1
|
González-Rodríguez JD, Inglés-Torres EQ, Cabrera-Sevilla JE, Ibáñez-Micó S, Bermejo-Costa F, Vera-Carbonell A, Bafalliu-Vidal JA, Cortés-Mora P, Lorente-Nicolás A, Donate-Legaz JM. Sotos Syndrome and Nephrocalcinosis a Rare But Possible Association Due to Impact on Contiguous Genes. J Clin Res Pediatr Endocrinol 2025; 17:219-225. [PMID: 37559368 PMCID: PMC12118326 DOI: 10.4274/jcrpe.galenos.2023.2023-3-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
One-month old, breastfeeding infant, born at term, with normal anthropometric measurements at birth was referred to Pediatric Nephrology due to a nephrocalcinosis. The patient presented with dysmorphic features and heart disease. A metabolic study was conducted on blood and urine yielding results within normal parameters, except for the renal concentration test and acidification test. At six months of age, the patient presented with overgrowth, which along with other clinical signs aroused the suspicion of Sotos syndrome. Molecular genetic testing identified a heterozygous deletion in 5q35 between bands q35.2 and q35.3, affecting the genes NSD1, SLC34A1 and FGFR4, which was compatible with Sotos syndrome and with nephrocalcinosis as a rare association.
Collapse
Affiliation(s)
- Juan D. González-Rodríguez
- Hospital General Universitario Santa Lucía, Department of Pediatric Nephrology, Cartagena, Murcia, Spain
| | - Esther Q. Inglés-Torres
- Hospital General Universitario Santa Lucía, Department of Pediatric Nephrology, Cartagena, Murcia, Spain
| | - José E. Cabrera-Sevilla
- Hospital General Universitario Santa Lucía, Department of Pediatric Nephrology, Cartagena, Murcia, Spain
| | - Salvador Ibáñez-Micó
- Hospital Clínico Universitario Virgen de la Arrixaca, Department of Pediatric Neurology, Murcia, Spain
| | - Francisca Bermejo-Costa
- Hospital General Universitario Santa Lucía, Department of Pediatric Gastroenterology, Cartagena, Spain
| | - Ascensión Vera-Carbonell
- Hospital Clínico Universitario Virgen de la Arrixaca, Biochemistry and Clinical Genetics Center, Murcia, Spain
| | - Juan A. Bafalliu-Vidal
- Hospital Clínico Universitario Virgen de la Arrixaca, Biochemistry and Clinical Genetics Center, Murcia, Spain
| | - Pedro Cortés-Mora
- Hospital General Universitario Santa Lucía, Department of Pediatric Gastroenterology, Cartagena, Spain
| | - Ana Lorente-Nicolás
- Hospital General Universitario Santa Lucía, Department of Pediatric Cardiology, Cartagena, Spain
| | - José María Donate-Legaz
- Hospital General Universitario Santa Lucía, Department of Pediatric Endocrinology, Cartagena, Spain
| |
Collapse
|
2
|
Gerber JS, Arroyo EMP, Pastor J, Correia M, Rudloff S, Moe OW, Egli-Spichtig D, Mohebbi N, Wagner CA. Controlled dietary phosphate loading in healthy young men elevates plasma phosphate and FGF23 levels. Pflugers Arch 2025; 477:495-508. [PMID: 39601886 PMCID: PMC11825603 DOI: 10.1007/s00424-024-03046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Increased dietary inorganic phosphate (Pi) intake stimulates renal Pi excretion, in part, by parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23) or dopamine. High dietary Pi may also stimulate sympathetic outflow. Rodent studies provided evidence for these regulatory loops, while controlled experiments in healthy humans examined periods of either a few hours or several weeks, and often varied dietary calcium intake. The effects of controlled, isolated changes in dietary Pi intake over shorter periods are unknown. We studied the effects of a low or high Pi diet on parameters of mineral metabolism in 10 healthy young men. Participants received a standardized diet (1000 mg phosphorus equivalent/day) supplemented with either a phosphate binder (low Pi diet) or phosphate capsules (750 mg phosphorus, high Pi diet) in a randomized cross-over trial for 5 days with a 7-day washout between diets. High Pi intake increased plasma Pi levels and 24-h excretion and decreased urinary calcium excretion. High Pi intake increased intact FGF23 (iFGF23) and suppressed plasma Klotho without affecting cFGF23, PTH, calcidiol, calcitriol, Fetuin-A, dopamine, epinephrine, norepinephrine, metanephrine, or aldosterone. Higher iFGF23 correlated with lower calcitriol and higher PTH. These data support a role for iFGF23 in increasing renal Pi excretion and reducing calcitriol in healthy young men during steady-state high dietary Pi intake. High dietary Pi intake elevated blood Pi levels in healthy young subjects with normal renal function and may therefore be a health risk, as higher serum Pi levels are associated with cardiovascular risk in the general population.
Collapse
Affiliation(s)
- Jennifer Scotti Gerber
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Eva Maria Pastor Arroyo
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Johanne Pastor
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Miguel Correia
- Division of Nephrology and Hypertension, University of Bern and University Hospital Bern, Bern, Switzerland
| | - Stefan Rudloff
- Division of Nephrology and Hypertension, University of Bern and University Hospital Bern, Bern, Switzerland
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniela Egli-Spichtig
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- National Center of Competence in Research, NCCR Kidney.CH, Zurich, Switzerland
| | - Nilufar Mohebbi
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
- National Center of Competence in Research, NCCR Kidney.CH, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- National Center of Competence in Research, NCCR Kidney.CH, Zurich, Switzerland.
| |
Collapse
|
3
|
Poulsen SB, Murali SK, Thomas L, Assmus A, Rosenbæk LL, Nielsen R, Dimke H, Rieg T, Fenton RA. Genetic deletion of the kidney sodium/proton exchanger-3 (NHE3) does not alter calcium and phosphate balance due to compensatory responses. Kidney Int 2025; 107:280-295. [PMID: 39089578 DOI: 10.1016/j.kint.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The sodium/proton exchanger-3 (NHE3) plays a major role in acid-base and extracellular volume regulation and is also implicated in calcium homeostasis. As calcium and phosphate balances are closely linked, we hypothesized that there was a functional link between kidney NHE3 activity, calcium, and phosphate balance. Therefore, we examined calcium and phosphate homeostasis in kidney tubule-specific NHE3 knockout mice (NHE3loxloxPax8 mice). Compared to controls, these knockout mice were normocalcemic with no significant difference in urinary calcium excretion or parathyroid hormone levels. Thiazide-induced hypocalciuria was less pronounced in the knockout mice, in line with impaired proximal tubule calcium transport. Knockout mice had greater furosemide-induced calciuresis and distal tubule calcium transport pathways were enhanced. Despite lower levels of the sodium/phosphate cotransporters (NaPi)-2a and -2c, knockout mice had normal plasma phosphate, sodium-dependent 32Phosphate uptake in proximal tubule membrane vesicles and urinary phosphate excretion. Intestinal phosphate uptake was unchanged. Low dietary phosphate reduced parathyroid hormone levels and increased NaPi-2a and -2c abundances in both genotypes, but NaPi-2c levels remained lower in the knockout mice. Gene expression profiling suggested proximal tubule remodeling in the knockout mice. Acutely, indirect NHE3 inhibition using the SGLT2 inhibitor empagliflozin did not affect urinary calcium and phosphate excretion. No differences in femoral bone density or architecture were detectable in the knockout mice. Thus, a role for kidney NHE3 in calcium homeostasis can be unraveled by diuretics, but NHE3 deletion in the kidneys has no major effects on overall calcium and phosphate homeostasis due, at least in part, to compensating mechanisms.
Collapse
Affiliation(s)
- Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Adrienne Assmus
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lena L Rosenbæk
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Wilson R, Mukherjee-Roy N, Gattineni J. The role of fibroblast growth factor 23 in regulation of phosphate balance. Pediatr Nephrol 2024; 39:3439-3451. [PMID: 38874635 DOI: 10.1007/s00467-024-06395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Abstract
Phosphate is essential for numerous biological processes, and serum levels are tightly regulated to accomplish these functions. The regulation of serum phosphate in a narrow physiological range is a well-orchestrated process and involves the gastrointestinal (GI) tract, bone, kidneys, and several hormones, namely, parathyroid hormone, fibroblast growth factor 23 (FGF23), and 1,25-dihydroxyvitamin D (1,25 Vitamin D). Although primarily synthesized in the bone, FGF23, an endocrine FGF, acts on the kidney to regulate phosphate and Vitamin D homeostasis by causing phosphaturia and reduced levels of 1,25 Vitamin D. Recent studies have highlighted the complex regulation of FGF23 including transcriptional and post-translational modification and kidney-bone cross talk. Understanding FGF23 biology has led to the identification of novel therapeutic agents to treat diseases that disrupt phosphate metabolism secondary to FGF23. The focus of this review is to provide an overview of phosphate homeostasis, FGF23 biology, and the role of FGF23 in phosphate balance.
Collapse
Affiliation(s)
| | - Neije Mukherjee-Roy
- Division of Pediatric Nephrology, Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Jyothsna Gattineni
- Division of Pediatric Nephrology, Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA.
| |
Collapse
|
5
|
Betton M, Blanchard A, Houillier P, Vargas-Poussou R, Hureaux M. Prevalence of kidney failure in adults diagnosed with hereditary tubulopathies. J Nephrol 2024; 37:1973-1983. [PMID: 39261397 DOI: 10.1007/s40620-024-02054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/21/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Inherited tubulopathies are rare kidney diseases with few data available in the literature regarding their long-term renal prognosis. This study aimed to evaluate the prevalence of kidney failure in adults with confirmed genetic tubulopathy and to describe the corresponding clinical and genetic findings. METHODS In this observational cohort study, we focused on genetic tubulopathies assumed to impact kidney function. In all adult patients genetically diagnosed in our laboratory between 2001 and 2019, we estimated Glomerular Filtration Rate (eGFR) at diagnosis using the Modification of diet in renal disease (MDRD) formula. Kidney failure was defined as an eGFR < 60 ml/min/1.73 m2. RESULTS A total of 2145 patients underwent genetic testing, confirming a genetic tubulopathy in 1031 cases (48%). We identified 116 patients out of 885 with available data with kidney failure, mostly diagnosed with Dent disease and distal renal tubular acidosis (respectively, 31% and 20%), followed by familial hypomagnesemia with hypercalciuria and nephrocalcinosis and renal hypophosphatemia/infantile hypercalcemia. Renal prognosis appeared particularly impacted in familial hypomagnesemia with hypercalciuria and nephrocalcinosis and Dent disease, while preserved in Gitelman syndrome. CONCLUSION In this cohort, 13% of adults with genetic tubulopathy had kidney failure at diagnosis, with this rate varying greatly according to tubulopathies and suggesting a significant impact on renal prognosis. Even in adults, genetic analyses yield a good diagnostic rate in selected patients, and should be performed as soon as possible, in order to improve the renal management of patients and their relatives.
Collapse
Affiliation(s)
- Maureen Betton
- Faculté de Médecine, Sorbonne Université, Paris, France
- Service de Médecine Génomique des Maladies Rares, Groupe Hospitalier Universitaire Centre, Site Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, 75015, Paris, France
- Université Paris Cité, Paris, France
| | - Anne Blanchard
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre d'Investigation Clinique 1418, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 75015, Paris, France
- Inserm U970, PARCC, Université de Paris, 75015, Paris, France
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Pascal Houillier
- Université Paris Cité, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Service de Physiologie, Explorations Fonctionnelles, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Rosa Vargas-Poussou
- Service de Médecine Génomique des Maladies Rares, Groupe Hospitalier Universitaire Centre, Site Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, 75015, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Marguerite Hureaux
- Service de Médecine Génomique des Maladies Rares, Groupe Hospitalier Universitaire Centre, Site Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, 75015, Paris, France.
- Université Paris Cité, Paris, France.
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.
- Inserm U970, PARCC, Université de Paris, 75015, Paris, France.
| |
Collapse
|
6
|
Zhang J, Che T, Wang L, Sun W, Zhao J, Chen J, Liu Y, Pu Q, Zhang Y, Li J, Li Z, Zhu Z, Fu Q, Wang X, Yuan J. Proteomics coupled transcriptomics reveals Slc34a1 and Slc34a3 downregulation as potential features of nephrotoxin-induced acute kidney injury. J Proteomics 2024; 302:105203. [PMID: 38782357 DOI: 10.1016/j.jprot.2024.105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Acute kidney injury (AKI) stands as a prevalent and economically burdensome condition worldwide, yet its complex molecular mechanisms remain incompletely understood. To address this gap, our study employs a multifaceted approach, combining mass spectrometry and RNA sequencing technologies, to elucidate the intricate molecular landscape underlying nephrotoxin-induced AKI in mice by cisplatin- and LPS-induced. By examining the protein and RNA expression profiles, we aimed to uncover novel insights into the pathogenesis of AKI and identify potential diagnostic and therapeutic targets. Our results demonstrate significant down-regulation of Slc34a1 and Slc34a3, shedding light on their crucial roles in AKI pathology and highlighting their promise as actionable targets for diagnosis and treatment. This comprehensive analysis not only enhances our understanding of AKI pathophysiology but also offers valuable avenues for the development of targeted interventions to mitigate its clinical impact. SIGNIFICANCE: Nephrotoxicity acute kidney injury (AKI) is a common clinical condition whose pathogenesis is the process by which some drugs, chemicals or other factors cause damage to the kidneys, resulting in impaired kidney function. Although it has been proved that different nephrotoxic substances can affect the kidney through different pathways, whether they have a commonality has not been registered. Here, we combined transcriptomics and proteomics to study the molecular mechanism of LPS and cisplatin-induced nephrotoxic acute kidney injury finding that the down-regulation of Slc34a1 and Slc34a3 may be a critical link in nephrotoxic acute kidney injury, which can be used as a marker for its early diagnosis.
Collapse
Affiliation(s)
- Junying Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tiantian Che
- Chongqing Nanan District Center for Diseases Control and Prevention, Chongqing 401336, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Wei Sun
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Jing Zhao
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Jiajia Chen
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Yang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Qi Pu
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Yu Zhang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Jiani Li
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhangfu Li
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, Shenzhen 518036, China
| | - Zhaojing Zhu
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
| | - Qihuan Fu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Xiaoyang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China..
| | - Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, Shenzhen 518036, China.; Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Department of Infectious Diseases, Affiliated Banan Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Puente N, Solis P, Riancho JA. Genetic causes of hypophosphatemia. Minerva Med 2024; 115:320-336. [PMID: 38727708 DOI: 10.23736/s0026-4806.24.09198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Phosphate is a key component of mineralized tissues and is also part of many organic compounds. Phosphorus homeostasis depends especially upon intestinal absorption, and renal excretion, which are regulated by various hormones, such as PTH, 1,25-dihydroxyvitamin D, and fibroblast growth factor 23. In this review we provide an update of several genetic disorders that affect phosphate transporters through cell membranes or the phosphate-regulating hormones, and, consequently, result in hypophosphatemia.
Collapse
Affiliation(s)
- Nuria Puente
- Service of Internal Medicine, Hospital U. M. Valdecilla, University of Cantabria, Santander, Spain
- Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
- Valdecilla Research Institute, Santander, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain
| | - Pablo Solis
- Service of Internal Medicine, Hospital U. M. Valdecilla, University of Cantabria, Santander, Spain
| | - Jose A Riancho
- Service of Internal Medicine, Hospital U. M. Valdecilla, University of Cantabria, Santander, Spain -
- Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
- Valdecilla Research Institute, Santander, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain
| |
Collapse
|
8
|
Burns D, Berlinguer-Palmini R, Werner A. XPR1: a regulator of cellular phosphate homeostasis rather than a Pi exporter. Pflugers Arch 2024; 476:861-869. [PMID: 38507112 PMCID: PMC11033234 DOI: 10.1007/s00424-024-02941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Phosphate (Pi) is an essential nutrient, and its plasma levels are under tight hormonal control. Uphill transport of Pi into cells is mediated by the two Na-dependent Pi transporter families SLC34 and SLC20. The molecular identity of a potential Pi export pathway is controversial, though XPR1 has recently been suggested by Giovannini and coworkers to mediate Pi export. We expressed XPR1 in Xenopus oocytes to determine its functional characteristics. Xenopus isoforms of proteins were used to avoid species incompatibility. Protein tagging confirmed the localization of XPR1 at the plasma membrane. Efflux experiments, however, failed to detect translocation of Pi attributable to XPR1. We tested various counter ions and export medium compositions (pH, plasma) as well as potential protein co-factors that could stimulate the activity of XPR1, though without success. Expression of truncated XPR1 constructs and individual domains of XPR1 (SPX, transmembrane core, C-terminus) demonstrated downregulation of the uptake of Pi mediated by the C-terminal domain of XPR1. Tethering the C-terminus to the transmembrane core changed the kinetics of the inhibition and the presence of the SPX domain blunted the inhibitory effect. Our observations suggest a regulatory role of XPR1 in cellular Pi handling rather than a function as Pi exporter. Accordingly, XPR1 senses intracellular Pi levels via its SPX domain and downregulates cellular Pi uptake via the C-terminal domain. The molecular identity of a potential Pi export protein remains therefore elusive.
Collapse
Affiliation(s)
- David Burns
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | | | - Andreas Werner
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
9
|
Zhu Z, Bo-Ran Ho B, Chen A, Amrhein J, Apetrei A, Carpenter TO, Lazaretti-Castro M, Colazo JM, McCrystal Dahir K, Geßner M, Gurevich E, Heier CA, Simmons JH, Hunley TE, Hoppe B, Jacobsen C, Kouri A, Ma N, Majumdar S, Molin A, Nokoff N, Ott SM, Peña HG, Santos F, Tebben P, Topor LS, Deng Y, Bergwitz C. An update on clinical presentation and responses to therapy of patients with hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Kidney Int 2024; 105:1058-1076. [PMID: 38364990 PMCID: PMC11106756 DOI: 10.1016/j.kint.2024.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.
Collapse
Affiliation(s)
- Zewu Zhu
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bryan Bo-Ran Ho
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alyssa Chen
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
| | - James Amrhein
- Pediatric Endocrinology and Diabetes, School of Medicine Greenville Campus, University of South Carolina, Greenville, South Carolina, USA
| | - Andreea Apetrei
- Caen University Hospital, Department of Genetics, UR7450 Biotargen, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, OSCAR Network, Caen, France
| | - Thomas Oliver Carpenter
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marise Lazaretti-Castro
- Division of Endocrinology, Escola Paulista de Medicina-Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, Brazil
| | - Juan Manuel Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kathryn McCrystal Dahir
- Division of Endocrinology, Program for Metabolic Bone Disorders, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michaela Geßner
- Pediatric Nephrology, Children's and Adolescents' Hospital, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Evgenia Gurevich
- Schneider Children's Medical Center of Israel, Pediatric Nephrology Institute, Petach Tikva, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Jill Hickman Simmons
- Department of Pediatrics, Division of Endocrinology and Diabetes, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Tracy Earl Hunley
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Bernd Hoppe
- Division of Pediatric Nephrology, Department of Pediatrics, University of Bonn, Bonn, Germany
| | - Christina Jacobsen
- Division of Endocrinology, Harvard Medical School, Boston, Massachusetts, USA
| | - Anne Kouri
- Pediatric Nephrology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nina Ma
- Section of Pediatric Endocrinology, Children's Hospital Colorado, Aurora, Colorado, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sachin Majumdar
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arnaud Molin
- Caen University Hospital, Department of Genetics, UR7450 Biotargen, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, OSCAR Network, Caen, France
| | - Natalie Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan M Ott
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Helena Gil Peña
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Fernando Santos
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Peter Tebben
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA; Division of Pediatric Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa Swartz Topor
- Division of Pediatric Endocrinology, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Yanhong Deng
- Yale School of Public Health, New Haven, Connecticut, USA
| | - Clemens Bergwitz
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
10
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
11
|
García-Castaño A, Madariaga L, Gómez-Conde S, González P, Grau G, Rica I, de Nanclares GP, De la Hoz AB, Aguayo A, Martínez R, Urrutia I, Gaztambide S, Calcium Phosphorus Metabolism Molecular Biology Group, Castaño L. Genetic profile of a large Spanish cohort with hypercalcemia. Front Endocrinol (Lausanne) 2024; 15:1297614. [PMID: 38586466 PMCID: PMC10998451 DOI: 10.3389/fendo.2024.1297614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction The disorders in the metabolism of calcium can present with manifestations that strongly suggest their diagnosis; however, most of the time, the symptoms with which they are expressed are nonspecific or present only as a laboratory finding, usually hypercalcemia. Because many of these disorders have a genetic etiology, in the present study, we sequenced a selection of 55 genes encoding the principal proteins involved in the regulation of calcium metabolism. Methods A cohort of 79 patients with hypercalcemia were analyzed by next-generation sequencing. Results The 30% of our cohort presented one pathogenic or likely pathogenic variant in genes associated with hypercalcemia. We confirmed the clinical diagnosis of 17 patients with hypocalciuric hypercalcemia (pathogenic or likely pathogenic variants in the CASR and AP2S1 genes), one patient with neonatal hyperparathyroidism (homozygous pathogenic variant in the CASR gene), and another patient with infantile hypercalcemia (two pathogenic variants in compound heterozygous state in the CYP24A1 gene). However, we also found variants in genes associated with primary hyperparathyroidism (GCM2), renal hypophosphatemia with or without rickets (SLC34A1, SLC34A3, SLC9A3R1, VDR, and CYP27B1), DiGeorge syndrome (TBX1 and NEBL), and hypophosphatasia (ALPL). Our genetic study revealed 11 novel variants. Conclusions Our study demonstrates the importance of genetic analysis through massive sequencing to obtain a clinical diagnosis of certainty. The identification of patients with a genetic cause is important for the appropriate treatment and identification of family members at risk of the disease.
Collapse
Affiliation(s)
- Alejandro García-Castaño
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Leire Madariaga
- Pediatric Nephrology Department, Biobizkaia Health Research Institute, Hospital Universitario Cruces, University of the Basque Country (UPV/EHU), CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Sara Gómez-Conde
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, University of the Basque Country (UPV/EHU), CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Pedro González
- Endocrinology and Nutrition Department, Biobizkaia Health Research Institute, Hospital Universitario Cruces, EndoERN, Barakaldo, Bizkaia, Spain
| | - Gema Grau
- Pediatric Endocrinology Department, Biobizkaia Health Research Institute, Hospital Universitario Cruces, EndoERN, Barakaldo, Bizkaia, Spain
| | - Itxaso Rica
- Pediatric Endocrinology Department, Biobizkaia Health Research Institute, Hospital Universitario Cruces, CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Gustavo Pérez de Nanclares
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Ana Belén De la Hoz
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Aníbal Aguayo
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Rosa Martínez
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Inés Urrutia
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Sonia Gaztambide
- Endocrinology and Nutrition Department, Biobizkaia Health Research Institute, Hospital Universitario Cruces, University of the Basque Country (UPV/EHU), CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | | | - Luis Castaño
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, University of the Basque Country (UPV/EHU), CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| |
Collapse
|
12
|
Walker E, Hayes W, Bockenhauer D. Inherited non-FGF23-mediated phosphaturic disorders: A kidney-centric review. Best Pract Res Clin Endocrinol Metab 2024; 38:101843. [PMID: 38042745 DOI: 10.1016/j.beem.2023.101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Phosphate is freely filtered by the glomerulus and reabsorbed exclusively in the proximal tubule by two key transporters, NaPiIIA and NaPiIIC, encoded by SLC34A1 and SLC34A3, respectively. Regulation of these transporters occurs primarily through the hormone FGF23 and, to a lesser degree, PTH. Consequently, inherited non-FGF23 mediated phosphaturic disorders are due to generalised proximal tubular dysfunction, loss-of-function variants in SLC34A1 or SLC34A3 or excess PTH signalling. The corresponding disorders are Renal Fanconi Syndrome, Infantile Hypercalcaemia type 2, Hereditary Hypophosphataemic Rickets with Hypercalciuria and Familial Hyperparathyroidism. Several inherited forms of Fanconi renotubular syndrome (FRTS) have also been described with the underlying genes encoding for GATM, EHHADH, HNF4A and NDUFAF6. Here, we will review their pathophysiology, clinical manifestations and the implications for treatment from a kidney-centric perspective, focussing on those disorders caused by dysfunction of renal phosphate transporters. Moreover, we will highlight specific genetic aspects, as the availability of large population genetic databases has raised doubts about some of the originally proposed gene-disease associations concerning phosphate transporters or their associated proteins.
Collapse
Affiliation(s)
- Emma Walker
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Wesley Hayes
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Detlef Bockenhauer
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Department of Renal Medicine, University College London, London, UK.
| |
Collapse
|
13
|
Serra AL, Russmann S, Henschkowski-Serra J. [Significance of phosphate in internal medicine]. Dtsch Med Wochenschr 2024; 149:93-100. [PMID: 38262403 DOI: 10.1055/a-2047-3665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Phosphate is essential for bone metabolism and for energy provision. Phosphate homeostasis is achieved by hormonal feedback mechanisms, predominantly parathyroid hormone, fibroblast growth factor 23 and calcitriol, with renal phosphate absorption taking on a special role. Although even large deviations from the serum normal range are rarely symptomatic, the health consequences can be significant. Essentially, the clinically relevant disturbances in phosphate balance can be attributed to three mechanisms: 1. shifts of phosphate between the extracellular space and the cytosol; 2. inadequate phosphate reabsorption in the kidney; 3. decreased intestinal phosphate absorption. Knowledge of physiology enables diagnosis and therapy of phosphate disorders.
Collapse
|
14
|
Abstract
Phosphorus is an essential mineral that is, in the form of inorganic phosphate (Pi), required for building cell membranes, DNA and RNA molecules, energy metabolism, signal transduction and pH buffering. In bone, Pi is essential for bone stability in the form of apatite. Intestinal absorption of dietary Pi depends on its bioavailability and has two distinct modes of active transcellular and passive paracellular absorption. Active transport is transporter mediated and partly regulated, while passive absorption depends mostly on bioavailability. Renal excretion controls systemic Pi levels, depends on transporters in the proximal tubule and is highly regulated. Deposition and release of Pi into and from soft tissues and bone has to be tightly controlled. The endocrine network coordinating intestinal absorption, renal excretion and bone turnover integrates dietary intake and metabolic requirements with renal excretion and is critical for bone stability and cardiovascular health during states of hypophosphataemia or hyperphosphataemia as evident from inborn or acquired diseases. This review provides an integrated overview of the biology of phosphate and Pi in mammals.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Courbebaisse M, Travers S, Bouderlique E, Michon-Colin A, Daudon M, De Mul A, Poli L, Baron S, Prot-Bertoye C. Hydration for Adult Patients with Nephrolithiasis: Specificities and Current Recommendations. Nutrients 2023; 15:4885. [PMID: 38068743 PMCID: PMC10708476 DOI: 10.3390/nu15234885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Nephrolithiasis affects around 10% of the population and is frequently associated with impaired dietary factors. The first one is insufficient fluid intake inducing reduced urine volume, urine supersaturation, and subsequently urinary lithiasis. Kidneys regulate 24 h urine volume, which, under physiological conditions, approximately reflects daily fluid intake. The aim of this study is to synthesize and highlight the role of hydration in the treatment of nephrolithiasis. Increasing fluid intake has a preventive effect on the risk of developing a first kidney stone (primary prevention) and also decreases the risk of stone recurrence (secondary prevention). Current guidelines recommend increasing fluid intake to at least at 2.5 L/day to prevent stone formation, and even to 3.5-4 L in some severe forms of nephrolithiasis (primary or enteric hyperoxaluria or cystinuria). Fluid intake must also be balanced between day and night, to avoid urinary supersaturation during the night. Patients should be informed and supported in this difficult process of increasing urine dilution, with practical ways and daily routines to increase their fluid intake. The liquid of choice is water, which should be chosen depending on its composition (such as calcium, bicarbonate, or magnesium content). Finally, some additional advice has to be given to avoid certain beverages such as those containing fructose or phosphoric acid, which are susceptible to increase the risk of nephrolithiasis.
Collapse
Affiliation(s)
- Marie Courbebaisse
- Faculté de Médecine, Université Paris Cité, F-75006 Paris, France
- Institut Necker Enfants Malades, Inserm U1151, F-75015 Paris, France
- Physiology—Functional Explorations Department, Georges Pompidou European Hospital, AP-HP, F-75015 Paris, France (C.P.-B.)
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
| | - Simon Travers
- Équipe Biologie, Lip(Sys)2, EA7357, UFR de Pharmacie, Université Paris-Saclay, F-91400 Orsay, France
- Clinical Chemistry Department, Georges Pompidou European Hospital, AP-HP, F-75015 Paris, France
| | - Elise Bouderlique
- Faculté de Médecine, Université Paris Cité, F-75006 Paris, France
- Physiology—Functional Explorations Department, Georges Pompidou European Hospital, AP-HP, F-75015 Paris, France (C.P.-B.)
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
| | - Arthur Michon-Colin
- Faculté de Médecine, Université Paris Cité, F-75006 Paris, France
- Physiology—Functional Explorations Department, Georges Pompidou European Hospital, AP-HP, F-75015 Paris, France (C.P.-B.)
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
| | - Michel Daudon
- Department of Multidisciplinary Functional Explorations, Tenon Hospital, AP-HP, F-75019 Paris, France
| | - Aurélie De Mul
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Filière Maladies Rares OSCAR, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, F-69500 Bron, France
| | - Laura Poli
- Physiology—Functional Explorations Department, Georges Pompidou European Hospital, AP-HP, F-75015 Paris, France (C.P.-B.)
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
| | - Stéphanie Baron
- Faculté de Médecine, Université Paris Cité, F-75006 Paris, France
- Physiology—Functional Explorations Department, Georges Pompidou European Hospital, AP-HP, F-75015 Paris, France (C.P.-B.)
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France
- CNRS ERL 8228—Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Caroline Prot-Bertoye
- Physiology—Functional Explorations Department, Georges Pompidou European Hospital, AP-HP, F-75015 Paris, France (C.P.-B.)
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France
- CNRS ERL 8228—Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| |
Collapse
|
16
|
Bizerea-Moga TO, Chisavu F, Ilies C, Olah O, Marginean O, Gafencu M, Doros G, Stroescu R. Phenotype of Idiopathic Infantile Hypercalcemia Associated with the Heterozygous Pathogenic Variant of SLC34A1 and CYP24A1. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1701. [PMID: 37892364 PMCID: PMC10605249 DOI: 10.3390/children10101701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Idiopathic infantile hypercalcemia (IIH) is a rare genetic disease, also called hypersensitivity to vitamin D3. The molecular heterogeneity allows for the differentiation between the two forms; IIH type 1 caused by CYP24A1 genetic variants and IIH type 2 associated with SLC34A1 mutations. The affected individuals express a variety of symptoms: hypercalcemia, hypercalciuria, suppressed intact parathormone levels (PTH), nephrocalcinosis, elevated levels of serum 1,25 (OH)2-vitamin D3 or inappropriately normal levels, and kidney phosphate wasting. The present paper describes three cases of IIH with heterozygous mutations in SLC34A1 and CYP24A1 genes, respectively. The genetic diagnosis is of paramount importance for proper treatment and the prediction of long-term outcomes.
Collapse
Affiliation(s)
- Teofana Otilia Bizerea-Moga
- Department XI of Pediatrics—1st Pediatric Discipline, Center for Research on Growth and Developmental Disorders in Children, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.O.B.-M.); (O.M.); (R.S.)
- 1st Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical and Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (C.I.); (O.O.)
| | - Flavia Chisavu
- 4th Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical sand Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (M.G.); (G.D.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine ‘Victor Babes’, 300041 Timișoara, Romania
| | - Cristina Ilies
- 1st Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical and Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (C.I.); (O.O.)
- Department III of Functional Sciences—Pathophysiology Discipline, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Orsolya Olah
- 1st Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical and Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (C.I.); (O.O.)
- Department VIII of Neuroscience—Psychology Discipline, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Otilia Marginean
- Department XI of Pediatrics—1st Pediatric Discipline, Center for Research on Growth and Developmental Disorders in Children, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.O.B.-M.); (O.M.); (R.S.)
- 1st Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical and Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (C.I.); (O.O.)
| | - Mihai Gafencu
- 4th Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical sand Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (M.G.); (G.D.)
- Department XI of Pediatrics—3rd Pediatric Discipline, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Gabriela Doros
- 4th Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical sand Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (M.G.); (G.D.)
- Department XI of Pediatrics—3rd Pediatric Discipline, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ramona Stroescu
- Department XI of Pediatrics—1st Pediatric Discipline, Center for Research on Growth and Developmental Disorders in Children, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.O.B.-M.); (O.M.); (R.S.)
- 4th Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical sand Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (M.G.); (G.D.)
| |
Collapse
|
17
|
Münch J, Goodyer PR, Wagner CA. Tubular Diseases and Stones Seen From Pediatric and Adult Nephrology Perspectives. Semin Nephrol 2023; 43:151437. [PMID: 37968178 DOI: 10.1016/j.semnephrol.2023.151437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The tubular system of the kidneys is a complex series of morphologic and functional units orchestrating the content of tubular fluid as it flows along the nephron and collecting ducts. Renal tubules maintain body water, regulate electrolytes and acid-base balance, reabsorb precious organic solutes, and eliminate specific metabolites, toxins, and drugs. In addition, decisive mechanisms to adjust blood pressure are governed by the renal tubules. Genetic as well as acquired disorders of these tubular functions may cause serious diseases that manifest both in childhood and adulthood. This article addresses a selection of tubulopathies and the underlying pathomechanisms, while highlighting the important differences in pediatric and adult nephrology care. These range from rare monogenic conditions such as nephrogenic diabetes insipidus, cystinosis, and Bartter syndrome that present in childhood, to the genetic and acquired tubular pathologies causing hypertension or nephrolithiasis that are more prevalent in adults. Both pediatric and adult nephrologists must be aware of these conditions and the age-dependent manifestations that warrant close interaction between the two subspecialties.
Collapse
Affiliation(s)
- Johannes Münch
- Institute of Physiology, University of Zurich, Zurich, Switzerland; Institute of Human Genetics, University of Zurich, Zurich, Switzerland; National Center of Competence in Research, NCCR Kidney.CH, Switzerland
| | - Paul R Goodyer
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center of Competence in Research, NCCR Kidney.CH, Switzerland.
| |
Collapse
|
18
|
Song Y, Zhao C, Li D. Research progress on renal calculus associate with inborn error of metabolism. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:169-177. [PMID: 37283101 DOI: 10.3724/zdxbyxb-2022-0698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Renal calculus is a common disease with complex etiology and high recurrence rate. Recent studies have revealed that gene mutations may lead to metabolic defects which are associated with the formation of renal calculus, and single gene mutation is involved in relative high proportion of renal calculus. Gene mutations cause changes in enzyme function, metabolic pathway, ion transport, and receptor sensitivity, causing defects in oxalic acid metabolism, cystine metabolism, calcium ion metabolism, or purine metabolism, which may lead to the formation of renal calculus. The hereditary conditions associated with renal calculus include primary hyperoxaluria, cystinuria, Dent disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis, Bartter syndrome, primary distal renal tubular acidosis, infant hypercalcemia, hereditary hypophosphatemic rickets with hypercalciuria, adenine phosphoribosyltransferase deficiency, hypoxanthine-guanine phosphoribosyltransferase deficiency, and hereditary xanthinuria. This article reviews the research progress on renal calculus associated with inborn error of metabolism, to provide reference for early screening, diagnosis, treatment, prevention and recurrence of renal calculus.
Collapse
Affiliation(s)
- Yuanming Song
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| | - Changyong Zhao
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Daobing Li
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| |
Collapse
|
19
|
Jennings ML. Role of transporters in regulating mammalian intracellular inorganic phosphate. Front Pharmacol 2023; 14:1163442. [PMID: 37063296 PMCID: PMC10097972 DOI: 10.3389/fphar.2023.1163442] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
This review summarizes the current understanding of the role of plasma membrane transporters in regulating intracellular inorganic phosphate ([Pi]In) in mammals. Pi influx is mediated by SLC34 and SLC20 Na+-Pi cotransporters. In non-epithelial cells other than erythrocytes, Pi influx via SLC20 transporters PiT1 and/or PiT2 is balanced by efflux through XPR1 (xenotropic and polytropic retrovirus receptor 1). Two new pathways for mammalian Pi transport regulation have been described recently: 1) in the presence of adequate Pi, cells continuously internalize and degrade PiT1. Pi starvation causes recycling of PiT1 from early endosomes to the plasma membrane and thereby increases the capacity for Pi influx; and 2) binding of inositol pyrophosphate InsP8 to the SPX domain of XPR1 increases Pi efflux. InsP8 is degraded by a phosphatase that is strongly inhibited by Pi. Therefore, an increase in [Pi]In decreases InsP8 degradation, increases InsP8 binding to SPX, and increases Pi efflux, completing a feedback loop for [Pi]In homeostasis. Published data on [Pi]In by magnetic resonance spectroscopy indicate that the steady state [Pi]In of skeletal muscle, heart, and brain is normally in the range of 1–5 mM, but it is not yet known whether PiT1 recycling or XPR1 activation by InsP8 contributes to Pi homeostasis in these organs. Data on [Pi]In in cultured cells are variable and suggest that some cells can regulate [Pi] better than others, following a change in [Pi]Ex. More measurements of [Pi]In, influx, and efflux are needed to determine how closely, and how rapidly, mammalian [Pi]In is regulated during either hyper- or hypophosphatemia.
Collapse
|
20
|
Liu Y, Chen Y, Yang Q, Shen D, Du Z, Zhang G. Single nucleotide polymorphisms in the GFR-related gene and the SNP-SNP interactions on the risk of diabetic kidney disease in Chinese Han population. Acta Diabetol 2023; 60:115-125. [PMID: 36378321 DOI: 10.1007/s00592-022-01988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic susceptibility is an important pathogenic mechanism in diabetic kidney disease (DKD). However, the specific gene variant associated with DKD susceptibility remains unclear. Glomerular filtration rate (GFR), an important indicator for the process of DKD, has a heritable component. This study aimed to explore whether these GFR-related single nucleotide polymorphisms (SNPs) were associated with DKD. METHODS GFR-related SNPs were collected from the Phenotype-Genotype Integrator (PheGenI) database. SNPs for population cohort analysis were selected following the criteria of complete records of eQTL and MAF > 5% in the Chinese Han population. Totally 498 subjects participated, including166 patients with DKD, 166 patients with T2DM, and 166 controls. The genotypes of SNPs were determined using a Sequenom MassARRAY system. Plink software was employed to analyze the SNP-SNP interactions. RESULTS By screening the GFR-related SNPs recorded in the PheGenI database, four SNPs (rs1260326, rs17319721, rs35716097, and rs6420094) were finally selected to investigate the association with DKD. It was shown that one of the four SNPs was related to DKD. The G allele of SLC34A1 rs6420094 was associated with a decreased risk of DKD in DKD and T2DM groups (OR 0.716; P = 0.049). Genetic model analysis revealed that rs6420094 was a protective factor for DKD in T2DM in a dominant model and an additive model (P = 0.03; P = 0.032, respectively). Although rs17319721 was not associated with the risk of DKD, the SNP-SNP interactions between rs17319721 and rs6420094 predicted a significantly decreased risk of DKD (OR 0.464; P = 0.047). CONCLUSION SLC34A1 rs6420094 was associated with a decreased DKD risk in the Chinese Han population. SNP-SNP interaction between rs17319721 and rs6420094 was associated with a lower risk of DKD.
Collapse
Affiliation(s)
- Yanxiu Liu
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Chen
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiwei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Dihan Shen
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenwu Du
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Guizhen Zhang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
21
|
Shore RM. Disorders of phosphate homeostasis in children, part 2: hypophosphatemic and hyperphosphatemic disorders. Pediatr Radiol 2022; 52:2290-2305. [PMID: 35536416 DOI: 10.1007/s00247-022-05373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Phosphorus, predominantly in the form of inorganic phosphate PO4-3, has many essential physiological functions. In the skeleton, phosphate and calcium form the mineral component and phosphate is also essential in regulating function of skeletal cells. Considerable advances have been made in our understanding of phosphate homeostasis since the recognition of fibroblast growth factor-23 (FGF23) as a bone-derived phosphaturic hormone. This second part of a two-part review of disorders of phosphate homeostasis in children covers hypophosphatemic and hyperphosphatemic disorders that are of interest to the pediatric radiologist, emphasizing, but not limited to, those related to abnormalities of FGF23 signaling.
Collapse
Affiliation(s)
- Richard M Shore
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, USA.
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
22
|
Abstract
Phosphate homeostasis is dependent on the interaction and coordination of four main organ systems: thyroid/parathyroids, gastrointestinal tract, bone and kidneys, and three key hormonal regulators, 1,25-hydroxyvitamin D3, parathyroid hormone and FGF23 with its co- factor klotho. Phosphorus is a critical nutritional element for normal cellular function, but in excess can be toxic to tissues, particularly the vasculature. As phosphate, it also has an important interaction and inter-dependence with calcium and calcium homeostasis sharing some of the same controlling hormones, although this is not covered in our article. We have chosen to provide a current overview of phosphate homeostasis only, focusing on the role of two major organ systems, the gastrointestinal tract and kidneys, and their contribution to the control of phosphate balance. We describe in some detail the mechanisms of intestinal and renal phosphate transport, and compare and contrast their regulation. We also consider a significant example of phosphate imbalance, with phosphate retention, which is chronic kidney disease; why consequent hyperphosphatemia is important, and some of the newer means of managing it.
Collapse
Affiliation(s)
- Joanne Marks
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Robert J Unwin
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom; Department of Renal Medicine, University College London, London, United Kingdom.
| |
Collapse
|
23
|
Young K, Beggs MR, Grimbly C, Alexander RT. Regulation of 1 and 24 hydroxylation of vitamin D metabolites in the proximal tubule. Exp Biol Med (Maywood) 2022; 247:1103-1111. [PMID: 35482362 PMCID: PMC9335508 DOI: 10.1177/15353702221091982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Calcium and phosphate are critical for numerous physiological processes. Consequently, the plasma concentration of these ions are tightly regulated. Calcitriol, the active form of vitamin D, is a positive modulator of mineralization as well as calcium and phosphate metabolism. The molecular and physiological effects of calcitriol are well documented. Calcitriol increases blood calcium and phosphate levels by increasing absorption from the intestine, and resorption of bone. Calcitriol synthesis is a multistep process. A precursor is first made via skin exposure to UV, it is then 25-hydroxylated in the liver to form 25-hydroxyitamin D. The next hydroxylation step occurs in the renal proximal tubule via the 1-αhydroxylase enzyme (encoded by CYP27B1) thereby generating 1,25-dihydroxyvitamin D, that is, calcitriol. At the same site, the 25-hydroxyvitamin D 24-hydroxlase enzyme encoded by CYP24A1 can hydroxylate 25-hydroxyvitamin D or calcitriol to deactivate the hormone. Plasma calcitriol levels are primarily determined by the regulated expression of CYP27B1 and CYP24A1. This occurs in response to parathyroid hormone (increases CYP27B1), calcitriol itself (decreases CYP27B1 and increases CYP24A1), calcitonin (increases or decreases CYP24A1 and increases CYP27B1), FGF23 (decreases CYP27B1 and increases CYP24A1) and potentially plasma calcium and phosphate levels themselves (mixed effects). Herein, we review the regulation of CYP27B1 and CYP24A1 transcription in response to the action of classic phophocalciotropic hormones and explore the possibility of direct regulation by plasma calcium.
Collapse
Affiliation(s)
- Kennedi Young
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada,Women and Children’s Health Institute, Edmonton, AB T6G 1C9, Canada
| | - Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada,Women and Children’s Health Institute, Edmonton, AB T6G 1C9, Canada
| | - Chelsey Grimbly
- Department of Paediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada,Women and Children’s Health Institute, Edmonton, AB T6G 1C9, Canada,Department of Paediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada,R Todd Alexander.
| |
Collapse
|
24
|
The human pathogenic 91del7 mutation in SLC34A1 has no effect in mineral homeostasis in mice. Sci Rep 2022; 12:6102. [PMID: 35414099 PMCID: PMC9005600 DOI: 10.1038/s41598-022-10046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
Kidneys are key regulators of phosphate homeostasis. Biallelic mutations of the renal Na+/phosphate cotransporter SLC34A1/NaPi-IIa cause idiopathic infantile hypercalcemia, whereas monoallelic mutations were frequently noted in adults with kidney stones. Genome-wide-association studies identified SLC34A1 as a risk locus for chronic kidney disease. Pathogenic mutations in SLC34A1 are present in 4% of the general population. Here, we characterize a mouse model carrying the 91del7 in-frame deletion, a frequent mutation whose significance remains unclear. Under normal dietary conditions, 12 weeks old heterozygous and homozygous males have similar plasma and urinary levels of phosphate as their wild type (WT) littermates, and comparable concentrations of parathyroid hormone, fibroblast growth factor 23 (FGF-23) and 1,25(OH)2 vitamin D3. Renal phosphate transport, and expression of NaPi-IIa and NaPi-IIc cotransporters, was indistinguishable in the three genotypes. Challenging mice with low dietary phosphate did not result in differences between genotypes with regard to urinary and plasma phosphate. Urinary and plasma phosphate, plasma FGF-23 and expression of cotransporters were similar in all genotypes after weaning. Urinary phosphate and bone mineral density were also comparable in 300 days old WT and mutant mice. In conclusion, mice carrying the 91del7 truncation do not show signs of impaired phosphate homeostasis.
Collapse
|
25
|
Singh P, Harris PC, Sas DJ, Lieske JC. The genetics of kidney stone disease and nephrocalcinosis. Nat Rev Nephrol 2022; 18:224-240. [PMID: 34907378 DOI: 10.1038/s41581-021-00513-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Kidney stones (also known as urinary stones or nephrolithiasis) are highly prevalent, affecting approximately 10% of adults worldwide, and the incidence of stone disease is increasing. Kidney stone formation results from an imbalance of inhibitors and promoters of crystallization, and calcium-containing calculi account for over 80% of stones. In most patients, the underlying aetiology is thought to be multifactorial, with environmental, dietary, hormonal and genetic components. The advent of high-throughput sequencing techniques has enabled a monogenic cause of kidney stones to be identified in up to 30% of children and 10% of adults who form stones, with ~35 different genes implicated. In addition, genome-wide association studies have implicated a series of genes involved in renal tubular handling of lithogenic substrates and of inhibitors of crystallization in stone disease in the general population. Such findings will likely lead to the identification of additional treatment targets involving underlying enzymatic or protein defects, including but not limited to those that alter urinary biochemistry.
Collapse
Affiliation(s)
- Prince Singh
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Division of Molecular Biology and Biochemistry, Mayo Clinic, Rochester, MN, USA
| | - David J Sas
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA. .,Division of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
26
|
Cwiek A, Suzuki M, deRonde K, Conaway M, Bennett KM, El Dahr S, Reidy KJ, Charlton JR. Premature differentiation of nephron progenitor cell and dysregulation of gene pathways critical to kidney development in a model of preterm birth. Sci Rep 2021; 11:21667. [PMID: 34737344 PMCID: PMC8569166 DOI: 10.1038/s41598-021-00489-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
Preterm birth is a leading cause of neonatal morbidity. Survivors have a greater risk for kidney dysfunction and hypertension. Little is known about the molecular changes that occur in the kidney of individuals born preterm. Here, we demonstrate that mice delivered two days prior to full term gestation undergo premature cessation of nephrogenesis, resulting in a lower glomerular density. Kidneys from preterm and term groups exhibited differences in gene expression profiles at 20- and 27-days post-conception, including significant differences in the expression of fat-soluble vitamin-related genes. Kidneys of the preterm mice exhibited decreased proportions of endothelial cells and a lower expression of genes promoting angiogenesis compared to the term group. Kidneys from the preterm mice also had altered nephron progenitor subpopulations, early Six2 depletion, and altered Jag1 expression in the nephrogenic zone, consistent with premature differentiation of nephron progenitor cells. In conclusion, preterm birth alone was sufficient to shorten the duration of nephrogenesis and cause premature differentiation of nephron progenitor cells. These candidate genes and pathways may provide targets to improve kidney health in preterm infants.
Collapse
Affiliation(s)
- Aleksandra Cwiek
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA
- Cell & Developmental Biology Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Kimberly deRonde
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA
| | - Mark Conaway
- University of Virginia Health System, Charlottesville, VA, USA
- Division of Translational Research and Applied Statistics, Department of Public Health Sciences, University of Virginia School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Kevin M Bennett
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samir El Dahr
- Department of Pediatrics, Tulane University School of Medicine and Children's Hospital of New Orleans, New Orleans, LA, USA
| | - Kimberly J Reidy
- Division of Nephrology, Department of Pediatrics, Children's Hospital at Montefiore, New York, NY, USA
| | - Jennifer R Charlton
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA.
| |
Collapse
|
27
|
Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 2021; 135:201-227. [PMID: 33416083 PMCID: PMC7796315 DOI: 10.1042/cs20190895] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
Collapse
|
28
|
Daude S, Quinaux T, Collet-Fenêtrier B, Silve C, Okamba P, Tubail Z, Savenkoff B. [A complex case of renal phosphate wasting…]. Nephrol Ther 2021; 17:466-472. [PMID: 33994136 DOI: 10.1016/j.nephro.2020.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/11/2020] [Accepted: 05/04/2020] [Indexed: 11/16/2022]
Abstract
We describe here the case report of a young man of 34-years old suffering from a haemorrhagic rectocolitis and presenting with marked hypophosphatemia secondary to an infusion of ferric-carboxymaltose. The renal phosphate wasting was asserted by a very low renal maximal reabsorption rate of phosphate associated with a high plasma FGF-23 level. Three months later we explored the patient and his father since we learnt that both of them had suffered from kidney stones for years with marked hypercalciuria. Kidney stones were composed of weddellite and carbapatite. We suspected a familial phosphate renal wasting syndrome but however no mutation of the renal phosphate carriers could be identified.
Collapse
Affiliation(s)
- Sébastien Daude
- Service d'hépato-gastro-entérologie, CHRU de Nancy, 1, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France
| | - Thomas Quinaux
- Service de néphrologie, dialyse et aphérèse thérapeutique, hôpital de Mercy CS45001, CHR de Metz-Thionville, 1, allée du Château, 57085 Metz cedex 03, France
| | - Benjamin Collet-Fenêtrier
- Service d'hépato-gastro-entérologie, hôpital de Mercy CS45001, CHR de Metz-Thionville, 1, allée du Château, 57085 Metz cedex 03, France
| | - Caroline Silve
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| | - Patricia Okamba
- Laboratoire de biochimie et d'immunologie, CHR de Metz Thionville, Hôpital de Mercy CS45001, 1, allée du Château, 57085 Metz cedex 03, France
| | - Zead Tubail
- Service de néphrologie, dialyse et aphérèse thérapeutique, hôpital de Mercy CS45001, CHR de Metz-Thionville, 1, allée du Château, 57085 Metz cedex 03, France
| | - Benjamin Savenkoff
- Service de néphrologie, dialyse et aphérèse thérapeutique, hôpital de Mercy CS45001, CHR de Metz-Thionville, 1, allée du Château, 57085 Metz cedex 03, France.
| |
Collapse
|
29
|
Papadopoulou A, Bountouvi E, Karachaliou FE. The Molecular Basis of Calcium and Phosphorus Inherited Metabolic Disorders. Genes (Basel) 2021; 12:genes12050734. [PMID: 34068220 PMCID: PMC8153134 DOI: 10.3390/genes12050734] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Calcium (Ca) and Phosphorus (P) hold a leading part in many skeletal and extra-skeletal biological processes. Their tight normal range in serum mirrors their critical role in human well-being. The signalling “voyage” starts at Calcium Sensing Receptor (CaSR) localized on the surface of the parathyroid glands, which captures the “oscillations” of extracellular ionized Ca and transfers the signal downstream. Parathyroid hormone (PTH), Vitamin D, Fibroblast Growth Factor (FGF23) and other receptors or ion-transporters, work synergistically and establish a highly regulated signalling circuit between the bone, kidneys, and intestine to ensure the maintenance of Ca and P homeostasis. Any deviation from this well-orchestrated scheme may result in mild or severe pathologies expressed by biochemical and/or clinical features. Inherited disorders of Ca and P metabolism are rare. However, delayed diagnosis or misdiagnosis may cost patient’s quality of life or even life expectancy. Unravelling the thread of the molecular pathways involving Ca and P signaling, we can better understand the link between genetic alterations and biochemical and/or clinical phenotypes and help in diagnosis and early therapeutic intervention.
Collapse
|
30
|
Bird RP, Eskin NAM. The emerging role of phosphorus in human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:27-88. [PMID: 34112356 DOI: 10.1016/bs.afnr.2021.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphorus, an essential nutrient, performs vital functions in skeletal and non-skeletal tissues and is pivotal for energy production. The last two decades of research on the physiological importance of phosphorus have provided several novel insights about its dynamic nature as a nutrient performing functions as a phosphate ion. Phosphorous also acts as a signaling molecule and induces complex physiological responses. It is recognized that phosphorus homeostasis is critical for health. The intake of phosphorus by the general population world-wide is almost double the amount required to maintain health. This increase is attributed to the incorporation of phosphate containing food additives in processed foods purchased by consumers. Research findings assessed the impact of excessive phosphorus intake on cells' and organs' responses, and highlighted the potential pathogenic consequences. Research also identified a new class of bioactive phosphates composed of polymers of phosphate molecules varying in chain length. These polymers are involved in metabolic responses including hemostasis, brain and bone health, via complex mechanism(s) with positive or negative health effects, depending on their chain length. It is amazing, that phosphorus, a simple element, is capable of exerting multiple and powerful effects. The role of phosphorus and its polymers in the renal and cardiovascular system as well as on brain health appear to be important and promising future research directions.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| | - N A Michael Eskin
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
31
|
Mamonova T, Friedman PA. Noncanonical Sequences Involving NHERF1 Interaction with NPT2A Govern Hormone-Regulated Phosphate Transport: Binding Outside the Box. Int J Mol Sci 2021; 22:1087. [PMID: 33499384 PMCID: PMC7866199 DOI: 10.3390/ijms22031087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
Na+/H+ exchange factor-1 (NHERF1), a multidomain PDZ scaffolding phosphoprotein, is required for the type II sodium-dependent phosphate cotransporter (NPT2A)-mediated renal phosphate absorption. Both PDZ1 and PDZ2 domains are involved in NPT2A-dependent phosphate uptake. Though harboring identical core-binding motifs, PDZ1 and PDZ2 play entirely different roles in hormone-regulated phosphate transport. PDZ1 is required for the interaction with the C-terminal PDZ-binding sequence of NPT2A (-TRL). Remarkably, phosphocycling at Ser290 distant from PDZ1, the penultimate step for both parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) regulation, controls the association between NHERF1 and NPT2A. PDZ2 interacts with the C-terminal PDZ-recognition motif (-TRL) of G Protein-coupled Receptor Kinase 6A (GRK6A), and that promotes phosphorylation of Ser290. The compelling biological puzzle is how PDZ1 and PDZ2 with identical GYGF core-binding motifs specifically recognize distinct binding partners. Binding determinants distinct from the canonical PDZ-ligand interactions and located "outside the box" explain PDZ domain specificity. Phosphorylation of NHERF1 by diverse kinases and associated conformational changes in NHERF1 add more complexity to PDZ-binding diversity.
Collapse
Affiliation(s)
- Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | | |
Collapse
|
32
|
[Nephrocalcinosis in children]. Nephrol Ther 2021; 17:58-66. [PMID: 33461896 DOI: 10.1016/j.nephro.2020.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nephrocalcinosis is defined by calcium phosphate or calcium oxalate deposits in the kidney parenchyma, particularly in tubular epithelial cells and interstitial tissue. It should be differentiated from urolithiasis where calcium salts deposits are located in the kidney and urinary tract. The epidemiology of nephrocalcinosis in children is unknown but the condition is not so rare, with an increased incidence in preterm infants. Often detected as an incidental finding, nephrocalcinosis may be classified according to the radiological type: medullary, cortical or diffuse. Nephrocalcinosis in children can be caused by a variety of etiology. The most common causes concern medullary nephrocalcinosis and include hereditary tubular disorders, in particular distal renal tubular acidosis and Dent disease, metabolic disorders such as idiopathic hypercalciuria and hyperoxaluria, and iatrogenic causes such as vitamin D intoxication. In the newborn, the main cause is hypercalciuria of the premature baby, whose multifactorial origin is largely iatrogenic. Primary hyperoxaluria which can lead to early onset nephrocalcinosis and usually to chronic kidney disease should always be considered and further investigated. In order to provide a specific diagnosis, it is essential to take into account the family history, the clinical context and complete laboratory data. Early initiation of an appropriate etiological treatment is recommended and may prevent or delay the progression to chronic kidney disease in some cases.
Collapse
|
33
|
Runova GE, Golounina OO, Glinkina IV, Sych YP, Fadeev VV. [Differential diagnosis of normocalcemic hyperparathyroidism and idiopathic hypercalciuria on the example of clinical case]. PROBLEMY ENDOKRINOLOGII 2020; 66:13-17. [PMID: 33481363 DOI: 10.14341/probl12677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Idiopathic hypercalciuria is a heterogeneous generalized disorder caused by various defects in calcium transport and increased urinary calcium excretion. The main etiopathogenetic factors are violations of vitamin D metabolism, changes in the sensitivity of calcitriol receptors and violations of the processes of calcium reabsorption in the proximal tubules and in the ascending knee of the Henle loop. This article presents a clinical observation of patient with idiopathic hypercalciuria, initially high levels of parathyroid hormone (PTH) in the absence of hyperparathyroidism. Therapy with thiazide diuretics allowed to achieve normalization of daily urinary calcium excretion and reducing PTH. Despite the low prevalence of idiopathic hypercalciuria, differential diagnosis of this metabolic disorder should be carried out with mandatory consideration of clinical and laboratory data, as well as with diseases that may cause increased PTH production.
Collapse
Affiliation(s)
- G E Runova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O O Golounina
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I V Glinkina
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - Yu P Sych
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - V V Fadeev
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
34
|
Hernando N, Pastor-Arroyo EM, Marks J, Schnitzbauer U, Knöpfel T, Bürki M, Bettoni C, Wagner CA. 1,25(OH) 2 vitamin D 3 stimulates active phosphate transport but not paracellular phosphate absorption in mouse intestine. J Physiol 2020; 599:1131-1150. [PMID: 33200827 DOI: 10.1113/jp280345] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Intestinal absorption of phosphate proceeds via an active/transcellular route mostly mediated by NaPi-IIb/Slc34a2 and a poorly characterized passive/paracellular pathway. Intestinal phosphate absorption and expression of NaPi-IIb are stimulated by 1,25(OH)2 vitamin D3 but whether NaPi-IIb is the only target under hormonal control remains unknown. We report that administration of 1,25(OH)2 vitamin D3 to wild-type mice resulted in the expected increase in active transport of phosphate in jejunum, without changing paracellular fluxes. Instead, the same treatment failed to alter phosphate transport in intestinal-depleted Slc34a2-deficient mice. In both genotypes, 1,25(OH)2 vitamin D3 induced similar hyperphosphaturic responses and changes in the plasma levels of FGF23 and PTH. While urinary phosphate loss induced by administration of 1,25(OH)2 vitamin D3 did not alter plasma phosphate, further studies should investigate whether chronic administration would lead to phosphate imbalance in mice with reduced active intestinal absorption. ABSTRACT Intestinal absorption of phosphate is stimulated by 1,25(OH)2 vitamin D3. At least two distinct mechanisms underlie phosphate absorption in the gut, an active transcellular transport requiring the Na+ /phosphate cotransporter NaPi-IIb/Slc34a2, and a poorly characterized paracellular passive pathway. 1,25(OH)2 vitamin D3 stimulates NaPi-IIb expression and function, and loss of NaPi-IIb reduces intestinal phosphate absorption. However, it is remains unknown whether NaPi-IIb is the only target for hormonal regulation by 1,25(OH)2 vitamin D3 . Here we compared the effects of intraperitoneal administration of 1,25(OH)2 vitamin D3 (2 days, once per day) in wild-type and intestinal-specific Slc34a2-deficient mice, and analysed trans- vs. paracellular routes of phosphate absorption. We found that treatment stimulated active transport of phosphate only in jejunum of wild-type mice, though NaPi-IIb protein expression was upregulated in jejunum and ileum. In contrast, 1,25(OH)2 vitamin D3 administration had no effect in Slc34a2-deficient mice, suggesting that the hormone specifically regulates NaPi-IIb expression. In both groups, 1,25(OH)2 vitamin D3 elicited the expected increase of plasma fibroblast growth factor 23 (FGF23) and reduction of parathyroid hormone (PTH). Treatment resulted in hyperphosphaturia (and hypercalciuria) in both genotypes, though mice remained normophosphataemic. While increased intestinal absorption and higher FGF23 can trigger the hyperphosphaturic response in wild types, only higher FGF23 can explain the renal response in Slc34a2-deficient mice. Thus, 1,25(OH)2 vitamin D3 stimulates intestinal phosphate absorption by acting on the active transcellular pathway mostly mediated by NaPi-IIb while the paracellular pathway appears not to be affected.
Collapse
Affiliation(s)
- Nati Hernando
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | | | - Joanne Marks
- University College London, Gower St, London, WC1E 6BT, UK
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Thomas Knöpfel
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Matthias Bürki
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
35
|
De Paolis E, Scaglione GL, De Bonis M, Minucci A, Capoluongo E. CYP24A1 and SLC34A1 genetic defects associated with idiopathic infantile hypercalcemia: from genotype to phenotype. Clin Chem Lab Med 2020; 57:1650-1667. [PMID: 31188746 DOI: 10.1515/cclm-2018-1208] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
Loss of function mutations in the CYP24A1 gene, involved in vitamin D catabolism and in calcium homeostasis, are known to be the genetic drivers of both idiopathic infantile hypercalcemia (IIH) and adult renal stone disease. Recently, also defects in the SLC34A1 gene, encoding for the renal sodium-phosphate transporter NaPi-IIa, were associated with the disease. IIH typically affects infants and pediatric patients with a syndrome characterized by severe hypercalcemia, hypercalciuria, suppressed parathyroid hormone level and nephrolithiasis. In SLC34A1 mutated carriers, hypophosphatemia is also a typical biochemical tract. IIH may also persist undiagnosed into adulthood, causing an increased risk of nephrocalcinosis and renal complication. To note, a clinical heterogeneity characterizes IIH manifestation, principally due to the controversial gene-dose effect and, to the strong influence of environmental factors. The present review is aimed to provide an overview of the current molecular findings on the IIH disorder, giving a comprehensive description of the association between genotype and biochemical and clinical phenotype of the affected patients. We also underline that patients may benefit from genetic testing into a targeted diagnostic and therapeutic workflow.
Collapse
Affiliation(s)
- Elisa De Paolis
- Laboratory of Molecular Diagnostics and Genomics, Teaching and Research Hospital "Fondazione Policlinico Agostino Gemelli" - IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Giovanni Luca Scaglione
- Laboratory of Molecular Oncology, "Fondazione Giovanni Paolo II", Catholic University of Sacred Heart, Campobasso, Italy
| | - Maria De Bonis
- Laboratory of Molecular Diagnostics and Genomics, Teaching and Research Hospital "Fondazione Policlinico Agostino Gemelli" - IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Angelo Minucci
- Laboratory of Molecular Diagnostics and Genomics, Teaching and Research Hospital "Fondazione Policlinico Agostino Gemelli" - IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Ettore Capoluongo
- Laboratory of Molecular Diagnostics and Genomics, Teaching and Research Hospital "Fondazione Policlinico Agostino Gemelli" - IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
36
|
Colazo JM, Reasoner SA, Holt G, Faugere MCM, Dahir KM. Hereditary Hypophosphatemic Rickets with Hypercalciuria (HHRH) Presenting with Genu Valgum Deformity: Treatment with Phosphate Supplementation and Surgical Correction. Case Rep Endocrinol 2020; 2020:1047327. [PMID: 32695531 PMCID: PMC7368196 DOI: 10.1155/2020/1047327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/18/2020] [Indexed: 11/17/2022] Open
Abstract
We describe a case of hereditary hypophosphatemic rickets with hypercalciuria (HHRH) in a 32-year-old female with short stature, chronic pathologic genu valgum deformity, and knee pain who was referred to endocrinology clinic after previous inconclusive workups. We present imaging spanning 10 years of untreated disease. Biochemical studies showed hypophosphatemia with undetectable fibroblast growth factor 23 (FGF23.) Renal ultrasound revealed bilateral medullary nephrocalcinosis despite no apparent hypercalciuria. Due to concern for HHRH, genetic testing was performed that determined this patient to be homozygous in the SLC34A3 gene for a previously described missense variant (c.1402C > T, p.Arg468Trp). There was no known family history of rickets. A bone biopsy with metabolic studies was performed for diagnostic and prognostic reasons. The histopathological findings along with tetracycline uptake studies were consistent with a diagnosis of HHRH. Treatment with phosphorous supplementation and surgical correction of her valgum deformity resulted in resolution of pain, but no change in bone histomorphometry.
Collapse
Affiliation(s)
- Juan M. Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Seth A. Reasoner
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ginger Holt
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marie C. M. Faugere
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Albert B. Chandler Medical Center, Lexington, KY, USA
| | - Kathryn M. Dahir
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
37
|
Abstract
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Collapse
Affiliation(s)
- Nati Hernando
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Kenneth Gagnon
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Eleanor Lederer
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
38
|
Motta SE, Imenez Silva PH, Daryadel A, Haykir B, Pastor-Arroyo EM, Bettoni C, Hernando N, Wagner CA. Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease. Pflugers Arch 2020; 472:449-460. [PMID: 32219532 DOI: 10.1007/s00424-020-02370-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/29/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023]
Abstract
Na+-coupled phosphate cotransporters from the SLC34 and SLC20 families of solute carriers mediate transepithelial transport of inorganic phosphate (Pi). NaPi-IIa/Slc34a1, NaPi-IIc/Slc34a3, and Pit-2/Slc20a2 are all expressed at the apical membrane of renal proximal tubules and therefore contribute to renal Pi reabsorption. Unlike NaPi-IIa and NaPi-IIc, which are rather kidney-specific, NaPi-IIb/Slc34a2 is expressed in several epithelial tissues, including the intestine, lung, testis, and mammary glands. Recently, the expression of NaPi-IIb was also reported in kidneys from rats fed on high Pi. Here, we systematically quantified the mRNA expression of SLC34 and SLC20 cotransporters in kidneys from mice, rats, and humans. In all three species, NaPi-IIa mRNA was by far the most abundant renal transcript. Low and comparable mRNA levels of the other four transporters, including NaPi-IIb, were detected in kidneys from rodents and humans. In mice, the renal expression of NaPi-IIa transcripts was restricted to the cortex, whereas NaPi-IIb mRNA was observed in medullary segments. Consistently, NaPi-IIb protein colocalized with uromodulin at the luminal membrane of thick ascending limbs of the loop of Henle segments. The abundance of NaPi-IIb transcripts in kidneys from mice was neither affected by dietary Pi, the absence of renal NaPi-IIc, nor the depletion of intestinal NaPi-IIb. In contrast, it was highly upregulated in a model of oxalate-induced kidney disease where all other SLC34 phosphate transporters were downregulated. Thus, NaPi-IIb may contribute to renal phosphate reabsorption, and its upregulation in kidney disease might promote hyperphosphatemia.
Collapse
Affiliation(s)
- Sarah E Motta
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Pedro Henrique Imenez Silva
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Arezoo Daryadel
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Betül Haykir
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Eva Maria Pastor-Arroyo
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
39
|
Iancu D, Ashton E. Inherited Renal Tubulopathies-Challenges and Controversies. Genes (Basel) 2020; 11:genes11030277. [PMID: 32150856 PMCID: PMC7140864 DOI: 10.3390/genes11030277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 12/23/2022] Open
Abstract
Electrolyte homeostasis is maintained by the kidney through a complex transport function mostly performed by specialized proteins distributed along the renal tubules. Pathogenic variants in the genes encoding these proteins impair this function and have consequences on the whole organism. Establishing a genetic diagnosis in patients with renal tubular dysfunction is a challenging task given the genetic and phenotypic heterogeneity, functional characteristics of the genes involved and the number of yet unknown causes. Part of these difficulties can be overcome by gathering large patient cohorts and applying high-throughput sequencing techniques combined with experimental work to prove functional impact. This approach has led to the identification of a number of genes but also generated controversies about proper interpretation of variants. In this article, we will highlight these challenges and controversies.
Collapse
Affiliation(s)
- Daniela Iancu
- UCL-Centre for Nephrology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK
- Correspondence: ; Tel.: +44-2381204172; Fax: +44-020-74726476
| | - Emma Ashton
- Rare & Inherited Disease Laboratory, London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children National Health Service Foundation Trust, Levels 4-6 Barclay House 37, Queen Square, London WC1N 3BH, UK;
| |
Collapse
|
40
|
Chande S, Caballero D, Ho BB, Fetene J, Serna J, Pesta D, Nasiri A, Jurczak M, Chavkin NW, Hernando N, Giachelli CM, Wagner CA, Zeiss C, Shulman GI, Bergwitz C. Slc20a1/Pit1 and Slc20a2/Pit2 are essential for normal skeletal myofiber function and survival. Sci Rep 2020; 10:3069. [PMID: 32080237 PMCID: PMC7033257 DOI: 10.1038/s41598-020-59430-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/29/2020] [Indexed: 01/25/2023] Open
Abstract
Low blood phosphate (Pi) reduces muscle function in hypophosphatemic disorders. Which Pi transporters are required and whether hormonal changes due to hypophosphatemia contribute to muscle function is unknown. To address these questions we generated a series of conditional knockout mice lacking one or both house-keeping Pi transporters Pit1 and Pit2 in skeletal muscle (sm), using the postnatally expressed human skeletal actin-cre. Simultaneous conditional deletion of both transporters caused skeletal muscle atrophy, resulting in death by postnatal day P13. smPit1-/-, smPit2-/- and three allele mutants are fertile and have normal body weights, suggesting a high degree of redundance for the two transporters in skeletal muscle. However, these mice show a gene-dose dependent reduction in running activity also seen in another hypophosphatemic model (Hyp mice). In contrast to Hyp mice, grip strength is preserved. Further evaluation of the mechanism shows reduced ERK1/2 activation and stimulation of AMP kinase in skeletal muscle from smPit1-/-; smPit2-/- mice consistent with energy-stress. Similarly, C2C12 myoblasts show a reduced oxygen consumption rate mediated by Pi transport-dependent and ERK1/2-dependent metabolic Pi sensing pathways. In conclusion, we here show that Pit1 and Pit2 are essential for normal myofiber function and survival, insights which may improve management of hypophosphatemic myopathy.
Collapse
Affiliation(s)
- Sampada Chande
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel Caballero
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Bryan B Ho
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan Fetene
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Juan Serna
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Dominik Pesta
- Department of Cellular&Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- German Diabetes Center, Düsseldorf, Germany, University of Washington, Box 355061, Foege Hall Seattle, WA, 98195, USA
| | - Ali Nasiri
- Department of Cellular&Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Jurczak
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, University of Washington, Box 355061, Foege Hall Seattle, WA, 98195, USA
| | - Nicholas W Chavkin
- Department of Bioengineering, University of Washington, Box 355061, Foege Hall Seattle, WA, 98195, USA
| | - Nati Hernando
- Institute of Physiology, University of Zürich, Switzerland and National Center of Competence in Research NCCR Kidney.CH, Zürich, Switzerland
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Box 355061, Foege Hall Seattle, WA, 98195, USA
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Switzerland and National Center of Competence in Research NCCR Kidney.CH, Zürich, Switzerland
| | - Caroline Zeiss
- Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular&Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Clemens Bergwitz
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
41
|
Shi M, Maique J, Shaffer J, Davidson T, Sebti S, Fernández ÁF, Zou Z, Yan S, Levine B, Moe OW, Hu MC. The tripartite interaction of phosphate, autophagy, and αKlotho in health maintenance. FASEB J 2020; 34:3129-3150. [PMID: 31908069 PMCID: PMC7286356 DOI: 10.1096/fj.201902127r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Aging-related organ degeneration is driven by multiple factors including the cell maintenance mechanisms of autophagy, the cytoprotective protein αKlotho, and the lesser known effects of excess phosphate (Pi), or phosphotoxicity. To examine the interplay between Pi, autophagy, and αKlotho, we used the BK/BK mouse (homozygous for mutant Becn1F121A ) with increased autophagic flux, and αKlotho-hypomorphic mouse (kl/kl) with impaired urinary Pi excretion, low autophagy, and premature organ dysfunction. BK/BK mice live longer than WT littermates, and have heightened phosphaturia from downregulation of two key NaPi cotransporters in the kidney. The multi-organ failure in kl/kl mice was rescued in the double-mutant BK/BK;kl/kl mice exhibiting lower plasma Pi, improved weight gain, restored plasma and renal αKlotho levels, decreased pathology of multiple organs, and improved fertility compared to kl/kl mice. The beneficial effects of heightened autophagy from Becn1F121A was abolished by chronic high-Pi diet which also shortened life span in the BK/BK;kl/kl mice. Pi promoted beclin 1 binding to its negative regulator BCL2, which impairs autophagy flux. Pi downregulated αKlotho, which also independently impaired autophagy. In conclusion, Pi, αKlotho, and autophagy interact intricately to affect each other. Both autophagy and αKlotho antagonizes phosphotoxicity. In concert, this tripartite system jointly determines longevity and life span.
Collapse
Affiliation(s)
- Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jenny Maique
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joy Shaffer
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taylor Davidson
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Salwa Sebti
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Álvaro F. Fernández
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhongju Zou
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shirley Yan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
42
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
43
|
Knöpfel T, Himmerkus N, Günzel D, Bleich M, Hernando N, Wagner CA. Paracellular transport of phosphate along the intestine. Am J Physiol Gastrointest Liver Physiol 2019; 317:G233-G241. [PMID: 31169994 DOI: 10.1152/ajpgi.00032.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inorganic phosphate (Pi) is crucial for many biological functions, such as energy metabolism, signal transduction, and pH buffering. Efficient systems must exist to ensure sufficient supply for the body of Pi from diet. Previous experiments in humans and rodents suggest that two pathways for the absorption of Pi exist, an active transcellular Pi transport and a second paracellular pathway. Whereas the identity, role, and regulation of active Pi transport have been extensively studied, much less is known about the properties of the paracellular pathway. In Ussing chamber experiments, we characterized paracellular intestinal Pi permeabilities and fluxes. Dilution potential measurements in intestinal cell culture models demonstrated that the tight junction is permeable to Pi, with monovalent Pi having a higher permeability than divalent Pi. These findings were confirmed in rat and mouse intestinal segments by use of Ussing chambers and a combination of dilution potential measurements and fluxes of radiolabeled 32Pi. Both techniques yielded very similar results, showing that paracellular Pi fluxes were bidirectional and that Pi permeability was ~50% of the permeability for Na+ or Cl-. Pi fluxes were a function of the concentration gradient and Pi species (mono- vs. divalent Pi). In mice lacking the active transcellular Pi transport component sodium-dependent Pi transporter NaPi-IIb, the paracellular pathway was not upregulated. In summary, the small and large intestines have a very high paracellular Pi permeability, which may favor monovalent Pi fluxes and allow efficient uptake of Pi even in the absence of active transcellular Pi uptake.NEW & NOTEWORTHY The paracellular permeability for phosphate is high along the entire axis of the small and large intestine. There is a slight preference for monovalent phosphate. Paracellular phosphate fluxes do not increase when transcellular phosphate transport is genetically abolished. Paracellular phosphate transport may be an important target for therapies aiming to reduce intestinal phosphate absorption.
Collapse
Affiliation(s)
- Thomas Knöpfel
- University of Zürich, Institute of Physiology, Zürich, Switzerland
| | - Nina Himmerkus
- Christian-Albrechts-Universität zu Kiel, Physiologisches Institut, Kiel, Germany
| | - Dorothee Günzel
- Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Institut für Klinische Physiologie, Berlin, Germany
| | - Markus Bleich
- Christian-Albrechts-Universität zu Kiel, Physiologisches Institut, Kiel, Germany
| | - Nati Hernando
- University of Zürich, Institute of Physiology, Zürich, Switzerland
| | - Carsten A Wagner
- University of Zürich, Institute of Physiology, Zürich, Switzerland
| |
Collapse
|
44
|
Evaluating pathogenicity of SLC34A3-Ser192Leu, a frequent European missense variant in disorders of renal phosphate wasting. Urolithiasis 2019; 47:511-519. [PMID: 30798342 PMCID: PMC6825645 DOI: 10.1007/s00240-019-01116-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/07/2019] [Indexed: 11/26/2022]
Abstract
Loss-of-function mutations of SLC34A3 represent an established cause of a distinct renal phosphate wasting disorder termed hereditary hypophosphatemic rickets with hypercalciuria (HHRH). SLC34A3 encodes the renal phosphate transporter NaPi2c expressed at the apical brush border of proximal renal tubules. Substitution of p.Ser192Leu is one of the most frequent genetic changes among HHRH patients in Europe, but has never been systematically evaluated, clinically or on a cellular level. Identification of a 32-year-old female with a homozgyous c.575C>T, p.Ser192Leu substitution enabled a more comprehensive assessment of the impact of this missense variant. Clinically, the patient showed renal phosphate wasting and nephrocalcinosis without any bone abnormalities. Heterozygous carriers of deleterious SLC34A3 variants were previously described to harbor an increased risk of kidney stone formation and renal calcification. We hence examined the frequency of p.Ser192Leu variants in our adult kidney stone cohort and compared the results to clinical findings of previously published cases of both mono- and biallelic p.Ser192Leu changes. On a cellular level, p.Ser192Leu-mutated transporters localize to the plasma membrane in different cellular systems, but lead to significantly reduced transport activity of inorganic phosphate upon overexpression in Xenopus oocytes. Despite the reduced function in ectopic cellular systems, the clinical consequences of p.Ser192Leu may appear relatively mild, at least in our index patient, and can potentially be missed in clinical practice.
Collapse
|
45
|
Abstract
Hypophosphatemic rickets, mostly of the X-linked dominant form caused by pathogenic variants of the PHEX gene, poses therapeutic challenges with consequences for growth and bone development and portends a high risk of fractions and poor bone healing, dental problems and nephrolithiasis/nephrocalcinosis. Conventional treatment consists of PO4 supplements and calcitriol requiring monitoring for treatment-emergent adverse effects. FGF23 measurement, where available, has implications for the differential diagnosis of hypophosphatemia syndromes and, potentially, treatment monitoring. Newer therapeutic modalities include calcium sensing receptor modulation (cinacalcet) and biological molecules targeting FGF23 or its receptors. Their long-term effects must be compared with those of conventional treatments.
Collapse
Affiliation(s)
- Martin Bitzan
- Department of Pediatrics, The Montreal Children's Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Room B RC.6164, Montreal, Quebec H4A 3J1, Canada.
| | - Paul R Goodyer
- The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Room EM1.2232, Montreal, Quebec H4A3J1, Canada
| |
Collapse
|
46
|
Lederer E, Wagner CA. Clinical aspects of the phosphate transporters NaPi-IIa and NaPi-IIb: mutations and disease associations. Pflugers Arch 2018; 471:137-148. [DOI: 10.1007/s00424-018-2246-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
|
47
|
Systemic network for dietary inorganic phosphate adaptation among three organs. Pflugers Arch 2018; 471:123-136. [DOI: 10.1007/s00424-018-2242-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
|
48
|
Beck L. Expression and function of Slc34 sodium-phosphate co-transporters in skeleton and teeth. Pflugers Arch 2018; 471:175-184. [PMID: 30511265 DOI: 10.1007/s00424-018-2240-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022]
Abstract
Under normal physiological condition, the biomineralization process is limited to skeletal tissues and teeth and occurs throughout the individual's life. Biomineralization is an actively regulated process involving the progressive mineralization of the extracellular matrix secreted by osteoblasts in bone or odontoblasts and ameloblasts in tooth. Although the detailed molecular mechanisms underlying the formation of calcium-phosphate apatite crystals are still debated, it is suggested that calcium and phosphate may need to be transported across the membrane of the mineralizing cell, suggesting a pivotal role of phosphate transporters in bone and tooth mineralization. In this context, this short review describes the current knowledge on the role of Slc34 Na+-phosphate transporters in skeletal and tooth mineralization.
Collapse
Affiliation(s)
- Laurent Beck
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Faculté de Chirurgie Dentaire, Université de Nantes, ONIRIS, 1 place Alexis Ricordeau, 44042, Nantes, France. .,Université de Nantes, UFR Odontologie, 44042, Nantes, France.
| |
Collapse
|
49
|
Tatsumi S, Katai K, Kaneko I, Segawa H, Miyamoto KI. NAD metabolism and the SLC34 family: evidence for a liver-kidney axis regulating inorganic phosphate. Pflugers Arch 2018; 471:109-122. [PMID: 30218374 DOI: 10.1007/s00424-018-2204-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022]
Abstract
The solute carrier 34 (SLC34) family of membrane transporters is a major contributor to Pi homeostasis. Many factors are involved in regulating the SLC34 family. The roles of the bone mineral metabolism factors parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) in Pi homeostasis are well studied. Intracellular Pi is thought to be involved in energy metabolism, such as ATP production. Under certain conditions of altered energy metabolism, plasma Pi concentrations are affected by the regulation of a Pi shift into cells or release from the tissues. We recently investigated the mechanism of hepatectomy-related hypophosphatemia, which is thought to involve an unknown phosphaturic factor. Hepatectomy-related hypophosphatemia is due to impaired nicotinamide adenine dinucleotide (NAD) metabolism through its effects on the SLC34 family in the liver-kidney axis. The oxidized form of NAD, NAD+, is an essential cofactor in various cellular biochemical reactions. Levels of NAD+ and its reduced form NADH vary with the availability of dietary energy and nutrients. Nicotinamide phosphoribosyltransferase (Nampt) generates a key NAD+ intermediate, nicotinamide mononucleotide, from nicotinamide and 5-phosphoribosyl 1-pyrophosphate. The liver, an important organ of NAD metabolism, is thought to release metabolic products such as nicotinamide and may control NAD metabolism in other organs. Moreover, NAD is an important regulator of the circadian rhythm. Liver-specific Nampt-deficient mice and heterozygous Nampt mice have abnormal daily plasma Pi concentration oscillations. These data indicate that NAD metabolism in the intestine, liver, and kidney is closely related to Pi metabolism through the SLC34 family. Here, we review the relationship between the SLC34 family and NAD metabolism based on our recent studies.
Collapse
Affiliation(s)
- Sawako Tatsumi
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.,Department of Food Science and Nutrition, School of Human Cultures, The University of Shiga Prefecture, Hikone, Japan
| | - Kanako Katai
- Faculty of Human Life and Science, Department of Food Science and Nutrition, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| |
Collapse
|
50
|
Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch 2018; 471:149-163. [PMID: 30109410 DOI: 10.1007/s00424-018-2184-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022]
Abstract
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH; OMIM: 241530) is a rare autosomal recessive disorder with an estimated prevalence of 1:250,000 that was originally described by Tieder et al. Individuals with HHRH carry compound-heterozygous or homozygous (comp/hom) loss-of-function mutations in the sodium-phosphate co-transporter NPT2c. These mutations result in the development of urinary phosphate (Pi) wasting and hypophosphatemic rickets, bowing, and short stature, as well as appropriately elevated 1,25(OH)2D levels, which sets this fibroblast growth factor 23 (FGF23)-independent disorder apart from the more common X-linked hypophosphatemia. The elevated 1,25(OH)2D levels in turn result in hypercalciuria due to enhanced intestinal calcium absorption and reduced parathyroid hormone (PTH)-dependent calcium-reabsorption in the distal renal tubules, leading to the development of kidney stones and/or nephrocalcinosis in approximately half of the individuals with HHRH. Even heterozygous NPT2c mutations are frequently associated with isolated hypercalciuria (IH), which increases the risk of kidney stones or nephrocalcinosis threefold in affected individuals compared with the general population. Bone disease is generally absent in individuals with IH, in contrast to those with HHRH. Treatment of HHRH and IH consists of monotherapy with oral Pi supplements, while active vitamin D analogs are contraindicated, mainly because the endogenous 1,25(OH)2D levels are already elevated but also to prevent further worsening of the hypercalciuria. Long-term studies to determine whether oral Pi supplementation alone is sufficient to prevent renal calcifications and bone loss, however, are lacking. It is also unknown how therapy should be monitored, whether secondary hyperparathyroidism can develop, and whether Pi requirements decrease with age, as observed in some FGF23-dependent hypophosphatemic disorders, or whether this can lead to osteoporosis.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Section Endocrinology and Metabolism, Yale University School of Medicine, Anlyan Center, Office S117, Lab S110, 1 Gilbert Street, New Haven, CT 06519, USA.
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|