1
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
2
|
Granata S, La Russa D, Stallone G, Perri A, Zaza G. Inflammasome pathway in kidney transplantation. Front Med (Lausanne) 2023; 10:1303110. [PMID: 38020086 PMCID: PMC10663322 DOI: 10.3389/fmed.2023.1303110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Kidney transplantation is the best available renal replacement therapy for patients with end-stage kidney disease and is associated with better quality of life and patient survival compared with dialysis. However, despite the significant technical and pharmaceutical advances in this field, kidney transplant recipients are still characterized by reduced long-term graft survival. In fact, almost half of the patients lose their allograft after 15-20 years. Most of the conditions leading to graft loss are triggered by the activation of a large immune-inflammatory machinery. In this context, several inflammatory markers have been identified, and the deregulation of the inflammasome (NLRP3, NLRP1, NLRC4, AIM2), a multiprotein complex activated by either whole pathogens (including fungi, bacteria, and viruses) or host-derived molecules, seems to play a pivotal pathogenetic role. However, the biological mechanisms leading to inflammasome activation in patients developing post-transplant complications (including, ischemia-reperfusion injury, rejections, infections) are still largely unrecognized, and only a few research reports, reviewed in this manuscript, have addressed the association between abnormal activation of this pathway and the onset/development of major clinical effects. Finally, the regulation of the inflammasome machinery could represent in future a valuable therapeutic target in kidney transplantation.
Collapse
Affiliation(s)
- Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
3
|
Yahiya YI, Hadi NR, Abu Raghif A, AL Habooby NGS. Protective effect of IAXO-102 on renal ischemia-reperfusion injury in rats. J Med Life 2023; 16:623-630. [PMID: 37305825 PMCID: PMC10251395 DOI: 10.25122/jml-2022-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/06/2023] [Indexed: 06/13/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) is a common cause of kidney damage, characterized by oxidative stress and inflammation. In this study, we investigated the potential protective effects of IAXO-102, a chemical compound, on experimentally induced IRI in male rats. The bilateral renal IRI model was used, with 24 adult male rats randomly divided into four groups (N=6): sham group (laparotomy without IRI induction), control group (laparotomy plus bilateral IRI for 30 minutes followed by 2 hours of reperfusion), vehicle group (same as control but pre-injected with the vehicle), and treatment group (similar to control but pre-injected with IAXO-102). We measured several biomarkers involved in IRI pathophysiology using enzyme-linked immunosorbent assay (ELISA), including High mobility group box1 (HMGB1), nuclear factor kappa b-p65 (NF-κB p65), interleukin beta-1 (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), 8-isoprostane, Bcl-2 associated X protein (BAX), heat shock protein 27 (HSP27), and Bcl-2. Statistical analysis was performed using one-way ANOVA and Tukey post hoc tests. Our results showed that IAXO-102 significantly improved kidney function, reduced histological alterations, and decreased the inflammatory response (IL-1, IL-6, and TNF) caused by IRI. IAXO-102 also decreased apoptosis by reducing pro-apoptotic Bax and increasing anti-apoptotic Bcl-2 without impacting HSP27. In conclusion, our findings suggest that IAXO-102 had a significant protective effect against IRI damage in the kidneys.
Collapse
Affiliation(s)
- Yahiya Ibrahim Yahiya
- Department of Pharmacology, Faculty of Pharmacy, University of Alkafeel, Najaf, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Ahmed Abu Raghif
- Deptartment of Pharmacology, College of Medicine, Al Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
4
|
Akalay S, Hosgood SA. How to Best Protect Kidneys for Transplantation-Mechanistic Target. J Clin Med 2023; 12:jcm12051787. [PMID: 36902572 PMCID: PMC10003664 DOI: 10.3390/jcm12051787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The increasing number of patients on the kidney transplant waiting list underlines the need to expand the donor pool and improve kidney graft utilization. By protecting kidney grafts adequately from the initial ischemic and subsequent reperfusion injury occurring during transplantation, both the number and quality of kidney grafts could be improved. The last few years have seen the emergence of many new technologies to abrogate ischemia-reperfusion (I/R) injury, including dynamic organ preservation through machine perfusion and organ reconditioning therapies. Although machine perfusion is gradually making the transition to clinical practice, reconditioning therapies have not yet progressed from the experimental setting, pointing towards a translational gap. In this review, we discuss the current knowledge on the biological processes implicated in I/R injury and explore the strategies and interventions that are being proposed to either prevent I/R injury, treat its deleterious consequences, or support the reparative response of the kidney. Prospects to improve the clinical translation of these therapies are discussed with a particular focus on the need to address multiple aspects of I/R injury to achieve robust and long-lasting protective effects on the kidney graft.
Collapse
Affiliation(s)
- Sara Akalay
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, 3000 Leuven, Belgium
| | - Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence:
| |
Collapse
|
5
|
Simona MS, Alessandra V, Emanuela C, Elena T, Michela M, Fulvia G, Vincenzo S, Ilaria B, Federica M, Eloisa A, Massimo A, Maristella G. Evaluation of Oxidative Stress and Metabolic Profile in a Preclinical Kidney Transplantation Model According to Different Preservation Modalities. Int J Mol Sci 2023; 24:ijms24021029. [PMID: 36674540 PMCID: PMC9861050 DOI: 10.3390/ijms24021029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
This study addresses a joint nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy approach to provide a platform for dynamic assessment of kidney viability and metabolism. On porcine kidney models, ROS production, oxidative damage kinetics, and metabolic changes occurring both during the period between organ retrieval and implantation and after kidney graft were examined. The 1H-NMR metabolic profile—valine, alanine, acetate, trimetylamine-N-oxide, glutathione, lactate, and the EPR oxidative stress—resulting from ischemia/reperfusion injury after preservation (8 h) by static cold storage (SCS) and ex vivo machine perfusion (HMP) methods were monitored. The functional recovery after transplantation (14 days) was evaluated by serum creatinine (SCr), oxidative stress (ROS), and damage (thiobarbituric-acid-reactive substances and protein carbonyl enzymatic) assessments. At 8 h of preservation storage, a significantly (p < 0.0001) higher ROS production was measured in the SCS vs. HMP group. Significantly higher concentration data (p < 0.05−0.0001) in HMP vs. SCS for all the monitored metabolites were found as well. The HMP group showed a better function recovery. The comparison of the areas under the SCr curves (AUC) returned a significantly smaller (−12.5 %) AUC in the HMP vs. SCS. EPR-ROS concentration (μmol·g−1) from bioptic kidney tissue samples were significantly lower in HMP vs. SCS. The same result was found for the NMR monitored metabolites: lactate: −59.76%, alanine: −43.17%; valine: −58.56%; and TMAO: −77.96%. No changes were observed in either group under light microscopy. In conclusion, a better and more rapid normalization of oxidative stress and functional recovery after transplantation were observed by HMP utilization.
Collapse
Affiliation(s)
- Mrakic-Sposta Simona
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milano, Italy
| | - Vezzoli Alessandra
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milano, Italy
- Correspondence: (V.A.); (G.M.)
| | - Cova Emanuela
- Department of Molecular Medicine, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Ticcozzelli Elena
- Department of Surgery, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Montorsi Michela
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Roma, Italy
| | - Greco Fulvia
- Institute of Chemical Sciences and Technologies “G. Natta”, National Research Council (SCITEC-CNR), 20133 Milan, Italy
| | - Sepe Vincenzo
- Department of Molecular Medicine, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Benzoni Ilaria
- Department of Surgery, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Meloni Federica
- Section of Pneumology, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Arbustini Eloisa
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Abelli Massimo
- Department of Surgery, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Gussoni Maristella
- Institute of Chemical Sciences and Technologies “G. Natta”, National Research Council (SCITEC-CNR), 20133 Milan, Italy
- Correspondence: (V.A.); (G.M.)
| |
Collapse
|
6
|
Valentijn FA, Knoppert SN, Marquez-Exposito L, Rodrigues-Diez RR, Pissas G, Tang J, Tejedor-Santamaria L, Broekhuizen R, Samarakoon R, Eleftheriadis T, Goldschmeding R, Nguyen TQ, Ruiz-Ortega M, Falke LL. Cellular communication network 2 (connective tissue growth factor) aggravates acute DNA damage and subsequent DNA damage response-senescence-fibrosis following kidney ischemia reperfusion injury. Kidney Int 2022; 102:1305-1319. [PMID: 35921911 DOI: 10.1016/j.kint.2022.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 01/12/2023]
Abstract
Chronic allograft dysfunction with progressive fibrosis of unknown cause remains a major issue after kidney transplantation, characterized by ischemia-reperfusion injury (IRI). One hypothesis to account for this is that spontaneous progressive tubulointerstitial fibrosis following IRI is driven by cellular senescence evolving from a prolonged, unresolved DNA damage response (DDR). Since cellular communication network factor 2 ((CCN2), formerly called connective tissue growth factor), an established mediator of kidney fibrosis, is also involved in senescence-associated pathways, we investigated the relation between CCN2 and cellular senescence following kidney transplantation. Tubular CCN2 overexpression was found to be associated with DDR, loss of kidney function and tubulointerstitial fibrosis in both the early and the late phase in human kidney allograft biopsies. Consistently, CCN2 deficient mice developed reduced senescence and tubulointerstitial fibrosis in the late phase; six weeks after experimental IRI. Moreover, tubular DDR markers and plasma urea were less elevated in CCN2 knockout than in wild-type mice. Finally, CCN2 administration or overexpression in epithelial cells induced upregulation of tubular senescence-associated genes including p21, while silencing of CCN2 alleviated DDR induced by anoxia-reoxygenation injury in cultured proximal tubule epithelial cells. Thus, our observations indicate that inhibition of CCN2 can mitigate IRI-induced acute kidney injury, DNA damage, and the subsequent DDR-senescence-fibrosis sequence. Hence, targeting CCN2 might help to protect the kidney from transplantation-associated post-IRI chronic kidney dysfunction.
Collapse
Affiliation(s)
- Floris A Valentijn
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Sebastiaan N Knoppert
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Laura Marquez-Exposito
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria -Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria -Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Jiaqi Tang
- Center for Cell Biology and Cancer Research, Albany Medical Center, Albany, New York, USA
| | - Lucia Tejedor-Santamaria
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria -Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Roel Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rohan Samarakoon
- Center for Cell Biology and Cancer Research, Albany Medical Center, Albany, New York, USA
| | | | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria -Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
7
|
Su X, Liu B, Wang S, Wang Y, Zhang Z, Zhou H, Li F. NLRP3 inflammasome: A potential therapeutic target to minimize renal ischemia/reperfusion injury during transplantation. Transpl Immunol 2022; 75:101718. [PMID: 36126906 DOI: 10.1016/j.trim.2022.101718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/30/2022]
Abstract
Renal transplantation is currently the best treatment option for patients with end-stage kidney disease. Ischemia/reperfusion injury (IRI), which is an inevitable event during renal transplantation, has a profound impact on the function of transplanted kidneys. It has been well demonstrated that innate immune system plays an important role in the process of renal IRI. As a critical component of innate immune system, Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has received great attention from scientific community over the past decade. The main function of NLRP3 inflammasome is mediating activation of caspase-1 and maturation of interleukin (IL)-1β and IL-18. In this review, we summarize the associated molecular signaling events about NLRP3 inflammasome in renal IRI, and highlight the possibility of targeting NLRP3 inflammasome to minimize renal IRI during transplantation.
Collapse
Affiliation(s)
- Xiaochen Su
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Bin Liu
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shangguo Wang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yuxiong Wang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zehua Zhang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Faping Li
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
8
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
9
|
Chethikkattuveli Salih AR, Asif A, Samantasinghar A, Umer Farooqi HM, Kim S, Choi KH. Renal Hypoxic Reperfusion Injury-on-Chip Model for Studying Combinational Vitamin Therapy. ACS Biomater Sci Eng 2022; 8:3733-3740. [PMID: 35878885 DOI: 10.1021/acsbiomaterials.2c00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Renal ischemic-reperfusion injury decreases the chances of long-term kidney graft survival and may lead to the loss of a transplanted kidney. During organ excision, the cycle of warm ischemia from the donor and cold ischemia is due to storage in a cold medium after revascularization following organ transplantation. The reperfusion of the kidney graft activates several pathways that generate reactive oxygen species, forming a hypoxic-reperfusion injury. Animal models are generally used to model and investigate renal hypoxic-reperfusion injury. However, these models face ethical concerns and present a lack of robustness and intraspecies genetic variations, among other limitations. We introduce a microfluidics-based renal hypoxic-reperfusion (RHR) injury-on-chip model to overcome current limitations. Primary human renal proximal tubular epithelial cells and primary human endothelial cells were cultured on the apical and basal sides of a porous membrane. Hypoxic and normoxic cell culture media were used to create the RHR injury-on-chip model. The disease model was validated by estimating various specific hypoxic biomarkers of RHR. Furthermore, retinol, ascorbic acid, and combinational doses were tested to devise a therapeutic solution for RHR. We found that combinational vitamin therapy can decrease the chances of RHR injury. The proposed RHR injury-on-chip model can serve as an alternative to animal testing for injury investigation and the identification of new therapies.
Collapse
Affiliation(s)
| | - Arun Asif
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea.,BioSpero Inc., Jeju Science Park, Jeju-si, Jeju-do 63243 Korea.,Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Anupama Samantasinghar
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| | - Hafiz Muhammad Umer Farooqi
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| |
Collapse
|
10
|
Wang J, Liu J, Wu W, Yang S, Liu L, Fu Q, Li J, Chen X, Deng R, Wu C, Long S, Zhang W, Zhang H, Mao H, Chen W. Combining Clinical Parameters and Acute Tubular Injury Grading Is Superior in Predicting the Prognosis of Deceased-Donor Kidney Transplantation: A 7-Year Observational Study. Front Immunol 2022; 13:912749. [PMID: 35844570 PMCID: PMC9279653 DOI: 10.3389/fimmu.2022.912749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundWe developed a pragmatic dichotomous grading criterion to stratify the acute tubular injury (ATI) of deceased-donor kidneys. We intended to verify the predictive value of this criterion for the prognosis of deceased-donor kidney transplantation.MethodsThe allografts with ATI were classified into severe and mild groups. Severe ATI was defined as the presence of extreme and diffuse flattening of the tubular epithelial cells, or denudement of the tubular basement membrane. The clinical delayed graft function (DGF) risk index was calculated based on a regression model for posttransplant DGF using 17 clinical parameters related to donor–recipient characteristics.ResultsA total of 140 recipients were enrolled: 18 severe and 122 mild ATI. Compared with the mild ATI group, the severe ATI group had more donors after cardiac death, higher median donor terminal serum creatinine level (dScr), and longer median cold ischemia time. Severe ATI had a higher DGF rate (55.6% vs 14.6%, p < 0.001), longer DGF recovery time (49.6 vs 26.3 days, p < 0.001), and a lower estimated glomerular filtration rate (eGFR) at 1 month (23.5 vs 54.0 ml/min/1.73 m2, p < 0.001), 3 months (40.4 vs 59.0, p = 0.001), and 6 months after transplant (46.8 vs 60.3, p = 0.033). However, there was no significant difference in eGFR at 1 year or beyond, graft, and patient survival. The predictive value of combined dScr with ATI severity for DGF rate and DGF recovery time was superior to that of dScr alone. The predictive value of the combined DGF risk index with ATI severity for DGF was also better than that of the DGF risk index alone; however, the association of the DGF risk index with DGF recovery time was not identified. Chronic lesions including glomerulosclerosis, interstitial fibrosis, arterial intimal fibrosis, and arteriolar hyalinosis were associated with declined posttransplant 1-year eGFR.ConclusionBased on our pragmatic dichotomous grading criterion for ATI in a preimplantation biopsy, donor kidneys with severe ATI increased DGF risk, prolonged DGF recovery, and decreased short-term graft function but demonstrated favorable long-term graft function. Our grading method can offer additive valuable information for assessing donor kidneys with acute kidney injury and may act as an effective supplementary index of the Banff criteria.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Jinqi Liu
- Department of Pediatrics, Guangzhou Women and Children’s Medical Centre, Guangzhou, China
| | - Wenrui Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shicong Yang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Qian Fu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xutao Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ronghai Deng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenglin Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sizhe Long
- Center for Information Technology and Statistics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wujun Zhang
- Center for Information Technology and Statistics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huanxi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wenfang Chen, ; Haiping Mao, ; Huanxi Zhang,
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
- *Correspondence: Wenfang Chen, ; Haiping Mao, ; Huanxi Zhang,
| | - Wenfang Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wenfang Chen, ; Haiping Mao, ; Huanxi Zhang,
| |
Collapse
|
11
|
Ma M, Fu L, Jia Z, Zhong Q, Huang Z, Wang X, Fan Y, Lin T, Song T. miR-17-5p attenuates kidney ischemia-reperfusion injury by inhibiting the PTEN and BIM pathways. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1545. [PMID: 34790751 PMCID: PMC8576735 DOI: 10.21037/atm-21-4678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 02/05/2023]
Abstract
Background Kidney ischemia-reperfusion (I/R) injury is an independent risk factor for delayed graft function after kidney transplantation with long-term graft survival deterioration. Previously, we found that the upregulated expression of miR-17-5p exerts a protective effect in kidney I/R injury, but the mechanism has not been clearly studied. Methods A kidney I/R injury model was induced in adult C57BL/6 male mice (20–22 g) by clamping both kidney pedicles for 30 min. The miR-17-5p agomir complex was injected into mice 24 h before surgery via the tail vein at a total injection volume of 10 µL/g body weight. The mice were euthanized on post-I/R injury day 2, and kidney function, apoptosis, autophagy, and related molecules were then detected. Human kidney-2 (HK-2) cells, which underwent hypoxia/reoxygenation, were treated with the miR-17-5p agomir, miR-17-5p antagomir, and small interfering ribonucleic acids (siRNAs). Cell viability, apoptosis, autophagy, and molecules were also examined. Results Autophagy, miR-17-5p expression, and kidney function damage were significantly more increased in the I/R group than in the sham group. In the cultured HK-2 cells underwent hypoxia/reoxygenation, the miR-17-5p agomir directly inhibited the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and Bcl-2 like protein 11 (BIM), and attenuated apoptosis and autophagy. Further, miR-17-5p inhibited autophagy by activating the protein kinase B (Akt)/Beclin1 pathway, which was suppressed by siRNAs. Additionally, the administration of miR-17-5p agomir greatly improved kidney function in the I/R mice group by inhibiting autophagy and apoptosis. Conclusions These findings suggest a new possible therapeutic strategy for the prevention and treatment of kidney I/R injury. The upregulation of miR-17-5p expression appears to inhibit apoptosis and autophagy by suppressing PTEN and BIM expression, which in turn upregulates downstream Akt/Beclin1 expression.
Collapse
Affiliation(s)
- Ming Ma
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Fu
- Urology Department, The Third People's Hospital of Chengdu, Chengdu, China
| | - Zihao Jia
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Zhong
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongli Huang
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianding Wang
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Fan
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Lin
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Turun Song
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Jordan NP, Tingle SJ, Shuttleworth VG, Cooke K, Redgrave RE, Singh E, Glover EK, Ahmad Tajuddin HB, Kirby JA, Arthur HM, Ward C, Sheerin NS, Ali S. MiR-126-3p Is Dynamically Regulated in Endothelial-to-Mesenchymal Transition during Fibrosis. Int J Mol Sci 2021; 22:ijms22168629. [PMID: 34445337 PMCID: PMC8395326 DOI: 10.3390/ijms22168629] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
In fibrotic diseases, myofibroblasts derive from a range of cell types including endothelial-to-mesenchymal transition (EndMT). Increasing evidence suggests that miRNAs are key regulators in biological processes but their profile is relatively understudied in EndMT. In human umbilical vein endothelial cells (HUVEC), EndMT was induced by treatment with TGFβ2 and IL1β. A significant decrease in endothelial markers such as VE-cadherin, CD31 and an increase in mesenchymal markers such as fibronectin were observed. In parallel, miRNA profiling showed that miR-126-3p was down-regulated in HUVECs undergoing EndMT and over-expression of miR-126-3p prevented EndMT, maintaining CD31 and repressing fibronectin expression. EndMT was investigated using lineage tracing with transgenic Cdh5-Cre-ERT2; Rosa26R-stop-YFP mice in two established models of fibrosis: cardiac ischaemic injury and kidney ureteric occlusion. In both cardiac and kidney fibrosis, lineage tracing showed a significant subpopulation of endothelial-derived cells expressed mesenchymal markers, indicating they had undergone EndMT. In addition, miR-126-3p was restricted to endothelial cells and down-regulated in murine fibrotic kidney and heart tissue. These findings were confirmed in patient kidney biopsies. MiR-126-3p expression is restricted to endothelial cells and is down-regulated during EndMT. Over-expression of miR-126-3p reduces EndMT, therefore, it could be considered for miRNA-based therapeutics in fibrotic organs.
Collapse
Affiliation(s)
- Nina P. Jordan
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
- Inserm U1082, F-86000 Poitiers, France
| | - Samuel J. Tingle
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - Victoria G. Shuttleworth
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - Katie Cooke
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - Rachael E. Redgrave
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (E.S.); (H.M.A.)
| | - Esha Singh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (E.S.); (H.M.A.)
| | - Emily K. Glover
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - Hafiza B. Ahmad Tajuddin
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - John A. Kirby
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - Helen M. Arthur
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (E.S.); (H.M.A.)
| | - Chris Ward
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - Neil S. Sheerin
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - Simi Ali
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
- Correspondence: ; Tel.: +44-(0)191-208-7158
| |
Collapse
|
13
|
Zografos CG, Chrysikos D, Pittaras T, Karampelias V, Chairakakis A, Galanos A, Sfiniadakis I, Felekouras E, Zografos GC, Sideris M, Papadopoulou K, Papalois AE. The Effects of Ascorbic Acid and U-74389G on Renal Ischemia-Reperfusion Injury in a Rat Model. In Vivo 2021; 34:2475-2484. [PMID: 32871775 DOI: 10.21873/invivo.12063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM U-74389G and ascorbic acid protect the cells from oxidation. This study aimed to depict their role in ischemia-reperfusion injury in a renal rat model. MATERIALS AND METHODS Sixty Wistars rats were randomized into six groups of 10 animals each. Group A Ischemia 30 min, reperfusion 60 min; Group B Ischemia 30 min, reperfusion 120 min; Group C Ischemia 30 min, ascorbic acid administration, reperfusion 60 min; Group D Ischemia 30 min, ascorbic acid administration, reperfusion 120 min; Group E Ischemia 30 min, U-74389G administration, reperfusion 60 min; Group F Ischemia 30 min, U-74389G administration, reperfusion 120 min. We then collected tissue and blood samples. RESULTS Histology and the significantly decreased malondialdehyde and tumor necrosis factor-α levels indicated that ascorbic acid was superior to U-74389G, at pre-defined time intervals. CONCLUSION Ascorbic acid and U-74389G ameliorated renal damage induced by ischemia-reperfusion injury, suggesting a therapeutic effect.
Collapse
Affiliation(s)
- Constantinos G Zografos
- Experimental, Educational and Research Center ELPEN, Athens, Greece.,1 Department of Propaedeutic Surgery, Hippokration Hospital, Athens, Greece
| | - Dimosthenis Chrysikos
- Experimental, Educational and Research Center ELPEN, Athens, Greece.,1 Department of Propaedeutic Surgery, Hippokration Hospital, Athens, Greece
| | - Theodoros Pittaras
- Experimental, Educational and Research Center ELPEN, Athens, Greece.,Hematology Laboratory - Blood Bank, National and Kapodistrian University of Athens School of Medicine, Aretaieion Hospital, Athens, Greece
| | | | | | - Antonis Galanos
- Experimental, Educational and Research Center ELPEN, Athens, Greece
| | | | - Evangelos Felekouras
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George C Zografos
- 1 Department of Propaedeutic Surgery, Hippokration Hospital, Athens, Greece
| | - Michail Sideris
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | | | - Apostolos E Papalois
- Experimental, Educational and Research Center ELPEN, Athens, Greece .,School of Medicine, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
14
|
Effects of HIF-1α on renal fibrosis in cisplatin-induced chronic kidney disease. Clin Sci (Lond) 2021; 135:1273-1288. [PMID: 33997886 DOI: 10.1042/cs20210061] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Cisplatin (Cis) can cause chronic kidney disease (CKD) and promote renal fibrosis, but the underlying mechanism is not fully understood. Hypoxia inducible factor-1α (HIF-1α) can promote renal fibrosis in some kidney diseases, but its role in Cis-induced CKD is still unknown. Notch-1 is a recognized molecule that promotes renal fibrosis under pathological circumstances, and evidence shows that HIF-1α and Notch-1 are closely related to each other. In the present study, mice with HIF-1α gene knockout in proximal tubular cells (PTCs) (PT-HIF-1α-KO) were generated and treated with Cis to induce CKD. A human proximal tubular cell line (HK-2) and primary mouse PTCs were used for in vitro studies. The results showed that HIF-1α was increased in the kidneys of Cis-treated wild-type mice, accompanied by elevated Notch-1, Notch-1 intracellular domain (N1ICD), Hes-1 and renal fibrosis. However, these alterations were partially reversed in PT-HIF-1α-KO mice. Similar results were observed in HK-2 cells and primary mouse PTCs. In addition, treating the cells with Cis induced a marked interaction of HIF-1α and N1ICD. Further inhibiting Notch-1 significantly reduced cellular fibrogenesis but did not affect HIF-1α expression. The data suggested that HIF-1α could promote renal fibrosis in Cis-induced CKD by activating Notch-1 both transcriptionally and post-transcriptionally and that HIF-1α may serve as a potential therapeutic target for Cis-induced CKD.
Collapse
|
15
|
Intravital imaging of real-time endogenous actin dysregulation in proximal and distal tubules at the onset of severe ischemia-reperfusion injury. Sci Rep 2021; 11:8280. [PMID: 33859322 PMCID: PMC8050301 DOI: 10.1038/s41598-021-87807-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 11/15/2022] Open
Abstract
Severe renal ischemia-reperfusion injury (IRI) can lead to acute and chronic kidney dysfunction. Cytoskeletal modifications are among the main effects of this condition. The majority of studies that have contributed to the current understanding of IRI have relied on histological analyses using exogenous probes after the fact. Here we report the successful real-time visualization of actin cytoskeletal alterations in live proximal and distal tubules that arise at the onset of severe IRI. To achieve this, we induced fluorescent actin expression in these segments in rats with hydrodynamic gene delivery (HGD). Using intravital two-photon microscopy we then tracked and quantified endogenous actin dysregulation that occurred by subjecting these animals to 60 min of bilateral renal ischemia. Rapid (by 1-h post-reperfusion) and significant (up to 50%) declines in actin content were observed. The decline in fluorescence within proximal tubules was significantly greater than that observed in distal tubules. Actin-based fluorescence was not recovered during the measurement period extending 24 h post-reperfusion. Such injury decimated the renal architecture, in particular, actin brush borders, and hampered the reabsorptive and filtrative capacities of these tubular compartments. Thus, for the first time, we show that the combination of HGD and intravital microscopy can serve as an experimental tool to better understand how IRI modifies the cytoskeleton in vivo and provide an extension to current histopathological techniques.
Collapse
|
16
|
Huang C, Chen Z, Wang T, He X, Chen M, Ju W. A marginal liver graft with hyperbilirubinemia transplanted successfully by ischemia-free liver transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:425. [PMID: 33842646 PMCID: PMC8033382 DOI: 10.21037/atm-20-6296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The shortage of transplant organs remains a serious issue worldwide, and using liver grafts from extended criteria donors could expand the donor pool. Extended criteria donor liver allografts have a high chance of complications such as primary nonfunction, early allograft dysfunction, and ischemic-type biliary lesions. How to employ these extended criteria donors safely and effectively warrants further investigation. Herein, we report the successful use of a marginal donor liver with hyperbilirubinemia to save the life of an acute-on-chronic liver failure recipient using a new surgical technique: ischemia-free liver transplantation (IFLT). The graft was retrieved for transplantation due to the following reasons: (I) the recipient was in a life-threatening situation and no living donor donation candidate was available; (II) the graft was considered transplantable except for cholestasis; and (III) IFLT could reduce ischemia/reperfusion injury (IRI), resuscitate the allograft ex situ, and maintain organ viability before transplantation. The graft was transplanted successfully using the IFLT procedure. Although anatomic biliary stricture occurred after surgery, no IRI-related complications were found during the follow-up. The use of liver grafts from extended criteria donors is safe and effective under IFLT. Additional IFLT clinical studies need to be performed, particularly concerning donor management, graft selection, and ex situ resuscitation.
Collapse
Affiliation(s)
- Changjun Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhitao Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Tielong Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
17
|
Gong C, Zhou X, Lai S, Wang L, Liu J. Long Noncoding RNA/Circular RNA-miRNA-mRNA Axes in Ischemia-Reperfusion Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8838524. [PMID: 33299883 PMCID: PMC7710414 DOI: 10.1155/2020/8838524] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Ischemia-reperfusion injury (IRI) elicits tissue injury involved in a wide range of pathologies. Multiple studies have demonstrated that noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), participate in the pathological development of IRI, and they may act as biomarkers, therapeutic targets, or prognostic indicators. Nonetheless, the specific molecular mechanisms of ncRNAs in IRI have not been completely elucidated. Regulatory networks among lncRNAs/circRNAs, miRNAs, and mRNAs have been the focus of attention in recent years. Studies on the underlying molecular mechanisms have contributed to the discovery of therapeutic targets or strategies in IRI. In this review, we comprehensively summarize the current research on the lncRNA/circRNA-miRNA-mRNA axes and highlight the important role of these axes in IRI.
Collapse
Affiliation(s)
- Chengwu Gong
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xueliang Zhou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Songqing Lai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lijun Wang
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jichun Liu
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
18
|
Franco-Acevedo A, Echavarria R, Moreno-Carranza B, Ortiz CI, Garcia D, Gonzalez-Gonzalez R, Bitzer-Quintero OK, Portilla-De Buen E, Melo Z. Opioid Preconditioning Modulates Repair Responses to Prevent Renal Ischemia-Reperfusion Injury. Pharmaceuticals (Basel) 2020; 13:ph13110387. [PMID: 33202532 PMCID: PMC7696679 DOI: 10.3390/ph13110387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/15/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Progression to renal damage by ischemia-reperfusion injury (IRI) is the result of the dysregulation of various tissue damage repair mechanisms. Anesthetic preconditioning with opioids has been shown to be beneficial in myocardial IRI models. Our main objective was to analyze the influence of pharmacological preconditioning with opioids in renal function and expression of molecules involved in tissue repair and angiogenesis. Experimental protocol includes male rats with 45 min ischemia occluding the left renal hilum followed by 24 h of reperfusion with or without 60 min preconditioning with morphine/fentanyl. We analyzed serum creatinine and renal KIM-1 expression. We measured circulating and intrarenal VEGF. Immunohistochemistry for HIF-1 and Cathepsin D (CTD) and real-time PCR for angiogenic genes HIF-1α, VEGF, VEGF Receptor 2 (VEGF-R2), CTD, CD31 and IL-6 were performed. These molecules are considered important effectors of tissue repair responses mediated by the development of new blood vessels. We observed a decrease in acute renal injury mediated by pharmacological preconditioning with opioids. Renal function in opioid preconditioning groups was like in the sham control group. Both anesthetics modulated the expression of HIF-1, VEGF, VEGF-R2 and CD31. Preconditioning negatively regulated CTD. Opioid preconditioning decreased injury through modulation of angiogenic molecule expression. These are factors to consider when establishing strategies in pathophysiological and surgical processes.
Collapse
Affiliation(s)
| | - Raquel Echavarria
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico;
| | | | - Cesar-Ivan Ortiz
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - David Garcia
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - Ricardo Gonzalez-Gonzalez
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - Oscar-Kurt Bitzer-Quintero
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - Eliseo Portilla-De Buen
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - Zesergio Melo
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico;
- Correspondence: ; Tel.: +52-33-3617-7385
| |
Collapse
|
19
|
Hosgood SA, Hoff M, Nicholson ML. Treatment of transplant kidneys during machine perfusion. Transpl Int 2020; 34:224-232. [PMID: 32970886 DOI: 10.1111/tri.13751] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
The increasing use of donation after circulatory death (DCD) and extended criteria donor (ECD) organs has raised awareness of the need to improve the quality of kidneys for transplantation. Treating kidneys during the preservation interval could improve early and long-term graft function and survival. Dynamic modes of preservation including hypothermic machine perfusion (HMP) and normothermic machine perfusion (NMP) may provide the functional platforms to treat these kidneys. Therapies in the field of regenerative medicine including cellular therapies and genetic modification and the application of biological agents targeting ischaemia reperfusion injury (IRI) and acute rejection are a growing area of research. This review reports on the application of cellular and gene manipulating therapies, nanoparticles, anti-inflammatory agents, anti-thrombolytic agents and monoclonal antibodies administered during HMP and NMP in experimental models. The review also reports on the clinical effectiveness of several biological agents administered during HMP. All of the experimental studies provide proof of principle that therapies can be successfully delivered during HMP and NMP. However, few have examined the effects after transplantation. Evidence for clinical application during HMP is sparse and only one study has demonstrated a beneficial effect on graft function. More investigation is needed to develop perfusion strategies and investigate the different experimental approaches.
Collapse
Affiliation(s)
- Sarah A Hosgood
- Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Mekhola Hoff
- Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Michael L Nicholson
- Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Nensén O, Hansell P, Palm F. Intrarenal oxygenation determines kidney function during the recovery from an ischemic insult. Am J Physiol Renal Physiol 2020; 319:F1067-F1072. [PMID: 33044869 DOI: 10.1152/ajprenal.00162.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute kidney injury (AKI) is a significant clinical problem associated with poor outcome. The kidney, due to its inhomogeneous blood flow, is particularly susceptible to changes in oxygen delivery, and intrarenal hypoxia is a hallmark of AKI and progression to chronic kidney disease. However, the role of intrarenal hypoxia per se in the recovery from an ischemic insult is presently unclear. The present study was designed to investigate 1) the role of systemic hypoxia in the acute progression and recovery of AKI and 2) whether increased intrarenal oxygenation improves recovery from an ischemic insult. Anesthetized male Sprague-Dawley rats were subjected to unilateral warm renal ischemia for 45 min followed by 2 h of reperfusion under systemic hypoxia (10% inspired oxygen), normoxia (21% inspired oxygen), or hyperoxia (60% inspired oxygen). Intrarenal oxygen tension was successfully manipulated by altering the inspired oxygen. Glomerular filtration rate (GFR) before the ischemic insult was independent of intrarenal oxygen tension. GFR during the recovery from the ischemic insult was significantly lower compared with baseline in all groups (3 ± 1%, 13 ± 1%, and 30 ± 11% of baseline for hypoxia, normoxia, and hyperoxia, respectively). However, GFR was significantly higher in hyperoxia than hypoxia (P < 0.05, hypoxia vs. hyperoxia). During recovery, renal blood flow was only reduced in hyperoxia, as a consequence of increased renal vascular resistance. In conclusion, the present study demonstrates that renal function during the recovery from an ischemic insult is dependent on intrarenal oxygen availability, and normobaric hyperoxia treatment has the potential to protect kidney function.
Collapse
Affiliation(s)
- Oskar Nensén
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,AT-enheten, Uppsala University Hospital, Uppsala, Sweden
| | - Peter Hansell
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Abstract
Solid organ transplantation is frequently carried out in this society. Under these circumstances the basic principles are altruistic organ donation and abidance by the law, which are regulated by the German Transplantation Act and by directives of the Federal Medical Council from which process instructions of the German Organ Transplantation Foundation are derived. The organ allocation is carried out by the Eurotransplant International Foundation (ET) located in Leiden, the Netherlands. Organ procurement is an essential component of the process of organ donation. This article highlights the procedure for harvesting of abdominal organs and also nonsurgical issues in the process of organ donation.
Collapse
|
22
|
Thuillier R, Delpy E, Matillon X, Kaminski J, Kasil A, Soussi D, Danion J, Sauvageon Y, Rod X, Donatini G, Barrou B, Badet L, Zal F, Hauet T. Preventing acute kidney injury during transplantation: the application of novel oxygen carriers. Expert Opin Investig Drugs 2019; 28:643-657. [PMID: 31165652 DOI: 10.1080/13543784.2019.1628217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Delayed graft function (DGF) has a significant impact on kidney transplantation outcome. One of the underlying pivotal mechanisms is organ preservation and associated hypothermia and biochemical alteration. AREAS COVERED This paper focuses on organ preservation and its clinical consequences and describes 1. A comprehensive presentation of the pathophysiological mechanism involved in delayed graft function development; 2. The impact on endothelial cells and microvasculature integrity and the consequences on transplanted organ outcome; 3. The reassessment of dynamic organ preservation motivated by the growing use of extended criteria donors and the interest in the potential of normothermia; 4. The role of oxygenation during dynamic preservation; and 5. Novel oxygen carriers and their proof of concept in transplantation, among which M101 (HEMO2life®) is currently the most extensively investigated. EXPERT OPINION Metabolic disturbances and imbalance of oxygen supply during preservation highlight the importance of providing oxygen. Normothermia, permitted by recent advances in machine perfusion technology, appears to be the leading edge of preservation technology. Several oxygen transporters are compatible with normothermia; however, only M101 also demonstrates compatibility with standard hypothermic preservation.
Collapse
Affiliation(s)
- Raphael Thuillier
- a Inserm U1082 , Inserm, Poitiers , France.,b Fédération Hospitalo-Universitaire SUPORT , CHU Poitiers, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France
| | - Eric Delpy
- e HEMARINA S.A., Aéropole centre, Biotechnopôle , Morlaix , France
| | - Xavier Matillon
- a Inserm U1082 , Inserm, Poitiers , France.,f Modélisations Précliniques Innovation Chirurgicale et Technologique , Infrastructures en Biologie et Santé Animale, Génétique, Expérimentations et Systèmes Innovants, Département Génétique Animale , INRA Le Magneraud,Surgères , France.,g Service d'urologie et de chirurgie de la transplantation , Hospices Civiles de Lyon , Lyon , France.,h Faculté de Médecine Lyon Est , Université Claude Bernard Lyon 1 , Villeurbanne , France
| | - Jacques Kaminski
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Abdelsalam Kasil
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - David Soussi
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France
| | - Jerome Danion
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,i Service de Chirurgie viscérale et endocrinienne , CHU Poitiers , Poitiers , France
| | - Yse Sauvageon
- a Inserm U1082 , Inserm, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France
| | - Xavier Rod
- a Inserm U1082 , Inserm, Poitiers , France
| | - Gianluca Donatini
- a Inserm U1082 , Inserm, Poitiers , France.,i Service de Chirurgie viscérale et endocrinienne , CHU Poitiers , Poitiers , France
| | - Benoit Barrou
- a Inserm U1082 , Inserm, Poitiers , France.,j Service de Transplantation Rénale, Département d'Urologie et de Transplantation , Groupe Hospitalier Pitié Salpétrière , Paris , France
| | - Lionel Badet
- a Inserm U1082 , Inserm, Poitiers , France.,f Modélisations Précliniques Innovation Chirurgicale et Technologique , Infrastructures en Biologie et Santé Animale, Génétique, Expérimentations et Systèmes Innovants, Département Génétique Animale , INRA Le Magneraud,Surgères , France.,g Service d'urologie et de chirurgie de la transplantation , Hospices Civiles de Lyon , Lyon , France.,h Faculté de Médecine Lyon Est , Université Claude Bernard Lyon 1 , Villeurbanne , France
| | - Franck Zal
- e HEMARINA S.A., Aéropole centre, Biotechnopôle , Morlaix , France
| | - Thierry Hauet
- a Inserm U1082 , Inserm, Poitiers , France.,b Fédération Hospitalo-Universitaire SUPORT , CHU Poitiers, Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d Service de Biochimie , CHU Poitiers , Poitiers , France.,f Modélisations Précliniques Innovation Chirurgicale et Technologique , Infrastructures en Biologie et Santé Animale, Génétique, Expérimentations et Systèmes Innovants, Département Génétique Animale , INRA Le Magneraud,Surgères , France.,k Consortium for Organ Preservation in Europe, Nuffield Department of Surgical Sciences , Oxford Transplant Centre, Churchill Hospital , Oxford , United Kingdom
| |
Collapse
|
23
|
Su M, Hu X, Lin J, Zhang L, Sun W, Zhang J, Tian Y, Qiu W. Identification of Candidate Genes Involved in Renal Ischemia/Reperfusion Injury. DNA Cell Biol 2019; 38:256-262. [PMID: 30668132 PMCID: PMC6434600 DOI: 10.1089/dna.2018.4551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Renal ischemia/reperfusion injury (IRI) is a main risk factor for the occurrence of delayed graft function or primary graft nonfunction of kidney transplantation. However, it lacks ideal molecular markers for indicating IRI in kidney transplantation. The present study is to explore novel candidate genes involved in renal IRI. Experimental renal IRI mouse models were constructed, and the differentially expressed genes were screened using a microarray assay. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed. The expression of genes was detected using real-time qPCR assay. Western blotting and immunohistochemistry staining assays were performed for protein determination. We identified that renal IRI induced the upregulation of SPRR2F, SPRR1A, MMP-10, and long noncoding RNA (lncRNA) Malat1 in kidney tissues for 479.3-, 4.98-, 238.1-, and 3.79-fold, respectively. The expression of miR-139-5p in kidney tissues of IRI-treated mice was decreased to 40.4% compared with the sham-operated mice. These genes are associated with keratinocyte differentiation, regeneration and repair of kidney tissues, extracellular matrix degradation and remodeling, inflammation, and cell proliferation in renal IRI. Identification of novel biomarkers involved in renal IRI may provide evidences for the diagnosis and treatment of renal IRI.
Collapse
Affiliation(s)
- Ming Su
- 1 Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xinyi Hu
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jun Lin
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lei Zhang
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wen Sun
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Zhang
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ye Tian
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wei Qiu
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|