1
|
Taroni F, Peruzzi L, Longo G, Becherucci F, Malgieri G, D'Alessandro MM, Montini G. Lumasiran treatment in pediatric patients with PH1: real-world data within a compassionate use program in Italy. Clin Kidney J 2024; 17:sfae090. [PMID: 38742209 PMCID: PMC11089410 DOI: 10.1093/ckj/sfae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 05/16/2024] Open
Abstract
Background Primary hyperoxaluria (PH) is a rare, severe genetic disorder, characterized by increased urinary excretion of calcium oxalate, which is responsible for kidney damage and systemic clinical manifestations. Since the year 2020, a new molecule, lumasiran, based on RNA interference (RNAi) technology, has been added to the traditional therapeutic approach. The aim of this analysis was to define the baseline characteristics of a PH1 pediatric population treated with lumasiran in a compassionate-use program setting, and to evaluate the medium-term efficacy of this drug in the routine clinical setting. Methods A retrospective observational analysis was conducted in nine pediatric patients (male:female 5:4; median age at lumasiran start 1.9 years, range 0-14.1). Data concerning oxalate concentration in plasma and urine, kidney stones events, ultrasound and kidney function were collected during the study period (follow-up, mean ± standard deviation: 15.3 ± 5 months). Results In this analysis, a reduction in the urinary oxalate to creatinine ratio (reduction range within the sixth month of treatment from 25.8% to 69.6%, median 51.2%) as well as plasma oxalate concentration under the limit of supersaturation of oxalate in all the patients. Only one patient presented new stone events; kidney ultrasonographic findings related to nephrocalcinosis remained stable in eight out of nine patients. Glomerular filtration rate remained stable during treatment. No adverse events related to lumasiran were noted. Conclusion Data from this analysis support the efficacy and safety of lumasiran in a pediatric clinical setting, especially if administrated in early life.
Collapse
Affiliation(s)
- Francesca Taroni
- Pediatric Nephrology Dialysis and Transplant Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Licia Peruzzi
- Pediatric Nephrology Dialysis and Transplant Unit, Regina Margherita Children's Hospital, Torino, Italy
| | - Germana Longo
- Pediatric Nephrology, Dialysis and Transplant Unit, Department of Woman and Child Health, Azienda Ospedaliera-University of Padova, Padova, Italy
| | | | - Gabriele Malgieri
- Paediatric Nephrology, Dialysis and Renal Transplantation Santobono Pausilipon Children's Hospital, Naples, Italy
| | - Maria Michela D'Alessandro
- Pediatric Nephrology Unit, Azienda di Rilievo Nazionale ed Alta Specializzazione (ARNAS) Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Giovanni Montini
- Pediatric Nephrology Dialysis and Transplant Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| |
Collapse
|
2
|
Michael M, Groothoff JW, Shasha-Lavsky H, Lieske JC, Frishberg Y, Simkova E, Sellier-Leclerc AL, Devresse A, Guebre-Egziabher F, Bakkaloglu SA, Mourani C, Saqan R, Singer R, Willey R, Habtemariam B, Gansner JM, Bhan I, McGregor T, Magen D. Lumasiran for Advanced Primary Hyperoxaluria Type 1: Phase 3 ILLUMINATE-C Trial. Am J Kidney Dis 2023; 81:145-155.e1. [PMID: 35843439 DOI: 10.1053/j.ajkd.2022.05.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023]
Abstract
RATIONALE & OBJECTIVE Lumasiran reduces urinary and plasma oxalate (POx) in patients with primary hyperoxaluria type 1 (PH1) and relatively preserved kidney function. ILLUMINATE-C evaluates the efficacy, safety, pharmacokinetics, and pharmacodynamics of lumasiran in patients with PH1 and advanced kidney disease. STUDY DESIGN Phase 3, open-label, single-arm trial. SETTING & PARTICIPANTS Multinational study; enrolled patients with PH1 of all ages, estimated glomerular filtration rate ≤45 mL/min/1.73 m2 (if age ≥12 months) or increased serum creatinine level (if age <12 months), and POx ≥20 μmol/L at screening, including patients with or without systemic oxalosis. INTERVENTION Lumasiran administered subcutaneously; 3 monthly doses followed by monthly or quarterly weight-based dosing. OUTCOME Primary end point: percent change in POx from baseline to month 6 (cohort A; not receiving hemodialysis at enrollment) and percent change in predialysis POx from baseline to month 6 (cohort B; receiving hemodialysis at enrollment). Pharmacodynamic secondary end points: percent change in POx area under the curve between dialysis sessions (cohort B only); absolute change in POx; percent and absolute change in spot urinary oxalate-creatinine ratio; and 24-hour urinary oxalate adjusted for body surface area. RESULTS All patients (N = 21; 43% female; 76% White) completed the 6-month primary analysis period. Median age at consent was 8 (range, 0-59) years. For the primary end point, least-squares mean reductions in POx were 33.3% (95% CI, -15.2% to 81.8%) in cohort A (n = 6) and 42.4% (95% CI, 34.2%-50.7%) in cohort B (n = 15). Improvements were also observed in all pharmacodynamic secondary end points. Most adverse events were mild or moderate. No patient discontinued treatment or withdrew from the study. The most commonly reported lumasiran-related adverse events were injection-site reactions, all of which were mild and transient. LIMITATIONS Single-arm study without placebo control. CONCLUSIONS Lumasiran resulted in substantial reductions in POx with acceptable safety in patients with PH1 who have advanced kidney disease, supporting its efficacy and safety in this patient population. FUNDING Alnylam Pharmaceuticals. TRIAL REGISTRATION Registered at ClinicalTrials.gov with study number NCT04152200 and at EudraCT with study number 2019-001346-17. PLAIN-LANGUAGE SUMMARY Primary hyperoxaluria type 1 (PH1) is a rare genetic disease characterized by excessive hepatic oxalate production that frequently causes kidney failure. Lumasiran is an RNA interference therapeutic that is administered subcutaneously for the treatment of PH1. Lumasiran has been shown to reduce oxalate levels in the urine and plasma of patients with PH1 who have relatively preserved kidney function. In the ILLUMINATE-C study, the efficacy and safety of lumasiran were evaluated in patients with PH1 and advanced kidney disease, including a cohort of patients undergoing hemodialysis. During the 6-month primary analysis period, lumasiran resulted in substantial reductions in plasma oxalate with acceptable safety in patients with PH1 complicated by advanced kidney disease.
Collapse
Affiliation(s)
- Mini Michael
- Division of Pediatric Nephrology, Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas.
| | - Jaap W Groothoff
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hadas Shasha-Lavsky
- Pediatric Nephrology Unit, Galilee Medical Center, Azrieli Faculty of Medicine, Bar Ilan University, Nahariya, Israel
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Yaacov Frishberg
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eva Simkova
- Nephrology - Medical Affairs, Al Jalila Children's Hospital, Dubai, United Arab Emirates
| | - Anne-Laure Sellier-Leclerc
- Hôpital Femme Mère Enfant en Centre d'Investigation Clinique, Institut National de la Santé et de la Recherche Médicale (INSERM), Hospices Civils de Lyon, ERKnet, Bron, France
| | - Arnaud Devresse
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Fitsum Guebre-Egziabher
- Nephrology and Renal Function Unit, Edouard Herriot Hospital, Hospices Civils de Lyon, INSERM 1060, Lyon, France
| | - Sevcan A Bakkaloglu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Chebl Mourani
- Department of Pediatrics, Hôtel-Dieu de France Hospital, Beirut, Lebanon
| | - Rola Saqan
- Pharmaceutical Research Center, Jordan University of Science and Technology, Irbid, Jordan
| | - Richard Singer
- Renal Service, Canberra Health Services, Garran, ACT, Australia
| | | | | | | | - Ishir Bhan
- Alnylam Pharmaceuticals, Cambridge, Massachusetts
| | | | - Daniella Magen
- Pediatric Nephrology Institute, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
3
|
Long-term outcomes after pre-emptive liver transplantation in primary hyperoxaluria type 1. Pediatr Nephrol 2022; 38:1811-1820. [PMID: 36449101 DOI: 10.1007/s00467-022-05803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disease caused by the liver defect of oxalate metabolism, which leads to kidney failure and systemic manifestations. Until recently, liver transplantation was the only definitive treatment. The timing of liver transplantation can be early, while kidney function is still normal (pre-emptive liver transplantation-PLT), or when the patient reaches stage 5 chronic kidney disease (CKD) and needs combined liver-kidney transplantation. We aimed to determine the long-term kidney outcomes of PLT in PH1 patients. METHODS A retrospective single-center study of PH1 patients who were followed in our center between 1997 and 2017. We compared the kidney outcomes of patients who underwent PLT to those who presented with preserved kidney function and did not undergo PLT. RESULTS Out of 36 PH1 patients, 18 patients were eligible for PLT (eGFR > 40 mL/min/1.73 m2 at the time of diagnosis). Seven patients underwent PLT (PLT group), while 11 continued conservative treatments (PLTn group). In the PLT group, the median eGFR at the time of PLT and at the end of the follow-up period (14-20 years) was 72 (range 50-89) and 104 (range 86-108) mL/min/1.73 m2, respectively, and no patient died or reached stage 5 CKD. In the PLTn group, eight patients (72.7%) reached stage 5 CKD (median time to kidney replacement therapy was 11 years), and two patients died from disease complications (18.2%). CONCLUSIONS Pre-emptive liver transplantation preserved kidney function in patients with PH1 in our cohort. Early intervention can prevent kidney failure and systemic oxalosis in PH1. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
|
4
|
D’Ambrosio V, Ferraro PM. Lumasiran in the Management of Patients with Primary Hyperoxaluria Type 1: From Bench to Bedside. Int J Nephrol Renovasc Dis 2022; 15:197-206. [PMID: 35747094 PMCID: PMC9211742 DOI: 10.2147/ijnrd.s293682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
Primary hyperoxaluria (PH) is a rare genetic disease caused by excessive hepatic production and elevated urinary excretion of oxalate that leads to recurrent nephrolithiasis, nephrocalcinosis and, eventually, kidney failure. As glomerular filtration rate declines, oxalate accumulates leading to systemic oxalosis, a debilitating condition with high morbidity and mortality. Although PH is usually diagnosed during infancy, it can present at any age with different phenotypes, ranging from mild symptoms to extremely debilitating manifestations. PH is an autosomal recessive disorder and, to date, three types have been identified: PH1, PH2 and PH3. PH1 is the most common and most aggressive type, accounting for almost 80% of primary hyperoxaluria diagnoses. Until 2020, general treatment for PH1 consisted mainly in high fluid intake, urine alkalization, surgical management of recurrent nephrolithiasis and eventually, if and when kidney failure occurred, intensive dialysis regimens and transplantation strategies (simultaneous or sequential liver-kidney transplant or isolated liver/kidney transplant in carefully selected patients). Specific treatment did and still consists in administration of pyridoxine hydrochloride, although it is only effective in a subset of PH1 patients. Lumasiran, a novel biological drug based on mRNA interference that has been recently approved in the US and European Union, showed promising results and is set to be a turning point in the management of PH1. This literature review aims to summarize the available evidence on PH1 treatment with lumasiran, in order to provide both pediatric and adult nephrologists and clinicians with the knowledge for the identification and management of PH1 patients suitable for treatment.
Collapse
Affiliation(s)
- Viola D’Ambrosio
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, U.O.C. Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Pietro Manuel Ferraro
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, U.O.C. Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
5
|
Demoulin N, Aydin S, Gillion V, Morelle J, Jadoul M. Pathophysiology and Management of Hyperoxaluria and Oxalate Nephropathy: A Review. Am J Kidney Dis 2022; 79:717-727. [PMID: 34508834 DOI: 10.1053/j.ajkd.2021.07.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023]
Abstract
Hyperoxaluria results from either inherited disorders of glyoxylate metabolism leading to hepatic oxalate overproduction (primary hyperoxaluria), or increased intestinal oxalate absorption (secondary hyperoxaluria). Hyperoxaluria may lead to urinary supersaturation of calcium oxalate and crystal formation, causing urolithiasis and deposition of calcium oxalate crystals in the kidney parenchyma, a condition termed oxalate nephropathy. Considerable progress has been made in the understanding of pathophysiological mechanisms leading to hyperoxaluria and oxalate nephropathy, whose diagnosis is frequently delayed and prognosis too often poor. Fortunately, novel promising targeted therapeutic approaches are on the horizon in patients with primary hyperoxaluria. Patients with secondary hyperoxaluria frequently have long-standing hyperoxaluria-enabling conditions, a fact suggesting the role of triggers of acute kidney injury such as dehydration. Current standard of care in these patients includes management of the underlying cause, high fluid intake, and use of calcium supplements. Overall, prompt recognition of hyperoxaluria and associated oxalate nephropathy is crucial because optimal management may improve outcomes.
Collapse
Affiliation(s)
- Nathalie Demoulin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | - Selda Aydin
- Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Valentine Gillion
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Johann Morelle
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Michel Jadoul
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Estève E, Buob D, Jamme F, Jouanneau C, Kascakova S, Haymann JP, Letavernier E, Galmiche L, Ronco P, Daudon M, Bazin D, Réfrégiers M. Detection and localization of calcium oxalate in kidney using synchrotron deep ultraviolet fluorescence microscopy. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:214-223. [PMID: 34985438 PMCID: PMC8733991 DOI: 10.1107/s1600577521011371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/28/2021] [Indexed: 05/14/2023]
Abstract
Renal oxalosis is a rare cause of renal failure whose diagnosis can be challenging. Synchrotron deep ultraviolet (UV) fluorescence was assayed to improve oxalosis detection on kidney biopsies spatial resolution and sensitivity compared with the Fourier transform infrared microspectroscopy gold standard. The fluorescence spectrum of synthetic mono-, di- and tri-hydrated calcium oxalate was investigated using a microspectrometer coupled to the synchrotron UV beamline DISCO, Synchrotron SOLEIL, France. The obtained spectra were used to detect oxalocalcic crystals in a case control study of 42 human kidney biopsies including 19 renal oxalosis due to primary (PHO, n = 11) and secondary hyperoxaluria (SHO, n = 8), seven samples from PHO patients who received combined kidney and liver transplants, and 16 controls. For all oxalocalcic hydrates samples, a fluorescence signal is detected at 420 nm. These spectra were used to identify standard oxalocalcic crystals in patients with PHO or SHO. They also revealed micrometric crystallites as well as non-aggregated oxalate accumulation in tubular cells. A nine-points histological score was established for the diagnosis of renal oxalosis with 100% specificity (76-100) and a 73% sensitivity (43-90). Oxalate tubular accumulation and higher histological score were correlated to lower estimated glomerular filtration rate and higher urinary oxalate over creatinine ratio.
Collapse
Affiliation(s)
- Emmanuel Estève
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - David Buob
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Frédéric Jamme
- Synchrotron SOLEIL, DISCO Beamline, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Chantal Jouanneau
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Slavka Kascakova
- Synchrotron SOLEIL, DISCO Beamline, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Jean Philippe Haymann
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Emmanuel Letavernier
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Louise Galmiche
- Pathology Department, Necker-Enfants Malades Hospital, Public Assistance-Hospitals of Paris, Université Paris, 75015 Paris, France
| | - Pierre Ronco
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Michel Daudon
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Dominique Bazin
- Laboratoire de Physique des Solides, CNRS UMR8502, Université Paris Saclay, Orsay, France
| | - Matthieu Réfrégiers
- Synchrotron SOLEIL, DISCO Beamline, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| |
Collapse
|
7
|
Martin-Higueras C, Garrelfs SF, Groothoff JW, Jacob DE, Moochhala SH, Bacchetta J, Acquaviva C, Zaniew M, Sikora P, Beck BB, Hoppe B. A report from the European Hyperoxaluria Consortium (OxalEurope) Registry on a large cohort of patients with primary hyperoxaluria type 3. Kidney Int 2021; 100:621-635. [PMID: 33865885 DOI: 10.1016/j.kint.2021.03.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023]
Abstract
Outcome data in primary hyperoxaluria type 3 (PH3), described as a less severe form of the PH's with a low risk of chronic kidney disease, are scarce. To investigate this, we retrospectively analyzed the largest PH3 cohort reported so far. Of 95 patients, 74 were followed over a median of six years. Median age of first symptoms and diagnosis were 1.9 and 6.3 years, respectively. Urolithiasis was the major clinical feature observed in 70% of pediatric and 50% of adult patients. At most recent follow-up available for 56 of the 95 patients, 21.4% were in chronic kidney disease stages 2 or more. For better characterization, samples from 49 patients were analyzed in a single laboratory and compared to data from patients with PH1 and PH2 from the same center. Urinary oxalate excretion was not significantly different from PH1 and PH2 (median: 1.37, 1.40 and 1.16 mmol/1.73m2/24hours for PH1 not responsive to vitamin B6, PH2, and PH3, respectively) but was significantly higher than in vitamin B6 responsive patients with PH1. Urinary oxalate excretion did not correlate to stone production rate nor to estimated glomerular filtration rate. Normocitraturia was present even without alkalinisation treatment; hypercalciuria was found rarely. Median plasma oxalate was significantly different only to the vitamin B6-unresponsive PH1 group. Thus, PH3 is more comparable to PH1 and PH2 than so far inferred from smaller studies. It is the most favorable PH type, but not a benign entity as it constitutes an early onset, recurrent stone disease, and kidney function can be impaired.
Collapse
Affiliation(s)
- Cristina Martin-Higueras
- Department of Basic Medical Sciences, Institute of Biomedical Technologies, University of La Laguna, Centre for Biomedical Research in Rare Diseases (CIBERER), Tenerife, Spain
| | - Sander F Garrelfs
- Department of Pediatric Nephrology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jaap W Groothoff
- Department of Pediatric Nephrology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Dorrit E Jacob
- Research School of Earth Sciences, ANU College of Science, The Australian National University, Canberra, Australia
| | - Shabbir H Moochhala
- University College London, Department of Renal Medicine, Royal Free Hospital, London, UK
| | - Justine Bacchetta
- Center of Reference for Rare Renal Diseases, Hospices Civils de Lyon, Centre Hospitalier Universitaire de Lyon, Bron, France
| | - Cecile Acquaviva
- Center of Reference for Rare Renal Diseases, Hospices Civils de Lyon, Centre Hospitalier Universitaire de Lyon, Bron, France
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Przymyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Bodo B Beck
- Department of Human Genetics, University Hospital Cologne, Cologne, Germany; Outpatient Clinics, German Hyperoxaluria Center, Cologne/Bonn, Germany; Center for Molecular Medicine, University Hospital, Cologne, Germany
| | - Bernd Hoppe
- Outpatient Clinics, German Hyperoxaluria Center, Cologne/Bonn, Germany.
| |
Collapse
|
8
|
Plasma oxalate and eGFR are correlated in primary hyperoxaluria patients with maintained kidney function-data from three placebo-controlled studies. Pediatr Nephrol 2021; 36:1785-1793. [PMID: 33515281 PMCID: PMC8172484 DOI: 10.1007/s00467-020-04894-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/06/2020] [Accepted: 12/03/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND In patients with primary hyperoxaluria (PH), endogenous oxalate overproduction increases urinary oxalate excretion, leading to compromised kidney function and often kidney failure. Highly elevated plasma oxalate (Pox) is associated with systemic oxalate deposition in patients with PH and severe chronic kidney disease (CKD). The relationship between Pox and estimated glomerular filtration rate (eGFR) in patients with preserved kidney function, however, is not well established. Our analysis aimed to investigate a potential correlation between these parameters in PH patients from three randomized, placebo-controlled trials (studies OC3-DB-01, OC3-DB-02, and OC5-DB-01). METHODS Baseline data from patients with a PH diagnosis (type 1, 2, or 3) and eGFR > 40 mL/min/1.73 m2 were analyzed for a correlation between eGFR and Pox using Spearman's rank and Pearson's correlation coefficients. Data were analyzed by individual study and additionally were pooled for Studies OC3-DB-02 and OC5-DB-01 in which the same Pox assay was used. RESULTS A total of 106 patients were analyzed. A statistically significant inverse Spearman's correlation between eGFR and Pox was observed across all analyses; correlation coefficients were - 0.44 in study OC3-DB-01, - 0.55 in study OC3-DB-02, - 0.51 in study OC5-DB-01, and - 0.49 in the pooled studies (p < 0.0064). CONCLUSIONS Baseline evaluations showed a moderate and statistically significant inverse correlation between eGFR and Pox in patients with PH already at early stages of CKD (stages 1-3b), demonstrating that a correlation is present before substantial loss in kidney function occurs.
Collapse
|