre of British Columbia, Vancouver, British Columbia, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mary H H Ensom
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roxane Carr
- Lower Mainland Pharmacy Services, Children's & Women's Health Centre of British Columbia, Vancouver, British Columbia, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Mycophenolate mofetil for sustained remission in nephrotic syndrome. Pediatr Nephrol 2018; 33:2253-2265. [PMID: 29750317 DOI: 10.1007/s00467-018-3970-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 10/16/2022]
Abstract
The clinical application of mycophenolate mofetil (MMF) has significantly widened beyond the prophylaxis of acute and chronic rejections in solid organ transplantation. MMF has been recognized as an excellent treatment option in many immunologic glomerulopathies. For children with frequently relapsing nephrotic syndrome (FRNS) or steroid-dependent nephrotic syndrome (SDNS) experiencing steroid toxicity, MMF has been recommended as a steroid-sparing drug. Uncontrolled studies in patients with FRNS and SDSN have shown that many patients can achieve sustained remission of proteinuria with MMF monotherapy. Three randomized controlled trials have similarly demonstrated that MMF is beneficial in these patients, but less effective than the calcineurin inhibitors cyclosporin A or tacrolimus. Some, but not all, patients with steroid-resistant nephrotic syndrome (SRNS) may also respond to MMF, usually given in combination with other drugs, with partial or complete remission. There are important limitations to the interpretation and comparability of these studies including study design, sample size, patient selection, clinical endpoints, carry-over effects, and duration of follow-up. In all studies, MMF had relatively few side effects, no nephrotoxicity, or no systemic toxicity. MMF is teratogenic, and contraceptive advice is required in females. There is a poor correlation between MMF dose and mycophenolic acid (MPA) exposure and significant inter- and intra-patient variability in drug pharmacokinetics. A higher estimated MPA-AUC0-12 target range than recommended for pediatric renal transplant recipients is essential to prevent relapses. Therefore, therapy should be guided by drug monitoring to avoid relapses. Further studies are needed to test the efficacy of MMF in inducing remission and, as part of a combination therapy, achieving sustained remission in patients with SRNS.
Collapse
|
21
|
Klotsman M, Sathyan G, Anderson WH, Garden OA, Shivanand P. Mycophenolic acid in patients with immune-mediated inflammatory diseases: From humans to dogs. J Vet Pharmacol Ther 2018; 42:127-138. [PMID: 30375004 DOI: 10.1111/jvp.12731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022]
Abstract
Mycophenolic acid (MPA), a noncompetitive, selective and reversible inhibitor of inosine 5'-monophosphate dehydrogenase (IMPDH), is an immunosuppressive agent that has a long history in medicine. Mechanistically, the inhibition of IMPDH leads to the selective and eventual arrest of T- and B-lymphocyte proliferation. Mycophenolate mofetil (MMF), the first MPA-based product to receive marketing approval over two decades ago, was originally indicated for the prophylaxis of organ rejection in human transplant patients. Given its broad immunosuppressive properties and ability to selectively inhibit lymphocyte division and effector functions, the clinical utility of MPA was subsequently explored in a host of autoimmune diseases. Human clinical studies have shown MPA to be safe and effective and support its off-label administration for immune-mediated diseases such as lupus, myasthenia gravis and atopic dermatitis. MMF became generically available in the United States in 2008, and its clinical utility is increasingly being explored as a treatment option for dogs with immune-mediated diseases. This review summarizes the available literature for MPA pharmacokinetics and pharmacodynamics, and the current status of MPA as a treatment for client-owned dogs diagnosed with immune-mediated diseases.
Collapse
Affiliation(s)
| | | | - Wayne H Anderson
- Okava Pharmaceuticals, San Francisco, California.,Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Oliver A Garden
- Clinical Sciences & Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
22
|
Tullus K, Webb H, Bagga A. Management of steroid-resistant nephrotic syndrome in children and adolescents. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:880-890. [PMID: 30342869 DOI: 10.1016/s2352-4642(18)30283-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
Abstract
More than 85% of children and adolescents (majority between 1-12 years old) with idiopathic nephrotic syndrome show complete remission of proteinuria following daily treatment with corticosteroids. Patients who do not show remission after 4 weeks' treatment with daily prednisolone are considered to have steroid-resistant nephrotic syndrome (SRNS). Renal histology in most patients shows presence of focal segmental glomerulosclerosis, minimal change disease, and (rarely) mesangioproliferative glomerulonephritis. A third of patients with SRNS show mutations in one of the key podocyte genes. The remaining cases of SRNS are probably caused by an undefined circulating factor. Treatment with calcineurin inhibitors (ciclosporin and tacrolimus) is the standard of care for patients with non-genetic SRNS, and approximately 70% of patients achieve a complete or partial remission and show satisfactory long-term outcome. Additional treatment with drugs that inhibit the renin-angiotensin axis is recommended for hypertension and for reducing remaining proteinuria. Patients with SRNS who do not respond to treatment with calcineurin inhibitors or other immunosuppressive drugs can show declining kidney function and are at risk for end-stage renal failure. Approximately a third of those who undergo renal transplantation show recurrent focal segmental glomerulosclerosis in the allograft and often respond to combined treatment with plasma exchange, rituximab, and intensified immunosuppression.
Collapse
Affiliation(s)
- Kjell Tullus
- Nephrology Unit, Great Ormond Street Hospital for Children, Great Ormond Street, London, UK.
| | - Hazel Webb
- Nephrology Unit, Great Ormond Street Hospital for Children, Great Ormond Street, London, UK
| | - Arvind Bagga
- Division of Nephrology, Indian Council of Medical Research Advanced Center for Research in Nephrology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
23
|
Medeiros M, Lumini J, Stern N, Castañeda-Hernández G, Filler G. Generic immunosuppressants. Pediatr Nephrol 2018; 33:1123-1131. [PMID: 28733752 DOI: 10.1007/s00467-017-3735-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022]
Abstract
Immunosuppressive drugs for solid organ transplantation are critical dose drugs with a narrow therapeutic index. Many of the most commonly used innovator drugs are off patent and have been replicated by generic counterparts, often at substantial cost-savings to the patient. However, serious adverse events caused by the transition from innovator to generic medications, specifically in pediatric solid organ transplant recipients, have questioned these autosubstitutions. The purpose of this review is to summarize the criteria set forth by the regulatory bodies, and to examine how major immunosuppressive drugs conform to these recommendations. Regulatory bodies have established inconsistent criteria to demonstrate bioequivalence between innovator and generic medications, causing approved generic variations to have varying levels of equivalence with the innovator drugs. In order to minimize the risk for under-immunosuppression, the following recommendations have been concluded. Brand prescribing of cyclosporine and tacrolimus are recommended due to evidence of adverse events after conversion to generic formulations and differences in dissolution parameters. Mycophenolate mofetil (MMF) shows better bioequivalence between innovator and generic formulations, however caution should be advised when switching between formulations. The institution of 'innovator only' policies may be appropriate at this time in order to minimize the risk of under-immunosuppressing patients until the evidence of more stringent bioequivalence has been established.
Collapse
Affiliation(s)
- Mara Medeiros
- Unidad de Investigacion en Nefrologia, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico.,Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julia Lumini
- Department of Biomedical Life Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Noah Stern
- Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5W9, Canada
| | | | - Guido Filler
- Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5W9, Canada. .,Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5W9, Canada. .,Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N5A 5A5, Canada. .,Paediatric Nephrology, University of Western Ontario, Children's Hospital, London Health Science Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
24
|
Morassi A, Rivera-Vélez SM, Slovak JE, Court MH, Villarino NF. Ex vivo binding of the immunosuppressant mycophenolic acid to dog and cat plasma proteins and the effect of co-incubated dexamethasone and prednisolone. J Vet Pharmacol Ther 2018; 41:513-521. [PMID: 29687456 DOI: 10.1111/jvp.12507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/26/2018] [Indexed: 11/30/2022]
Abstract
Mycophenolic acid (MPA) has been shown to be promising for the treatment of autoimmune diseases in dogs and cats. In humans, MPA is highly bound to plasma proteins (~97%). It has been recommended to monitor free drug plasma concentrations because the free MPA correlates with its immunosuppressive effect. However, it is unknown if MPA is highly bound to plasma proteins in dogs and cats. The objectives of this study were to determine the extent of plasma protein binding of MPA and evaluate the effect of prednisolone and dexamethasone on the extent of protein binding of MPA in dogs and cats. The extent of plasma protein binding of MPA was determined in plasma collected from clinically healthy adult cats (n = 13) and dogs (n = 14) by combining high-throughput dialysis and ultra-high-liquid chromatography. This study reveals that MPA is highly bound to plasma proteins (>90%) in dogs and cats, mean extent of binding of MPA at 15 μg/ml to plasma proteins being 96% (range, 95%-97%) and 92% (range, 90%-93%) for dogs and cats, respectively. In dog plasma, MPA is primarily bound to albumin. In vitro, prednisolone increased the unbound MPA in dogs (p < .01) but not in cats (p = .07) while dexamethasone had no effect on MPA plasma binding in either species (p > .05). Results of this study provide valuable information for designing future pharmacokinetic and pharmacodynamic studies and also therapeutic monitoring programs for dogs and cats.
Collapse
Affiliation(s)
- A Morassi
- Department of Veterinary Clinical Sciences, Program in Individualized Medicine, Washington State University, Pullman, Washington
| | - S M Rivera-Vélez
- Department of Veterinary Clinical Sciences, Program in Individualized Medicine, Washington State University, Pullman, Washington
| | - J E Slovak
- Department of Veterinary Clinical Sciences, Program in Individualized Medicine, Washington State University, Pullman, Washington
| | - M H Court
- Department of Veterinary Clinical Sciences, Program in Individualized Medicine, Washington State University, Pullman, Washington
| | - N F Villarino
- Department of Veterinary Clinical Sciences, Program in Individualized Medicine, Washington State University, Pullman, Washington
| |
Collapse
|
25
|
Varnell CD, Fukuda T, Kirby CL, Martin LJ, Warshaw BL, Patel HP, Chand DH, Barletta GM, Van Why SK, VanDeVoorde RG, Weaver DJ, Wilson A, Verghese PS, Vinks AA, Greenbaum LA, Goebel J, Hooper DK. Mycophenolate mofetil-related leukopenia in children and young adults following kidney transplantation: Influence of genes and drugs. Pediatr Transplant 2017; 21:10.1111/petr.13033. [PMID: 28869324 PMCID: PMC5905326 DOI: 10.1111/petr.13033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2017] [Indexed: 12/31/2022]
Abstract
MMF is commonly prescribed following kidney transplantation, yet its use is complicated by leukopenia. Understanding the genetics mediating this risk will help clinicians administer MMF safely. We evaluated 284 patients under 21 years of age for incidence and time course of MMF-related leukopenia and performed a candidate gene association study comparing the frequency of 26 SNPs between cases with MMF-related leukopenia and controls. We matched cases by induction, steroid duration, race, center, and age. We also evaluated the impact of induction and SNPs on time to leukopenia in all cases. Sixty-eight (24%) patients had MMF-related leukopenia, of which 59 consented for genotyping and 38 were matched with controls. Among matched pairs, no SNPs were associated with leukopenia. With non-depleting induction, UGT2B7-900A>G (rs7438135) was associated with increased risk of MMF-related leukopenia (P = .038). Time to leukopenia did not differ between patients by induction agent, but 2 SNPs (rs2228075, rs2278294) in IMPDH1 were associated with increased time to leukopenia. MMF-related leukopenia is common after transplantation. UGT2B7 may influence leukopenia risk especially in patients without lymphocyte-depleting induction. IMPDH1 may influence time course of leukopenia after transplant.
Collapse
Affiliation(s)
- Charles D. Varnell
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Tsuyoshi Fukuda
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cassie L. Kirby
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lisa J. Martin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Barry L. Warshaw
- Division of Nephrology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Hiren P. Patel
- Division of Nephrology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Deepa H. Chand
- Division of Nephrology, University of Illinois College of Medicine, Peoria, IL, USA,Abbvie, North Chicago, IL, USA
| | | | - Scott K. Van Why
- Division of Pediatric Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rene G. VanDeVoorde
- Division of Nephrology, Monroe Carell Jr. Children’s Hospital, Nashville, TN, USA
| | - Donald J. Weaver
- Division of Nephrology, Levine Children’s Hospital, Charlotte, NC, USA
| | - Amy Wilson
- Division of Nephrology, Riley Hospital for Children, Indianapolis, IN, USA
| | - Priya S. Verghese
- Division of Pediatric Nephrology, University of Minnesota Masonic Children’s Hospital, Minneapolis, MN, USA
| | - Alexander A. Vinks
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Larry A. Greenbaum
- Division of Nephrology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Jens Goebel
- Division of Nephrology, Children’s Hospital Colorado, Aurora, CO, USA
| | - David K. Hooper
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA,James M. Anderson Center for Health Systems Excellence, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
26
|
Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in Chinese adult renal transplant recipients. Acta Pharmacol Sin 2017; 38:1566-1579. [PMID: 28836585 DOI: 10.1038/aps.2017.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/10/2017] [Indexed: 12/19/2022]
Abstract
Mycophenolate mofetil (MMF) is an important immunosuppressant used in renal transplantation, and mycophenolic acid (MPA) is the active component released from the ester prodrug MMF. The objective of this study was to investigate the population pharmacokinetics of mycophenolic acid (MPA) following oral administration of MMF in Chinese adult renal transplant recipients and to identify factors that explain MPA pharmacokinetic variability. Pharmacokinetic data for MPA and covariate information were retrospectively collected from 118 patients (79 patients were assigned to the group for building the population pharmacokinetic model, while 39 patients were assigned to the validation group). Population pharmacokinetic data analysis was performed using the NONMEM software. The pharmacokinetics of MPA was best described by a two-compartment model with a first-order absorption rate with no lag time. Body weight and serum creatinine level were positively correlated with apparent clearance (CL/F). The polymorphism in uridine diphosphate glucuronosyltransferase gene, UGT2B7, significantly explained the interindividual variability in the initial volume of distribution (V1/F). The estimated population parameters (and interindividual variability) were CL/F 18.3 L/h (34.2%) and V1/F 27.9 L (21.3%). The interoccasion variability was 13.7%. These population pharmacokinetic data have significant clinical value for the individualization of MMF therapy in Chinese adult renal transplant patients.
Collapse
|
27
|
Dried Blood Spot Sampling for Tacrolimus and Mycophenolic Acid in Children: Analytical and Clinical Validation. Ther Drug Monit 2017; 39:412-421. [DOI: 10.1097/ftd.0000000000000422] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
A Retrospective Study on Mycophenolic Acid Drug Interactions: Effect of Prednisone, Sirolimus, and Tacrolimus With MPA. Ther Drug Monit 2017; 39:220-228. [DOI: 10.1097/ftd.0000000000000403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|