1
|
Kochuthakidiyel Suresh P, Venkatachalapathy Y, Ekambaram S, Sangeetha, Manoj M, C.D M. Cytochrome P450 3A gene family and medication in childhood nephrotic syndrome: An update. Glob Med Genet 2025; 12:100009. [PMID: 39925446 PMCID: PMC11800309 DOI: 10.1016/j.gmg.2024.100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 02/11/2025] Open
Abstract
Background Nephrotic syndrome (NS) is a renal disease characterized by excessive proteinuria (greater than 3.5 g/dl per 24 h), which results in hypoalbuminemia and leads to hyperlipidemia, edema, and various complications. NS patients typically respond to standard steroid treatment (prednisolone) and are classified as having steroid-sensitive nephrotic syndrome (SSNS). However, patients who do not respond to steroid therapy after 4 weeks are referred to as having steroid-resistant nephrotic syndrome (SRNS). The unequal response to steroid treatment in nephrotic syndrome involved many factors, including genetic, medication, and kidney diseases. The CYP3A gene family is predominantly involved in the metabolism of medications used in the treatment of NS. Methodology A systematic literature review was conducted from January 2014 to June 2024 using an extensive electronic search of data related to pediatric nephrotic syndrome and the CYP gene family, including associated polymorphisms. Through this review, we systematically analyze factors that affect the metabolism of medications targeting the CYP3A gene family (including steroidal and non-steroidal drugs) commonly used in the treatment of NS and its comorbidities. Conclusion Studies have correlated the relationship between polymorphisms in the CYP3A gene family and medication in NS, with 90 % of the research focusing primarily on post-kidney transplant NS patients. Many studies have reported a correlation between CYP3A gene family polymorphisms and increased tacrolimus (TAC) dosage.
Collapse
Affiliation(s)
| | - Yogalakshmi Venkatachalapathy
- Sri Ramachandra Institute of Higher Education and Research, Department of Human Genetics, Chennai, Tamil Nadu 600116, India
| | - Sudha Ekambaram
- Apollo Children’s Hospital, Department of Pediatric Nephrology, 600006, India
| | - Sangeetha
- Sri Ramachandra Institute of Higher Education and Research, Department of Paediatric Medicine, Chennai, Tamil Nadu 600116, India
| | - Megha Manoj
- Sri Ramachandra Institute of Higher Education and Research, Department of Bioinformatics, Chennai, Tamil Nadu 600116, India
| | - MohanaPriya C.D
- Sri Ramachandra Institute of Higher Education and Research, Department of Human Genetics, Chennai, Tamil Nadu 600116, India
| |
Collapse
|
2
|
Charmine P, Venkatesan V, Geminiganesan S, Nammalwar BR, Dandapani MC. MicroRNA Expression and Target Prediction in Children with Nephrotic Syndrome. Indian J Nephrol 2025; 35:59-63. [PMID: 39872258 PMCID: PMC11763170 DOI: 10.25259/ijn_47_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/12/2023] [Indexed: 01/30/2025] Open
Abstract
Background Nephrotic syndrome is a common cause of kidney diseases in children. Many studies have examined the association of microRNAs playing potential roles in many pathophysiological functions. We investigated the expression pattern of the microRNAs miR-17-5P, miR-155p, miR-424-5p in children with steroid sensitive nephrotic syndrome (SSNS) and steroid resistance nephrotic syndrome (SRNS), along with the healthy subjects. Materials and Methods Total RNA was isolated from the urine samples from the three groups (SSNS n = 100, SRNS n = 100, and healthy control group n = 100). Bioinformatics tools such as miRWalk and miR-Tar link were used in predicting targets for the microRNAs. Online database and g profiler software are used to evaluate the targets based on the biological functions. The expression pattern for the candidate microRNAs was carried out using quantitative real time polymerase chain reaction (RT-PCR) equipment. Results miR-424 and miR-155 were upregulated in SRNS group while miR-17 was downregulated in SRNS group. miR-424-5p and miR-155p was up regulated in SRNS group while miR-17-5p was downregulated. Conclusion Combined analysis of gene expression along with studied candidate microRNAs can give better understanding of the pathogenesis of childhood nephrotic syndrome.
Collapse
Affiliation(s)
- Pricilla Charmine
- Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, India
| | - Vettriselvi Venkatesan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, India
| | - Sangeetha Geminiganesan
- Department of Pediatric Medicine, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, India
| | | | | |
Collapse
|
3
|
D’Elia JA, Weinrauch LA. Lipid Toxicity in the Cardiovascular-Kidney-Metabolic Syndrome (CKMS). Biomedicines 2024; 12:978. [PMID: 38790940 PMCID: PMC11118768 DOI: 10.3390/biomedicines12050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies of Cardiovascular-Kidney-Metabolic Syndrome (CKMS) indicate that elevated concentrations of derivatives of phospholipids (ceramide, sphingosine), oxidized LDL, and lipoproteins (a, b) are toxic to kidney and heart function. Energy production for renal proximal tubule resorption of critical fuels and electrolytes is required for homeostasis. Cardiac energy for ventricular contraction/relaxation is preferentially supplied by long chain fatty acids. Metabolism of long chain fatty acids is accomplished within the cardiomyocyte cytoplasm and mitochondria by means of the glycolytic, tricarboxylic acid, and electron transport cycles. Toxic lipids and excessive lipid concentrations may inhibit cardiac function. Cardiac contraction requires calcium movement from the sarcoplasmic reticulum from a high to a low concentration at relatively low energy cost. Cardiac relaxation involves calcium return to the sarcoplasmic reticulum from a lower to a higher concentration and requires more energy consumption. Diastolic cardiac dysfunction occurs when cardiomyocyte energy conversion is inadequate. Diastolic dysfunction from diminished ATP availability occurs in the presence of inadequate blood pressure, glycemia, or lipid control and may lead to heart failure. Similar disruption of renal proximal tubular resorption of fuels/electrolytes has been found to be associated with phospholipid (sphingolipid) accumulation. Elevated concentrations of tissue oxidized low-density lipoprotein cholesterols are associated with loss of filtration efficiency at the level of the renal glomerular podocyte. Macroscopically excessive deposits of epicardial and intra-nephric adipose are associated with vascular pathology, fibrosis, and inhibition of essential functions in both heart and kidney. Chronic triglyceride accumulation is associated with fibrosis of the liver, cardiac and renal structures. Successful liver, kidney, or cardiac allograft of these vital organs does not eliminate the risk of lipid toxicity. Lipid lowering therapy may assist in protecting vital organ function before and after allograft transplantation.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
4
|
Alenazi SA. Incidence and Pathological Patterns of Nephrotic Syndrome among Infants and Children: A Systematic Review. Cureus 2024; 16:e58331. [PMID: 38752042 PMCID: PMC11095912 DOI: 10.7759/cureus.58331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2024] [Indexed: 05/18/2024] Open
Abstract
Nephrotic syndrome (NS) is known to be a prevalent chronic illness in young patients. Periorbital swelling in children with this condition is a recurring symptom, either with or without generalized edema. The current study aimed to examine the incidence and pattern of nephrotic syndrome in infants and children by thoroughly examining the recently available literature. A thorough search of PubMed, SCOPUS, Web of Science, Science Direct, and Google Scholar was conducted, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model, to find pertinent material. The Rayyan software (Qatar Computing Research Institute, Ar-Rayyan, Qatar) was utilized during the whole process. Data from a total of 1418 patients from nine trials were considered in this study. Numerous factors influenced the incidence, mean age, sex dominance, and histological patterns in various sample groups. The current findings conclude that variations in socioeconomic, regional, and genetic factors influence the development and pattern of these diseases. The prevalence of pediatric renal disorders differs throughout countries. Season of occurrence, response to corticosteroid treatment, and histopathologic findings appear to differ amongst the diagnosed cases.
Collapse
Affiliation(s)
- Shehab A Alenazi
- Department of Pediatrics, Faculty of Medicine, Northern Border University, Arar, SAU
| |
Collapse
|
5
|
Raina R, Jothi S, Haffner D, Somers M, Filler G, Vasistha P, Chakraborty R, Shapiro R, Randhawa PS, Parekh R, Licht C, Bunchman T, Sethi S, Mangat G, Zaritsky J, Schaefer F, Warady B, Bartosh S, McCulloch M, Alhasan K, Swiatecka-Urban A, Smoyer WE, Chandraker A, Yap HK, Jha V, Bagga A, Radhakrishnan J. Post-transplant recurrence of focal segmental glomerular sclerosis: consensus statements. Kidney Int 2024; 105:450-463. [PMID: 38142038 DOI: 10.1016/j.kint.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 12/25/2023]
Abstract
Focal segmental glomerular sclerosis (FSGS) is 1 of the primary causes of nephrotic syndrome in both pediatric and adult patients, which can lead to end-stage kidney disease. Recurrence of FSGS after kidney transplantation significantly increases allograft loss, leading to morbidity and mortality. Currently, there are no consensus guidelines for identifying those patients who are at risk for recurrence or for the management of recurrent FSGS. Our work group performed a literature search on PubMed/Medline, Embase, and Cochrane, and recommendations were proposed and graded for strength of evidence. Of the 614 initially identified studies, 221 were found suitable to formulate consensus guidelines for recurrent FSGS. These guidelines focus on the definition, epidemiology, risk factors, pathogenesis, and management of recurrent FSGS. We conclude that additional studies are required to strengthen the recommendations proposed in this review.
Collapse
Affiliation(s)
- Rupesh Raina
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio, USA; Department of Nephrology, Akron Children's Hospital, Akron, Ohio, USA
| | - Swathi Jothi
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio, USA
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Michael Somers
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Guido Filler
- Department of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Prabhav Vasistha
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio, USA
| | - Ronith Chakraborty
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio, USA; Department of Nephrology, Akron Children's Hospital, Akron, Ohio, USA
| | - Ron Shapiro
- Recanati/Miller Transplantation Institute, The Mount Sinai Medical Center, New York, New York, USA
| | - Parmjeet S Randhawa
- Department of Pathology, Thomas E Starzl Transplant Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rulan Parekh
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher Licht
- Division of Pediatric Nephrology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Timothy Bunchman
- Pediatric Nephrology and Transplantation, Children's Hospital of Richmond at Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Sidharth Sethi
- Pediatric Nephrology, Kidney Institute, Medanta, The Medicity Hospital, Gurgaon, Haryana, India
| | - Guneive Mangat
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio, USA
| | - Joshua Zaritsky
- Division of Pediatric Nephrology, Nemours, A.I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Franz Schaefer
- Department of Pediatric Nephrology, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Bradley Warady
- Division of Nephrology, University of Missouri-Kansas City School of Medicine, Children's Mercy, Kansas City, Missouri, USA
| | - Sharon Bartosh
- Department of Pediatrics, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | - Mignon McCulloch
- Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Khalid Alhasan
- Nephrology Unit, Pediatrics Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Pediatric Kidney Transplant Division, Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Agnieszka Swiatecka-Urban
- University of Virginia Children's Hospital, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William E Smoyer
- Center for Clinical and Translational Research and Division of Nephrology, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Anil Chandraker
- Transplantation Research Center, Kidney and Pancreas Transplantation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Kim Yap
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Vivekanand Jha
- George Institute for Global Health, University of New South Wales (UNSW), New Delhi, India; School of Public Health, Imperial College, London, UK; Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Arvind Bagga
- Division of Pediatric Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Jai Radhakrishnan
- Department of Medicine (Nephrology), Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
6
|
Shima H, Higashiguchi Y, Doi T, Harada M, Okamoto T, Inoue T, Tashiro M, Okada K, Minakuchi J. Low-density Lipoprotein Receptor Activities, Lipids, Apolipoprotein, and Clinical Course of Patients with Steroid-resistant Nephrotic Syndrome Treated with Low-density Lipoprotein Apheresis: A Case Series. Intern Med 2024; 63:433-438. [PMID: 37258157 PMCID: PMC10901716 DOI: 10.2169/internalmedicine.1922-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
We herein report three cases of steroid-resistant nephrotic syndrome successfully treated with low-density lipoprotein apheresis (LDL-A). All patients were treated with a combination of steroids, cyclosporine, and LDL-A. In all cases, the serum concentrations of LDL, total and high-density lipoprotein cholesterol, and triglycerides were significantly lowered following LDL-A administration. Furthermore, the estimated LDL receptor activity increased, while both serum LDL and total cholesterol levels decreased, suggesting that LDL-A increases LDL receptor activity by driving changes in serum cholesterol concentration. This case series suggests that LDL-A increases LDL receptor activity, which may improve the intracellular uptake of cyclosporine.
Collapse
Affiliation(s)
- Hisato Shima
- Department of Kidney Disease, Kawashima Hospital, Japan
| | | | - Toshio Doi
- Department of Kidney Disease, Kawashima Hospital, Japan
| | - Megumi Harada
- Department of Clinical Engineering, Kawashima Hospital, Japan
| | | | - Tomoko Inoue
- Department of Kidney Disease, Kawashima Hospital, Japan
| | | | | | - Jun Minakuchi
- Department of Kidney Disease, Kawashima Hospital, Japan
| |
Collapse
|
7
|
Chhuon C, Herrera-Marcos LV, Zhang SY, Charrière-Bertrand C, Jung V, Lipecka J, Savas B, Nasser N, Pawlak A, Boulmerka H, Audard V, Sahali D, Guerrera IC, Ollero M. Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis. Int J Mol Sci 2023; 24:12124. [PMID: 37569500 PMCID: PMC10418338 DOI: 10.3390/ijms241512124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Focal and segmental glomerulosclerosis (FSGS) is a severe form of idiopathic nephrotic syndrome (INS), a glomerulopathy of presumably immune origin that is attributed to extrarenal pathogenic circulating factors. The recurrence of FSGS (rFSGS) after transplant occurs in 30% to 50% of cases. The direct analysis of patient plasma proteome has scarcely been addressed to date, mainly due to the methodological difficulties associated with plasma complexity and dynamic range. In this study, first, we compared different methods of plasma preparation, second, we compared the plasma proteomes of rFSGS and controls using two preparation methods, and third, we analyzed the early proximal signaling events in podocytes subjected to patient plasma, through a combination of phosphoproteomics and lipid-raft proteomics (raftomics). By combining immunodepletion and high pH fractionation, we performed a differential proteomic analysis of soluble plasma proteins and of extracellular vesicles (EV) obtained from healthy controls, non-INS patient controls, and rFSGS patients (n = 4). In both the soluble- and the EV-protein sets from the rFSGS patients, we found a statistically significant increase in a cluster of proteins involved in neutrophil degranulation. A group of lipid-binding proteins, generally associated with lipoproteins, was found to be decreased in the soluble set from the rFSGS patients. In addition, three amino acid transporters involved in mTORC1 activation were found to be significantly increased in the EV from the rFSGS. Next, we incubated human podocytes for 30 min with 10% plasma from both groups of patients. The phosphoproteomics and raftomics of the podocytes revealed profound differences in the proteins involved in the mTOR pathway, in autophagy, and in cytoskeleton organization. We analyzed the correlation between the abundance of plasma and plasma-regulated podocyte proteins. The observed changes highlight some of the mechanisms involved in FSGS recurrence and could be used as specific early markers of circulating-factor activity in podocytes.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Luis Vicente Herrera-Marcos
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Shao-Yu Zhang
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Cécile Charrière-Bertrand
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Jung
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Joanna Lipecka
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Berkan Savas
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Nour Nasser
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - André Pawlak
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Hocine Boulmerka
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Audard
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Dil Sahali
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Mario Ollero
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| |
Collapse
|
8
|
Aly R, Acharya R, Upadhyay KK. Severe hypertriglyceridemia in an infant on chronic hemodialysis. Hemodial Int 2023; 27:E1-E4. [PMID: 36259088 DOI: 10.1111/hdi.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 01/10/2023]
Abstract
Severe hyperlipidemia is a risk factor for cardiovascular disease. Children with chronic kidney disease and end stage renal disease are at risk for development of hyperlipidemia. In this report, we describe a 7-month-old male infant with Denys-Drash syndrome who was found to have a "milky-layer" floating on the deaerator of the hemodialysis machine. Investigations showed severe hypertriglyceridemia of >1000 mg/dl. The patient had been on chronic continuous manual peritoneal dialysis until 6 months of age and recently had been switched to hemodialysis. Management included lowering of caloric intake and addition of medium chain triglyceride with reduction of the serum triglyceride levels to 300-400 mg/dl. Close monitoring of serum lipids and timely intervention is important to prevent serious complications associated with dyslipidemia. Observation of the "milky layer" in the deaerator of the hemodialysis machine may be an interesting visual clue of underlying severe hypertriglyceridemia.
Collapse
Affiliation(s)
- Rasha Aly
- Division of Pediatric Nephrology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Ratna Acharya
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Kiran K Upadhyay
- Division of Pediatric Nephrology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Abstract
Besides conventional medical therapies, therapeutic apheresis has become an important adjunctive or alternative therapeutic option to immunosuppressive agents for primary or secondary kidney diseases and kidney transplantation. The available therapeutic apheresis techniques used in kidney diseases, including plasma exchange, double-filtration plasmapheresis, immunoadsorption, and low-density lipoprotein apheresis. Plasma exchange is still the leading extracorporeal therapy. Recently, growing evidence supports the potential benefits of double-filtration plasmapheresis and immunoadsorption for more specific and effective clearance of pathogenic antibodies with fewer side effects. However, more randomized controlled trials are still needed. Low-density lipoprotein apheresis is also an important supplementary therapy used in patients with recurrent focal segmental glomerulosclerosis. This review collects the latest evidence from recent studies, focuses on the specific advantages and disadvantages of these techniques, and compares the discrepancy among them to determine the optimal therapeutic regimens for certain kidney diseases.
Collapse
Affiliation(s)
- Yi-Yuan Chen
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Sun
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang-Fang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Hong G, Lee E, Yerigeri K, Sethi S, Cavagnaro F, Raina R. Advances in Apheresis Techniques and Therapies in the Pediatric Setting. CURRENT PEDIATRICS REPORTS 2022; 10:214-226. [DOI: 10.1007/s40124-022-00275-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
|
11
|
Harshman LA, Bartosh S, Engen RM. Focal segmental glomerulosclerosis: Risk for recurrence and interventions to optimize outcomes following recurrence. Pediatr Transplant 2022; 26:e14307. [PMID: 35587003 DOI: 10.1111/petr.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND FSGS is a common indication for kidney transplant with a high-risk of posttransplant recurrence. METHODS In this review, we summarize current knowledge about FSGS recurrence after kidney transplantation, including epidemiology, pretransplant planning, posttransplant management, and investigational treatments. RESULTS FSGS recurs in 14%-60% of first transplants, likely associated with a circulating permeability factor. Pretransplant counseling regarding recurrence is critical, and patients with FSGS should undergo pretransplant genetic screening. Rapid progression to ESKD, initial steroid responsiveness, younger age at diagnosis, race/ethnicity, and mesangial hypercellularity or minimal change histology on native biopsy may be associated with recurrence. Living donation is not contraindicated but does not result in improved graft survival relative to deceased donation. Pretransplant nephrectomy may be performed for a variety of reasons, but does not decrease recurrence. Pretransplant therapy with rituximab and/or PE is understudied but not clearly effective at preventing recurrence. Patients with FSGS typically present early with rapid-onset severe proteinuria. Diagnosis can be confirmed by biopsy showing foot process effacement; typical FSGS lesions are not seen on light microscopy in the early stages. There is no established effective treatment for recurrent FSGS, but renin-angiotensin-aldosterone system inhibition and extracorporeal therapies, including PE and IA, are most commonly used. Adjunct or alternative therapies may include rituximab, lipopheresis, and cyclosporine.
Collapse
Affiliation(s)
- Lyndsay A Harshman
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Sharon Bartosh
- University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Rachel M Engen
- University of Wisconsin Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Zhao C, Tang J, Li X, Yan Z, Zhao L, Lang W, Yuan C, Zhou C. Beneficial effects of procyanidin B2 on adriamycin-induced nephrotic syndrome mice: the multi-action mechanism for ameliorating glomerular permselectivity injury. Food Funct 2022; 13:8436-8464. [PMID: 35861207 DOI: 10.1039/d1fo03616e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite considerable advances in prevention, diagnosis, and therapy, nephrotic syndrome (NS) remains a significant cause of high morbidity and mortality globally. As a result, there is an urgent need to identify novel effective preventative and therapeutic agents for NS. NS is implicated in glomerular permselectivity injury, which can be attributed to oxidative distress, inflammation, lipid nephrotoxicity, podocyte apoptosis, autophagy dysfunction, and slit diaphragm (SLD) dysfunction. In addition to its well-documented antioxidant potency, procyanidin B2 (PB2) may exhibit pleiotropic effects by targeting various canonical signaling events, such as NF-κB, PPARs, PI3K/Akt, mTOR, and the caspase family. As a result, PB2 may be a promising therapeutic target against NS. To test this hypothesis, we established an Adriamycin (ADR)-induced NS mouse model to evaluate the pleiotropic renoprotective effects of PB2 on NS. Here, we demonstrated that PB2 improves podocyte injury via inhibition of NOX4/ROS and Hsp90/NF-κB to exhibit antioxidant and anti-inflammatory potency, respectively. We also show that PB2 indirectly activates the PI3K/Akt axis by regulating SLD protein levels, resulting in normalized podocyte apoptosis and autophagy function. Further, loss of albumin (ALB) induces lipid nephrotoxicity, which we found to be alleviated by PB2 via activation of PPARα/β-mediated lipid homeostasis and the cholesterol efflux axis. Interestingly, our results also suggested that PB2 reduces electrolyte abnormalities and edema. In addition, PB2 may contribute protective effects against trace element dys-homeostasis, which, through alleviating serum ALB loss, leads to a protective effect on glomerular permselectivity injury. Taken together, our results reveal that the identified mechanisms of PB2 on NS are multifactorial and involve inhibition of oxidative distress and inflammatory responses, as well as improvements in podocyte apoptosis and autophagy dysfunction, amelioration of lipid nephrotoxicity, and modulation of electrolyte abnormalities and edema. Thus, we provide a theoretical basis for the clinical application of PB2 against NS.
Collapse
Affiliation(s)
- Chuanping Zhao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Jiamei Tang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Xiaoya Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Zihan Yan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Liangliang Zhao
- Department of Monitoring and Analysis, Baoding Environmental Monitoring Center of Hebei Province, 224 Dongfeng Road, Lianchi District, Baoding, 071000, China
| | - Wenbo Lang
- Department of Monitoring and Analysis, Baoding Environmental Monitoring Center of Hebei Province, 224 Dongfeng Road, Lianchi District, Baoding, 071000, China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Chengyan Zhou
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| |
Collapse
|
13
|
Restrepo JM, Torres-Canchala L, Londoño H, Manzi E, Somers MJG. Treatment of post-transplant recurrent FSGS in children using plasmapheresis and augmentation of immunosuppression. BMC Nephrol 2022; 23:131. [PMID: 35382760 PMCID: PMC8981666 DOI: 10.1186/s12882-022-02768-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Up to 60% of pediatric renal transplant recipients with end-stage renal disease due to primary focal and segmental glomerulosclerosis (FSGS) may develop recurrent disease. Such recurrence is associated with poor prognosis if no remission is achieved. We report a single center experience with a protocol based on plasmapheresis and increased immunosuppression that resulted in a high long-lived remission rate. Methods This retrospective cohort study included consecutive pediatric renal transplant patients with recurrent FSGS treated with a standardized protocol using plasmapheresis and cyclophosphamide to supplement usual post-transplant immunosuppression with calcineurin inhibitors and steroids. Relapse was defined as urinary protein/creatinine ratio > 1.0 g/g and remission as < 0.5 g/g. Results Seventeen patients with FSGS recurrence post-transplant were treated. All had therapy resistant FSGS in native kidneys and had been on dialysis from 4 to 10 years. Of the 17, one died perioperatively from a pulmonary thromboembolism. Fifteen others achieved a complete remission within 3 months of treatment for FSGS recurrence. After a median follow-up period of 4 years, there were no recurrences of significant proteinuria. One patient achieved remission with rituximab. Conclusion The addition of plasmapheresis and cyclophosphamide to a calcineurin- and steroid-based immunosuppression regime was highly successful in inducing high remission rates with recurrent FSGS. Prospective trials are needed to evaluate further the efficacy of increased immunosuppression along with plasmapheresis in this setting.
Collapse
Affiliation(s)
- Jaime M Restrepo
- Pediatric Nephrology and Transplantation, Fundación Valle del Lili, Cali, Colombia.,Sister Renal Center Program, International Society of Nephrology, Brussels, Belgium.,Outreach Program, International Pediatric Transplant Association, Mount Laurel, USA.,Facultad de ciencias de la salud , Universidad Icesi, Cali, Colombia
| | - Laura Torres-Canchala
- Facultad de ciencias de la salud , Universidad Icesi, Cali, Colombia. .,Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia.
| | - Hernando Londoño
- Pediatric Nephrology and Transplantation, Fundación Valle del Lili, Cali, Colombia
| | - Eliana Manzi
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia
| | - Michael J G Somers
- Sister Renal Center Program, International Society of Nephrology, Brussels, Belgium.,Outreach Program, International Pediatric Transplant Association, Mount Laurel, USA.,Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
14
|
Al-Mousily M, Nicoara O, Selewski DT, Twombley K. Liposorber® LA-15 system for LDL apheresis in resistant nephrotic syndrome patients. Pediatr Nephrol 2022; 37:585-592. [PMID: 34453196 DOI: 10.1007/s00467-021-05211-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Steroid-resistant nephrotic syndrome (SRNS) is a major cause of stage 5 chronic kidney disease (CKD 5) in children. LDL apheresis (LDL-A) is now FDA approved for the treatment of pediatric focal segmental glomerulosclerosis (FSGS). Effective management of hyperlipidemia with LDL-A in SRNS patients may prevent progression of kidney disease and lead to remission. We report a case series of patients who received LDL-A for treatment of SRNS METHODS: We describe five children with SRNS who were treated with 12 sessions of LDL-A. Partial remission (PR) is defined as urine protein to creatinine ratio (UPC) of 0.2-2 (g/g) or decrease in UPC ≥ 50%, and complete remission (CR) is defined as UPC < 0.2 (g/g). RESULTS One patient achieved CR and three achieved PR. One patient did not respond to therapy. The earliest that a patient achieved PR was at treatment #10 and some did not respond until after LDL-A was completed. Those who responded stayed in either CR or PR for extended periods of time. LDL-A was successful at significantly reducing LDL (p < 0.001), total cholesterol (p < 0.001), and triglyceride (p < 0.001). CONCLUSIONS LDL-A was able to significantly decrease the lipid levels in these patients and induce CR and PR in the majority. The current study confirms previous studies showing those with a higher glomerular sclerosis burden were less likely to respond. LDL-A should be considered in patients with treatment-resistant SRNS and should be considered before there is a high burden of glomerular sclerosis to provide the best chance of success.
Collapse
Affiliation(s)
- Mohammad Al-Mousily
- Medical University of South Carolina, 10 McClennan Banks Dr. MSC91529425, Charleston, SC, 29425, USA.
| | - Oana Nicoara
- Department of Pediatrics, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - David T Selewski
- Department of Pediatrics, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Katherine Twombley
- Department of Pediatrics, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
15
|
Torres DD, Fontò G, Guastamacchia L, Santangelo L, Carbone V, Piscopo G, Spadaccino F, Ranieri E, Netti GS, Giordano M. Therapeutic Approach for Recurrent Focal Segmental Glomerulosclerosis in Pediatric Renal Transplant Recipients: A Single-Center Experience. Blood Purif 2022; 51:847-856. [DOI: 10.1159/000521311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/02/2021] [Indexed: 11/19/2022]
Abstract
<b><i>Introduction:</i></b> Recurrence of focal segmental glomerulosclerosis (FSGS) after kidney transplantation (KTx) develops in 40% of patients, leading to graft loss in half of cases. Extracorporeal apheretic treatments, combined with immunosuppressive drugs, seem to be the most promising therapies, but at now limited reports are available, mainly in pediatric patients. <b><i>Objective:</i></b> We aimed to assess the efficacy of immunoadsorption (IA) to treat recurrent FSGS in pediatric patients. <b><i>Methods:</i></b> We report a case series of 4 pediatric patients (aged 4–12 years) followed at our institution for early recurrent FSGS after KTx. FSGS recurrence was treated with early and intensive apheretic treatments IA. <b><i>Results:</i></b> After IA initiation, a partial remission (PR) of proteinuria at 24-month follow-up was achieved only in 1 patient. The others showed a mild reduction of nephrotic proteinuria, without PR, but gained a significant improvement in clinical signs of nephrotic syndrome (reduction of edema, increased serum albumin, and total protein levels). After a median follow-up of 38 (22–48) months, renal function was almost stable over time in all patients, except one who returned to hemodialysis after 22 months. No severe IA-related complications occurred. <b><i>Conclusions:</i></b> According to our clinical experience, IA revealed as a safe and effective therapy to treat patients with recurrent FSGS after KTx and it could maintain stable renal function in 75% of patients.
Collapse
|
16
|
Elmougy R. Genetic studies of nephrotic syndrome in Egyptian children. J Appl Biomed 2021; 19:228-233. [PMID: 34907742 DOI: 10.32725/jab.2021.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 09/22/2021] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Nephrotic syndrome (NS) might be caused by a kidney disorder or it can be a secondary disease. Untreated or resistant to treatment, NS stimulates glomerular damage that reduces the kidney function. This reduction leads to the end stage of renal failure. Therefore, it is very important to diagnose NS early, with the aim of inhibiting or lessening its associated morbidity and mortality. METHODS Gene polymorphism analysis for the three genes eNOS 27 bp VNTR, GSTP1 and IL-10(1082 G/A) were checked in 98 children with NS and 101 control subjects. RESULTS eNOS 27 bp VNTR genotypes and alleles are significantly different in the group of 98 children with NS compared to the 101 control subjects. The frequencies of ab and bb genotypes are significantly lower in patients than in the control group (ab: 17.2% vs. 22.8%; OR: 0.19; 95% CI: 0.06-0.58; p = 0.0026 & bb: 54.7% vs. 70.3%; OR: 0.19; 95% CI: 0.07-0.5; p = 0.0004). However, neither GSTP1 nor IL-10(1082 G/A) genotypes showed any significant difference in both groups. CONCLUSIONS eNOS 27 bp VNTR gene might be considered as an independent risk factor in the early prediction of nephrotic syndrome incidence, which may help prevent/reduce the occurrence of other complications associated with the late diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Rehab Elmougy
- Mansoura University, Faculty of Science, Chemistry Department, Mansoura, Egypt
| |
Collapse
|
17
|
Hackl A, Zed SEDA, Diefenhardt P, Binz-Lotter J, Ehren R, Weber LT. The role of the immune system in idiopathic nephrotic syndrome. Mol Cell Pediatr 2021; 8:18. [PMID: 34792685 PMCID: PMC8600105 DOI: 10.1186/s40348-021-00128-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) in children is characterized by massive proteinuria and hypoalbuminemia and usually responds well to steroids. However, relapses are frequent, which can require multi-drug therapy with deleterious long-term side effects. In the last decades, different hypotheses on molecular mechanisms underlying INS have been proposed and several lines of evidences strongly indicate a crucial role of the immune system in the pathogenesis of non-genetic INS. INS is traditionally considered a T-cell-mediated disorder triggered by a circulating factor, which causes the impairment of the glomerular filtration barrier and subsequent proteinuria. Additionally, the imbalance between Th17/Tregs as well as Th2/Th1 has been implicated in the pathomechanism of INS. Interestingly, B-cells have gained attention, since rituximab, an anti-CD20 antibody demonstrated a good therapeutic response in the treatment of INS. Finally, recent findings indicate that even podocytes can act as antigen-presenting cells under inflammatory stimuli and play a direct role in activating cellular pathways that cause proteinuria. Even though our knowledge on the underlying mechanisms of INS is still incomplete, it became clear that instead of a traditionally implicated cell subset or one particular molecule as a causative factor for INS, a multi-step control system including soluble factors, immune cells, and podocytes is necessary to prevent the occurrence of INS. This present review aims to provide an overview of the current knowledge on this topic, since advances in our understanding of the immunopathogenesis of INS may help drive new tailored therapeutic approaches forward.
Collapse
Affiliation(s)
- Agnes Hackl
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany. .,Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Seif El Din Abo Zed
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Paul Diefenhardt
- Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Julia Binz-Lotter
- Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Rasmus Ehren
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lutz Thorsten Weber
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
18
|
Use of Lipid-Modifying Agents for the Treatment of Glomerular Diseases. J Pers Med 2021; 11:jpm11080820. [PMID: 34442464 PMCID: PMC8401447 DOI: 10.3390/jpm11080820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Although dyslipidemia is associated with chronic kidney disease (CKD), it is more common in nephrotic syndrome (NS), and guidelines for the management of hyperlipidemia in NS are largely opinion-based. In addition to the role of circulating lipids, an increasing number of studies suggest that intrarenal lipids contribute to the progression of glomerular diseases, indicating that proteinuric kidney diseases may be a form of "fatty kidney disease" and that reducing intracellular lipids could represent a new therapeutic approach to slow the progression of CKD. In this review, we summarize recent progress made in the utilization of lipid-modifying agents to lower renal parenchymal lipid accumulation and to prevent or reduce kidney injury. The agents mentioned in this review are categorized according to their specific targets, but they may also regulate other lipid-relevant pathways.
Collapse
|
19
|
Zhang RX, Zhang X, Zhang BL, Liu ZF, Lin SX. Expression of adipokines in children with primary nephrotic syndrome and its association with hyperlipidemia. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:828-834. [PMID: 34511173 DOI: 10.7499/j.issn.1008-8830.2104080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To study the expression of adipokines in children with primary nephrotic syndrome (PNS) before and after treatment and its correlation with blood lipids, as well as the role of adipokines in PNS children with hyperlipidemia. METHODS A total of 90 children who were diagnosed with incipient PNS or recurrence of PNS after corticosteroid withdrawal for more than 6 months were enrolled as subjects. Thirty children who underwent physical examination were enrolled as the control group. Venous blood samples were collected from the children in the control group and the children with PNS before corticosteroid therapy (active stage) and after urinary protein clearance following 4 weeks of corticosteroid therapy (remission stage). ELISA was used to measure the levels of adipokines. An automatic biochemical analyzer was used to measure blood lipid levels. RESULTS Compared with the control group, the children with PNS had a significantly lower level of omentin-1 in both active and remission stages, and their level of omentin-1 in the active stage was significantly lower than that in the remission stage (P<0.001). For the children with PNS, the level of chemerin in the active stage was significantly higher than that in the remission stage, and the children with PNS in the active stage had a significantly higher level of chemerin than the control group (P<0.001). For the children with PNS, atherogenic index of plasma, atherogenic coefficient (AC), castelli risk index-1 (CRI-1), castelli risk index-2 (CRI-2), and non-high-density lipoprotein in the active stage were significantly higher than those in the remission stage (P<0.001), and these indices in the children with PNS in the active stage were significantly higher than those in the control group (P<0.001). The children with PNS in the remission stage had significantly higher atherogenic index of plasma, AC, CRI-1, and non-high-density lipoprotein than the control group (P<0.001). Compared with the control group, the children with PNS in the remission stage had significantly higher serum levels of total cholesterol, triglyceride, high-density lipoprotein, low-density lipoprotein, apolipoprotein B, and apolipoprotein A (P<0.01). In the children with PNS, the ratio of omentin-1 before and after corticosteroid therapy was positively correlated with that of high-density lipoprotein, 24-hour urinary protein excretion, and high-density lipoprotein/apolipoprotein A before and after treatment, and it was negatively correlated with the ratio of AC and CRI-1 before and after treatment (P<0.05). The PNS children with low omentin-1 levels in the active stage had significantly higher levels of CRI-1, CRI-2, AC, and apolipoprotein B/apolipoprotein A ratio than those with high omentin-1 levels (P<0.05). CONCLUSIONS Omentin-1 may be associated with disease activity, dyslipidemia, and proteinuria in children with PNS. Blood lipid ratios may be more effective than traditional blood lipid parameters in monitoring early cardiovascular risk in children with PNS.
Collapse
Affiliation(s)
- Ru-Xin Zhang
- Department of Nephrology, Tianjin Children's Hospital, Tianjin 300074, China
| | - Xuan Zhang
- Department of Nephrology, Tianjin Children's Hospital, Tianjin 300074, China
| | - Bi-Li Zhang
- Department of Nephrology, Tianjin Children's Hospital, Tianjin 300074, China
| | - Zhu-Feng Liu
- Department of Nephrology, Tianjin Children's Hospital, Tianjin 300074, China
| | | |
Collapse
|
20
|
Rai S, Bhatia V, Bhatnagar S. Drug repurposing for hyperlipidemia associated disorders: An integrative network biology and machine learning approach. Comput Biol Chem 2021; 92:107505. [PMID: 34030115 DOI: 10.1016/j.compbiolchem.2021.107505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 12/31/2022]
Abstract
Hyperlipidemia causes diseases like cardiovascular disease, cancer, Type II Diabetes and Alzheimer's disease. Drugs that specifically target HL associated diseases are required for treatment. 34 KEGG pathways targeted by lipid lowering drugs were used to construct a directed protein-protein interaction network and driver nodes were determined using CytoCtrlAnalyser plugin of Cytoscape 3.6. The involvement of driver nodes of HL in other diseases was verified using GWAS. The central nodes of the network and 34 overrepresented pathways had a critical role in Hyperlipidemia. The PI3K-AKT signalling pathway, non-essentiality, non-centrality and approved drug target status were the predominant features of the driver nodes. Next, a Random Forest classifier was trained on 1445 molecular descriptors calculated using PaDEL for 50 approved lipid lowering and 84 lipid raising drugs as the positive and negative training set respectively. The classifier showed average accuracy of 76.8 % during 5-fold cross validation with AUC of 0.79 ± 0.06 for the ROC curve. The classifier was applied to select molecules with favourable properties for lipid lowering from the 130 approved drugs interacting with the identified driver nodes. We have integrated diverse network data and machine learning to predict repurposing of nine drugs for treatment of HL associated diseases.
Collapse
Affiliation(s)
- Sneha Rai
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India; Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Venugopal Bhatia
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India; Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology Dwarka, New Delhi 110078, India.
| |
Collapse
|
21
|
Raina R, Joshi H, Chakraborty R. Changing the terminology from kidney replacement therapy to kidney support therapy. Ther Apher Dial 2020; 25:437-457. [PMID: 32945598 DOI: 10.1111/1744-9987.13584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/16/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022]
Abstract
Kidney replacement therapy (KRT) is a common supportive treatment for renal dysfunction, especially acute kidney injury. However, critically ill or immunosuppressed patients with renal dysfunction often have dysfunction in other organs as well. To improve patient outcomes, clinicians began to initiate kidney replacement therapy in situations where nonrenal conditions may lead to acute kidney injury, such as septic shock, hematopoietic stem cell transplantation, veno-occlusive renal disease, cardiopulmonary bypass, chemotherapy, tumor lysis syndrome, hyperammonemia, and various others. In this review, we discuss the use of various modes of kidney replacement therapy in treating renal and nonrenal complications to illustrate why kidney support therapy is a more appropriate terminology than kidney replacement therapy.
Collapse
Affiliation(s)
- Rupesh Raina
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA.,Department of Nephrology, Akron Children's Hospital, Akron, Ohio, USA
| | - Hirva Joshi
- Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Ronith Chakraborty
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA
| |
Collapse
|
22
|
Trautmann A, Vivarelli M, Samuel S, Gipson D, Sinha A, Schaefer F, Hui NK, Boyer O, Saleem MA, Feltran L, Müller-Deile J, Becker JU, Cano F, Xu H, Lim YN, Smoyer W, Anochie I, Nakanishi K, Hodson E, Haffner D. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 2020; 35:1529-1561. [PMID: 32382828 PMCID: PMC7316686 DOI: 10.1007/s00467-020-04519-1] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Idiopathic nephrotic syndrome newly affects 1-3 per 100,000 children per year. Approximately 85% of cases show complete remission of proteinuria following glucocorticoid treatment. Patients who do not achieve complete remission within 4-6 weeks of glucocorticoid treatment have steroid-resistant nephrotic syndrome (SRNS). In 10-30% of steroid-resistant patients, mutations in podocyte-associated genes can be detected, whereas an undefined circulating factor of immune origin is assumed in the remaining ones. Diagnosis and management of SRNS is a great challenge due to its heterogeneous etiology, frequent lack of remission by further immunosuppressive treatment, and severe complications including the development of end-stage kidney disease and recurrence after renal transplantation. A team of experts including pediatric nephrologists and renal geneticists from the International Pediatric Nephrology Association (IPNA), a renal pathologist, and an adult nephrologist have now developed comprehensive clinical practice recommendations on the diagnosis and management of SRNS in children. The team performed a systematic literature review on 9 clinically relevant PICO (Patient or Population covered, Intervention, Comparator, Outcome) questions, formulated recommendations and formally graded them at a consensus meeting, with input from patient representatives and a dietician acting as external advisors and a voting panel of pediatric nephrologists. Research recommendations are also given.
Collapse
Affiliation(s)
- Agnes Trautmann
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Marina Vivarelli
- Department of Pediatric Subspecialties, Division of Nephrology and Dialysis, Bambino Gesù Pediatric Hospital and Research Center, Rome, Italy
| | - Susan Samuel
- Department of Pediatrics, Section of Pediatric Nephrology, Alberta Children's Hospital, University of Calgary, Calgary, Canada
| | - Debbie Gipson
- Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Aditi Sinha
- Department of Pediatrics, Division of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Ng Kar Hui
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olivia Boyer
- Laboratory of Hereditary Kidney Diseases, Imagine Institute, INSERM U1163, Paris Descartes University, Paris, France
- Department of Pediatric Nephrology, Reference Center for Idiopathic Nephrotic Syndrome in Children and Adults, Necker Hospital, APHP, 75015, Paris, France
| | - Moin A Saleem
- Department of Pediatric Nephrology, Bristol Royal Hospital for Children, University of Bristol, Bristol, UK
| | - Luciana Feltran
- Hospital Samaritano and HRim/UNIFESP, Federal University of São Paulo, São Paulo, Brazil
| | | | - Jan Ulrich Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Francisco Cano
- Department of Nephrology, Luis Calvo Mackenna Children's Hospital, University of Chile, Santiago, Chile
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Yam Ngo Lim
- Department of Pediatrics, Prince Court Medical Centre, Kuala Lumpur, Malaysia
| | - William Smoyer
- The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ifeoma Anochie
- Department of Paediatrics, University of Port Harcourt Teaching Hospital, Port Harcourt, Rivers State, Nigeria
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Elisabeth Hodson
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead and the Sydney School of Public Health, University of Sydney, Sydney, Australia
| | - Dieter Haffner
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hannover, Germany.
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Paediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Center for Rare Diseases, Hannover Medical School Children's Hospital, Hannover, Germany.
| |
Collapse
|
23
|
Abstract
BACKGROUND Glomerulosclerosis represents the final stage of glomerular injury during the course of kidney disease and can result from a primary disturbance in disorders like focal segmental glomerulosclerosis or a secondary response to tubulointerstitial disease. Overall, primary focal glomerulosclerosis (FSGS), the focus of this review, accounts for 10-20% of patients of all ages who progress to end stage kidney disease. There are no FDA approved therapeutic options that effectively prevent or delay the onset of kidney failure. AREAS COVERED Current immunosuppressive therapy and conservative management including inhibitors of the renin-angiotensin-aldosterone axis and sodium-glucose cotransporter are reviewed. FSGS is now recognized to represent a heterogeneous entity with multiple underlying disease mechanisms. Therefore, novel approaches targeting the podocyte cytoskeleton, immunological, inflammatory, hemodynamic and metabolic pathways are highlighted. EXPERT OPINION A number of factors are driving the development of drugs to treat focal segmental glomerulosclerosis in particular and glomerulosclerosis in general including growing awareness of the burden of chronic kidney disease, improved scientific understanding of the mechanism of injury, and the development of noninvasive profiles to identify subgroups of patients with discrete mechanisms of glomerular injury.
Collapse
Affiliation(s)
- Howard Trachtman
- Department of Pediatrics, Division of Nephrology, NYU Langone Health , New York, NY, USA
| |
Collapse
|
24
|
Terada K, Mugishima K, Kawasaki S, Itagaki F, Yamada T, Sakai Y. Low-Density Lipoprotein Apheresis in Patients with Acute Kidney Injury Due to Minimal Change Disease Requiring Acute Renal Replacement Therapy. Int J Nephrol Renovasc Dis 2020; 13:157-162. [PMID: 32606890 PMCID: PMC7308121 DOI: 10.2147/ijnrd.s248610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/04/2020] [Indexed: 12/02/2022] Open
Abstract
Low-density lipoprotein apheresis (LDL-A) has been developed as a therapy for familial hypercholesterolemia, but LDL-A has also been used as a general treatment for drug-resistant nephrotic syndrome (NS) due to focal segmental glomerulosclerosis (FSGS). The patients with NS due to minimal change disease (MCD) are often difficult to control effective circulating plasma volume, causes acute kidney injury (AKI), and when diuretics are not effective and the respiratory condition of patients worsens, patients require acute renal replacement therapy (ARRT). The effectiveness of LDL-A is not only reduction of serum low-density lipoprotein but also various other benefits. LDL-A might have improved renal hemodynamics by reducing vasoconstrictive eicosanoids and contributed to the therapeutic effect of antiproteinuric drugs such as corticosteroids. We treated a 49-year-old Japanese woman and a 71-year-old Japanese man with AKI caused by NS due to MCD, who required ARRT. Although these patients received ARRT and corticosteroids, their AKI and MCD did not improve sufficiently. We initiated LDL-A treatment for these patients as an additional treatment modality, because their total serum cholesterol levels were high at the time of admission. After the additional LDL-A treatment, both patients were able to discontinue ARRT, because NS and AKI in both patients were improved sufficiently. It is possible that early additional LDL-A is effective for patients with AKI and NS due to MCD who require ARRT, and may help patients discontinue ARRT because of the effect of LDL-A such as improving hypercoagulability and renal hemodynamics and contributing to the therapeutic effect of corticosteroids.
Collapse
Affiliation(s)
- Kohsuke Terada
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Koji Mugishima
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Sayuri Kawasaki
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Fumiaki Itagaki
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takehisa Yamada
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yukinao Sakai
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
25
|
Uwaezuoke SN, Muoneke UV, Mbanefo NR. The Supportive Treatment of IgA Nephropathy and Idiopathic Nephrotic Syndrome: How Useful are Omega-3 Polyunsaturated Fatty Acids? Int J Nephrol Renovasc Dis 2020; 13:27-35. [PMID: 32161487 PMCID: PMC7049740 DOI: 10.2147/ijnrd.s237527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/12/2020] [Indexed: 01/02/2023] Open
Abstract
IgA nephropathy (IgAN) is the most prevalent glomerular disease in young adults worldwide, while idiopathic nephrotic syndrome (INS) represents the most frequent manifestation of glomerular disease in childhood. Over the years, studies have speculated about the potential benefits of omega-3 polyunsaturated fatty acids (PUFAs) in improving morbidity in both forms of chronic kidney disease (CKD). The proposed mechanisms of action include reduction of proteinuria and modulation of dyslipidemia. Although in vitro and in vivo experimental studies report the suppressive effect of omega-3 PUFAs on inflammatory pathways linked with the progression of nephropathy, the evidence supporting their beneficial effect in IgAN and INS is still weak. Also, their ability to regulate levels of total cholesterol, low-density lipoprotein-cholesterol (LDL-C), and triglycerides (TG) suggests that they could delay both dyslipidemia-associated nephrotoxicity and atherosclerosis. Most of the clinical trials that were conducted on their therapeutic benefits in IgAN patients reported positive outcomes with low and high doses of omega-3 PUFAs. However, few of the trials noted inconclusive findings, with low-quality evidence suggesting potential improvements in surrogate renal function outcomes. If the beneficial effect of omega-3 PUFAs is predicated on their hypolipidemic action, much higher doses could be used in well-designed randomized-controlled trials (RCTs) to determine if they could produce better renal function outcomes and provide much stronger evidence of their therapeutic benefits in IgAN and INS. However, the current hypothetical mechanisms of action in these forms of CKD also include the effect of omega-3 PUFAs on renal inflammatory pathways and glomerular proteinuria. Perhaps, the unresolved therapeutic efficacy of these fatty acids in IgAN and INS suggests that their exact mechanisms of action are yet to be fully established. In this narrative review, we aim to appraise the current evidence of their potential therapeutic benefits in these diseases.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Pediatric Nephrology Firm, Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| | - Uzoamaka V Muoneke
- Pediatric Nephrology Firm, Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| | - Ngozi R Mbanefo
- Pediatric Nephrology Firm, Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| |
Collapse
|
26
|
Hardersen R, Enebakk T, Christiansen D, Ludviksen JK, Mollnes TE, Lappegård KT, Hovland A. Comparison of cytokine changes in three different lipoprotein apheresis systems in an ex vivo whole blood model. J Clin Apher 2019; 35:104-116. [DOI: 10.1002/jca.21765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Randolf Hardersen
- Department of Nephrology, Division of Internal MedicineNordland Hospital Trust Bodø Norway
| | - Terje Enebakk
- Department of Nephrology, Division of Internal MedicineNordland Hospital Trust Bodø Norway
| | | | | | - Tom E. Mollnes
- Research LaboratoryNordland Hospital Trust Bodø Norway
- Institute of Clinical MedicineUniversity of Tromsø Tromsø Norway
- Centre of Molecular Inflammation ResearchNorwegian University of Science and Technology Trondheim Norway
- Department of Immunology and University of Oslo, Institute of Clinical Medicine, Faculty of MedicineOslo University Hospital Oslo Norway
| | - Knut Tore Lappegård
- Institute of Clinical MedicineUniversity of Tromsø Tromsø Norway
- Department of Cardiology, Division of Internal MedicineNordland Hospital Trust Bodø Norway
| | - Anders Hovland
- Institute of Clinical MedicineUniversity of Tromsø Tromsø Norway
- Department of Cardiology, Division of Internal MedicineNordland Hospital Trust Bodø Norway
| |
Collapse
|
27
|
Padmanabhan A, Connelly-Smith L, Aqui N, Balogun RA, Klingel R, Meyer E, Pham HP, Schneiderman J, Witt V, Wu Y, Zantek ND, Dunbar NM, Schwartz GEJ. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice - Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Eighth Special Issue. J Clin Apher 2019; 34:171-354. [PMID: 31180581 DOI: 10.1002/jca.21705] [Citation(s) in RCA: 861] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The American Society for Apheresis (ASFA) Journal of Clinical Apheresis (JCA) Special Issue Writing Committee is charged with reviewing, updating and categorizing indications for the evidence-based use of therapeutic apheresis (TA) in human disease. Since the 2007 JCA Special Issue (Fourth Edition), the committee has incorporated systematic review and evidence-based approaches in the grading and categorization of apheresis indications. This Eighth Edition of the JCA Special Issue continues to maintain this methodology and rigor in order to make recommendations on the use of apheresis in a wide variety of diseases/conditions. The JCA Eighth Edition, like its predecessor, continues to apply the category and grading system definitions in fact sheets. The general layout and concept of a fact sheet that was introduced in the Fourth Edition, has largely been maintained in this edition. Each fact sheet succinctly summarizes the evidence for the use of TA in a specific disease entity or medical condition. The Eighth Edition comprises 84 fact sheets for relevant diseases and medical conditions, with 157 graded and categorized indications and/or TA modalities. The Eighth Edition of the JCA Special Issue seeks to continue to serve as a key resource that guides the utilization of TA in the treatment of human disease.
Collapse
Affiliation(s)
- Anand Padmanabhan
- Medical Sciences Institute & Blood Research Institute, Versiti & Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Laura Connelly-Smith
- Department of Medicine, Seattle Cancer Care Alliance & University of Washington, Seattle, Washington
| | - Nicole Aqui
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rasheed A Balogun
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Reinhard Klingel
- Apheresis Research Institute, Cologne, Germany & First Department of Internal Medicine, University of Mainz, Mainz, Germany
| | - Erin Meyer
- Department of Hematology/Oncology/BMT/Pathology, Nationwide Children's Hospital, Columbus, Ohio
| | - Huy P Pham
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jennifer Schneiderman
- Department of Pediatric Hematology/Oncology/Neuro-oncology/Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois
| | - Volker Witt
- Department for Pediatrics, St. Anna Kinderspital, Medical University of Vienna, Vienna, Austria
| | - Yanyun Wu
- Bloodworks NW & Department of Laboratory Medicine, University of Washington, Seattle, Washington, Yale University School of Medicine, New Haven, Connecticut
| | - Nicole D Zantek
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Nancy M Dunbar
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | |
Collapse
|
28
|
Shah L, Hooper DK, Okamura D, Wallace D, Moodalbail D, Gluck C, Koziell A, Zaritsky JJ. LDL-apheresis-induced remission of focal segmental glomerulosclerosis recurrence in pediatric renal transplant recipients. Pediatr Nephrol 2019; 34:2343-2350. [PMID: 31250206 DOI: 10.1007/s00467-019-04296-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS) in pediatric patients is typically difficult to treat and will progress to end-stage renal disease (ESRD) in about 10% of cases. Following kidney transplantation, FSGS can recur in up to 56% of renal allografts-with a near 100% recurrence in subsequent transplants. METHODS Four different pediatric centers across the USA and the UK employed a protocol using LDL-apheresis (LDL-A) and pulse solumedrol to treat recurrent FSGS after transplantation in seven patients. All the patients included in this series demonstrated immediate, or early, recurrence of FSGS, which clinically presented as nephrotic-range proteinuria within hours to days after implantation of the kidney. RESULTS All patients experienced reductions in urinary protein to creatinine ratios resulting in partial or complete remission. All patients demonstrated improvements in their estimated GFRs at their most recent follow-up since LDL-A discontinuation. CONCLUSIONS This case series describes the successful treatment, across four different pediatric centers, of seven pediatric patients with recurrent post-transplant FSGS using the Liposorber® LA-15 in combination with pulse solumedrol.
Collapse
Affiliation(s)
- Lokesh Shah
- Lucile Packard Children's Hospital, Stanford University School of Medicine, 300 Pasteur Drive, G306, MC 5208, Stanford, CA, 94305, USA.
| | - David K Hooper
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Daryl Okamura
- Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, 98105, USA
| | - Dean Wallace
- Royal Manchester Children's Hospital, Hathersage Road, Manchester, M13 9WL, UK
| | - Divya Moodalbail
- Alfred I. duPont Hospital for Children, 1600 Rockland Rd, Wilmington, DE, 19803, USA
| | - Caroline Gluck
- Alfred I. duPont Hospital for Children, 1600 Rockland Rd, Wilmington, DE, 19803, USA
| | - Ania Koziell
- King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Joshua J Zaritsky
- Alfred I. duPont Hospital for Children, 1600 Rockland Rd, Wilmington, DE, 19803, USA
| |
Collapse
|
29
|
Apheresis Therapy for Steroid-Resistant Idiopathic Nephrotic Syndrome: Report on a Case Series. Case Rep Nephrol 2019; 2019:7304786. [PMID: 31687235 PMCID: PMC6803719 DOI: 10.1155/2019/7304786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 11/18/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) represents 15%–30% of adulthood glomerulopathies. Corticosteroids have been the main treatment for decades and are effective in 70% of minimal-change disease patients and ~30% of focal segmental glomerulosclerosis patients. Multidrug-resistant (steroids, calcineurin-inhibitors, cyclophosphamide, mycophenolate-mofetil, rituximab) idiopathic nephrotic syndrome is a major therapeutic challenge in nephrology. Apheresis (double-filtration plasmapheresis or semi specific immunoadsorption) could act by eliminating the circulating factor (apolipoproteinA1b, solubleCD40L, suPAR) increasing glomerular permeability seen in INS. The aim of the study was to report the outcome of three patients with multidrug-resistant INS treated successfully with apheresis.
Collapse
|