1
|
Otis JL, Parker NM, Busch RA. Nutrition support for patients with renal dysfunction in the intensive care unit: A narrative review. Nutr Clin Pract 2025; 40:35-53. [PMID: 39446967 PMCID: PMC11713211 DOI: 10.1002/ncp.11231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Providing optimal nutrition support in the intensive care unit (ICU) is a challenging and dynamic process. Energy, protein, fluid, electrolyte, and micronutrient requirements all can be altered in patients with acute, chronic, and acute-on-chronic kidney disease. Given that renal dysfunction occurs in up to one-half of ICU patients, it is imperative that nutrition support providers understand how renal dysfunction, its metabolic consequences, and its treatments, including renal replacement therapy (RRT), affect patients' nutrition needs. Data on nutrient requirements in critically ill patients with renal dysfunction are sparse. This article provides an overview of renal dysfunction in the ICU and identifies and addresses the unique nutrition challenges present among these patients, including those receiving RRT, as supported by the available literature and guidelines.
Collapse
Affiliation(s)
- Joanna L. Otis
- Department of Clinical NutritionUniversity of Wisconsin Hospital and ClinicsMadisonWisconsinUSA
| | - Nicholas M. Parker
- Department of PharmacyUniversity of Wisconsin Hospital and ClinicsMadisonWisconsinUSA
| | - Rebecca A. Busch
- Division of Acute Care and Regional General Surgery, Department of SurgeryUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
2
|
Li L, Zhao S, Liu X, Xu Z, Li D, Dai X. Lyophilized powder of calf bone marrow hydrolysate liposomes improved renal anemia: In vitro and in vivo evaluation. PLoS One 2024; 19:e0314811. [PMID: 39724079 DOI: 10.1371/journal.pone.0314811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/16/2024] [Indexed: 12/28/2024] Open
Abstract
This study aimed to find whether oral administration of calf bone marrow hydrolysate liposomes (CBMHL) can improve renal anemia. Calf bone marrow was defatted, papain hydrolyzed, liposomalized and lyophilized. Its hematopoietic ability was proved by the colony formation experiment of umbilical cord blood hematopoietic stem cells in vitro. The rat model of renal anemia was established by adenine intragastric administration, and different concentrations of CBMHL were intragastricly administrated. Blood routine and serological indexes, transcription levels of hematopoietic factors and renal pathology were detected. From the appearance, redispersability, water content, liposome indexes and stability of Lyophilized powder of CBMHL, it could be concluded that the quality of freeze-dried CBMHL powder under this freeze-drying process was good. Compared with the control group, the burst forming unit-erythroid (BFU-E) in the CBMHL group was larger and the number of colonies increased significantly in the colony formation experiment (P < 0.05). The results of lyophilized powder of CBMHL co-culture with human adipose mesenchymal stem cells (MSCs) and human cytokine-induced killer (CIK) cells showed that the lyophilized powder of CBMHL had no potential toxicity and allergic reaction in vitro. Compared with the Model Group, the red blood cell (RBC) count, hemoglobin (HB) content and hematokrit (HCT) of rats blood routine in the Model+high doses of CBMHL Group (Model+H-CBMHL Group) increased significantly (P < 0.05). Serum erythropoietin (EPO) and glutathione (GSH) levels increased significantly (P < 0.05), while serum creatinine (Cr) levels decreased significantly(P < 0.05). The transcription level of Epo in kidney increased significantly (P < 0.05), the transcription levels of erythropoietin receptor (Epor) in bone marrow and interleukin 6 (Il6) in spleen were significantly increased (P < 0.01). The fragility of red blood cells decreased significantly, and the pathological structure of kidney improved significantly. It was proved that lyophilized powder of CBMHL could effectively enhance the hematopoietic ability of rats with renal anemia and protect the kidney structure and function.
Collapse
Affiliation(s)
- Li Li
- Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China
| | - Shasha Zhao
- Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China
| | - Xiaodun Liu
- Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China
| | - Zhe Xu
- Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China
| | - Dong Li
- Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China
| | - Xiaoyu Dai
- Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China
| |
Collapse
|
3
|
Lee AM, Xu Y, Hu J, Xiao R, Hooper SR, Hartung EA, Coresh J, Rhee EP, Vasan RS, Kimmel PL, Warady BA, Furth SL, Denburg MR. Longitudinal Plasma Metabolome Patterns and Relation to Kidney Function and Proteinuria in Pediatric CKD. Clin J Am Soc Nephrol 2024; 19:837-850. [PMID: 38709558 PMCID: PMC11254025 DOI: 10.2215/cjn.0000000000000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Key Points Longitudinal untargeted metabolomics. Children with CKD have a circulating metabolome that changes over time. Background Understanding plasma metabolome patterns in relation to changing kidney function in pediatric CKD is important for continued research for identifying novel biomarkers, characterizing biochemical pathophysiology, and developing targeted interventions. There are a limited number of studies of longitudinal metabolomics and virtually none in pediatric CKD. Methods The CKD in Children study is a multi-institutional, prospective cohort that enrolled children aged 6 months to 16 years with eGFR 30–90 ml/min per 1.73 m2. Untargeted metabolomics profiling was performed on plasma samples from the baseline, 2-, and 4-year study visits. There were technologic updates in the metabolomic profiling platform used between the baseline and follow-up assays. Statistical approaches were adopted to avoid direct comparison of baseline and follow-up measurements. To identify metabolite associations with eGFR or urine protein-creatinine ratio (UPCR) among all three time points, we applied linear mixed-effects (LME) models. To identify metabolites associated with time, we applied LME models to the 2- and 4-year follow-up data. We applied linear regression analysis to examine associations between change in metabolite level over time (∆level) and change in eGFR (∆eGFR) and UPCR (∆UPCR). We reported significance on the basis of both the false discovery rate (FDR) <0.05 and P < 0.05. Results There were 1156 person-visits (N : baseline=626, 2-year=254, 4-year=276) included. There were 622 metabolites with standardized measurements at all three time points. In LME modeling, 406 and 343 metabolites associated with eGFR and UPCR at FDR <0.05, respectively. Among 530 follow-up person-visits, 158 metabolites showed differences over time at FDR <0.05. For participants with complete data at both follow-up visits (n =123), we report 35 metabolites with ∆level–∆eGFR associations significant at FDR <0.05. There were no metabolites with significant ∆level–∆UPCR associations at FDR <0.05. We report 16 metabolites with ∆level–∆UPCR associations at P < 0.05 and associations with UPCR in LME modeling at FDR <0.05. Conclusions We characterized longitudinal plasma metabolomic patterns associated with eGFR and UPCR in a large pediatric CKD population. Many of these metabolite signals have been associated with CKD progression, etiology, and proteinuria in previous CKD Biomarkers Consortium studies. There were also novel metabolite associations with eGFR and proteinuria detected.
Collapse
Affiliation(s)
- Arthur M. Lee
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yunwen Xu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Jian Hu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Rui Xiao
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen R. Hooper
- Department of Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Erum A. Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- NYU Grossman School of Medicine, New York, New York
| | - Eugene P. Rhee
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ramachandran S. Vasan
- Boston University School of Medicine, Boston, Massachusetts
- Boston University School of Public Health, Boston, Massachusetts
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Bradley A. Warady
- Division of Nephrology, Children’s Mercy Kansas City, Kansas City, Missouri
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Susan L. Furth
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
- Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle R. Denburg
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Wang Y, Yang J, Zhang Y, Zhou J. Focus on Mitochondrial Respiratory Chain: Potential Therapeutic Target for Chronic Renal Failure. Int J Mol Sci 2024; 25:949. [PMID: 38256023 PMCID: PMC10815764 DOI: 10.3390/ijms25020949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The function of the respiratory chain is closely associated with kidney function, and the dysfunction of the respiratory chain is a primary pathophysiological change in chronic kidney failure. The incidence of chronic kidney failure caused by defects in respiratory-chain-related genes has frequently been overlooked. Correcting abnormal metabolic reprogramming, rescuing the "toxic respiratory chain", and targeting the clearance of mitochondrial reactive oxygen species are potential therapies for treating chronic kidney failure. These treatments have shown promising results in slowing fibrosis and inflammation progression and improving kidney function in various animal models of chronic kidney failure and patients with chronic kidney disease (CKD). The mitochondrial respiratory chain is a key target worthy of attention in the treatment of chronic kidney failure. This review integrated research related to the mitochondrial respiratory chain and chronic kidney failure, primarily elucidating the pathological status of the mitochondrial respiratory chain in chronic kidney failure and potential therapeutic drugs. It provided new ideas for the treatment of kidney failure and promoted the development of drugs targeting the mitochondrial respiratory chain.
Collapse
Affiliation(s)
| | | | | | - Jianhua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China; (Y.W.); (J.Y.); (Y.Z.)
| |
Collapse
|
5
|
Lee AM, Xu Y, Hooper SR, Abraham AG, Hu J, Xiao R, Matheson MB, Brunson C, Rhee EP, Coresh J, Vasan RS, Schrauben S, Kimmel PL, Warady BA, Furth SL, Hartung EA, Denburg MR. Circulating Metabolomic Associations with Neurocognitive Outcomes in Pediatric CKD. Clin J Am Soc Nephrol 2024; 19:13-25. [PMID: 37871960 PMCID: PMC10843217 DOI: 10.2215/cjn.0000000000000318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Children with CKD are at risk for impaired neurocognitive functioning. We investigated metabolomic associations with neurocognition in children with CKD. METHODS We leveraged data from the Chronic Kidney Disease in Children (CKiD) study and the Neurocognitive Assessment and Magnetic Resonance Imaging Analysis of Children and Young Adults with Chronic Kidney Disease (NiCK) study. CKiD is a multi-institutional cohort that enrolled children aged 6 months to 16 years with eGFR 30-90 ml/min per 1.73 m 2 ( n =569). NiCK is a single-center cross-sectional study of participants aged 8-25 years with eGFR<90 ml/min per 1.73 m 2 ( n =60) and matched healthy controls ( n =67). Untargeted metabolomic quantification was performed on plasma (CKiD, 622 metabolites) and serum (NiCK, 825 metabolites) samples. Four neurocognitive domains were assessed: intelligence, attention regulation, working memory, and parent ratings of executive function. Repeat assessments were performed in CKiD at 2-year intervals. Linear regression and linear mixed-effects regression analyses adjusting for age, sex, delivery history, hypertension, proteinuria, CKD duration, and glomerular versus nonglomerular diagnosis were used to identify metabolites associated with neurocognitive z-scores. Analyses were performed with and without adjustment for eGFR. RESULTS There were multiple metabolite associations with neurocognition observed in at least two of the analytic samples (CKiD baseline, CKiD follow-up, and NiCK CKD). Most of these metabolites were significantly elevated in children with CKD compared with healthy controls in NiCK. Notable signals included associations with parental ratings of executive function: phenylacetylglutamine, indoleacetylglutamine, and trimethylamine N-oxide-and with intelligence: γ -glutamyl amino acids and aconitate. CONCLUSIONS Several metabolites were associated with neurocognitive dysfunction in pediatric CKD, implicating gut microbiome-derived substances, mitochondrial dysfunction, and altered energy metabolism, circulating toxins, and redox homeostasis. PODCAST This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_11_17_CJN0000000000000318.mp3.
Collapse
Affiliation(s)
- Arthur M. Lee
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yunwen Xu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Stephen R. Hooper
- Department of Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Alison G. Abraham
- Department of Epidemiology, Colorado University School of Public Health, Aurora, Colorado
| | - Jian Hu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Rui Xiao
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew B. Matheson
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Celina Brunson
- Division of Nephrology, Children's National Hospital, Washington, DC
| | - Eugene P. Rhee
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard School of Medicine, Boston, Massachusetts
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ramachandran S. Vasan
- Boston University School of Medicine, Boston, Massachusetts
- Boston University School of Public Health, Boston, Massachusetts
| | - Sarah Schrauben
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine and Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Bradley A. Warady
- Division of Nephrology, Children's Mercy Kansas City, Kansas City, Missouri
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Susan L. Furth
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania
| | - Erum A. Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle R. Denburg
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Wang X, Bao L, Jiang M, Li D, Xu L, Bai M. Toxic mechanism of the Mongolian medicine "Hunqile-7" based on metabonomics and the metabolism of intestinal flora. Toxicol Res (Camb) 2022; 12:49-61. [PMID: 36866222 PMCID: PMC9972816 DOI: 10.1093/toxres/tfac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/27/2022] Open
Abstract
The traditional Mongolian medicine Hunqile-7 (HQL-7), which is mainly used to relieve pain in clinic, has certain toxicity. Therefore, toxicological investigation of HQL-7 is of great significance to its safety assessment. In this study, the toxic mechanism of HQL-7 was explored based on a combination of metabolomics and intestinal flora metabolism. UHPLC-MS was used to analyze the serum, liver and kidney samples of rats after intragastric administration of HQL-7. The decision tree and K Nearest Neighbor (KNN) model were established based on the bootstrap aggregation (bagging) algorithm to classify the omics data. After samples were extracted from rat feces, the high-throughput sequencing platform was used to analyze the 16s rRNA V3-V4 region of bacteria. The experimental results confirm that the bagging algorithm improved the classification accuracy. The toxic dose, toxic intensity, and toxic target organ of HQL-7 were determined in toxicity tests. Seventeen biomarkers were identified and the metabolism dysregulation of these biomarkers may be responsible for the toxicity of HQL-7 in vivo. Several kinds of bacteria was demonstrated to be closely related to the physiological indices of renal and liver function, indicating liver and kidney damage induced by HQL-7 may be related to the disturbance of these intestinal bacteria. Overall, the toxic mechanism of HQL-7 was revealed in vivo, which not only provides a scientific basis for the safe and rational clinical use of HQL-7, but also opens up a new field of research on big data for Mongolian medicine.
Collapse
Affiliation(s)
- Xiye Wang
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China,Inner Mongolia Key Laboratory of Chemistry for Natural Products Chemistry and Synthesis for Functional Molecules, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Leer Bao
- Inner Mongolia Autonomous Region Drug Inspection Center, Hohhot 010000, China
| | - Mingyang Jiang
- College of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Dan Li
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China,Inner Mongolia Key Laboratory of Chemistry for Natural Products Chemistry and Synthesis for Functional Molecules, Inner Mongolia Minzu University, Tongliao 028000, China
| | | | | |
Collapse
|
7
|
|