1
|
Zhao Z, Dai X, Jiang G, Lin F. Absent, Small, or Homeotic 2-Like-Mediated H3K4 Methylation and Nephrogenesis. J Am Soc Nephrol 2025; 36:798-811. [PMID: 39774048 PMCID: PMC12059113 DOI: 10.1681/asn.0000000600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Key Points Deficits in nephron numbers are associated with higher risk of adult-onset kidney disease seen in congenital anomalies of the kidney and urinary tract. Mouse model experiments suggested that absent, small, or homeotic 2-like was vital for kidney development by activating cell cycle genes through histone methylation. Our findings identified absent, small, or homeotic 2-like–regulated genes as a potential target for treating congenital anomalies of the kidney and urinary tract. Background Many congenital anomalies of the kidney and urinary tract involve deficits in the number of nephrons, which are associated with a higher risk of hypertension and CKD later in life. Prior work has implicated histone modifications in regulating kidney lineage–specific gene transcription and nephron endowment. Our earlier study suggested that absent, small, or homeotic 2-like (ASH2L), a core subunit of the H3K4 methyltransferase complex, plays a role in ureteric bud morphogenesis during mammalian kidney development. However, the potential involvement of ASH2L in nephron formation remains an open question. Methods To investigate the role of ASH2L in nephron development, we inactivated Ash2l specifically in nephron progenitor cells by crossing Six2 -e(Kozak-GFPCre-Wpre-polyA)1 mice with Ash2l fl/fl mice. We used RNA sequencing combined with Cleavage Under Targets and Tagmentation sequencing to screen for gene and epigenomic changes, which were further verified by rescue experiments conducted on ex vivo culture explants. Results Inactivating ASH2L in nephron progenitor cells disrupted H3K4 trimethylation establishment at promoters of genes controlling nephron progenitor cell stemness, differentiation, and cell cycle, inhibiting their progression through the cell cycle and differentiation into epithelial cell types needed to form nephrons. Inhibition of the TGF-β /suppressor of mothers against decapentaplegic signaling pathway partially rescued the dysplastic phenotype of the mutants. Conclusions ASH2L-mediated H3K4 methylation was identified as a novel epigenetic regulator of kidney development. Downregulation of ASH2L expression or H3K4 trimethylation may be linked to congenital anomalies of the kidney and urinary tract.
Collapse
Affiliation(s)
- Ziyi Zhao
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuantong Dai
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengru Jiang
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Fujun Lin
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| |
Collapse
|
2
|
Shinzato T, Nagai K, Hoshino Y, Fujiwara Y, Yamamoto Y, Morishita A, Okawa T, Ito K, Murakami M, Matsuo K, Tanaka S, Mori K. Immunoglobulin A Nephropathy in a Kidney Transplant Recipient with Kabuki Syndrome: A Case Report. Intern Med 2025:4832-24. [PMID: 40090720 DOI: 10.2169/internalmedicine.4832-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2025] Open
Abstract
Kabuki syndrome is a rare genetic disorder that causes multiple congenital anomalies, including characteristic facial features reminiscent of Kabuki syndrome. It is often associated with congenital anomalies of the kidneys and urinary tract as well as immune abnormalities. While various autoimmune diseases have been reported in patients with this syndrome, only one case of membranoproliferative glomerulonephritis has been documented. We herein report a case of Kabuki syndrome in which immunoglobulin A nephropathy developed in a renal allograft, which subsequently improved with the administration of pulse steroids and an angiotensin II receptor blocker.
Collapse
Affiliation(s)
| | - Kojiro Nagai
- Department of Nephrology, Shizuoka General Hospital, Japan
| | - Yuuki Hoshino
- Department of Nephrology, Shizuoka General Hospital, Japan
| | | | | | | | - Takao Okawa
- Department of Nephrology, Shizuoka General Hospital, Japan
| | - Kenta Ito
- Department of Nephrology, Shizuoka General Hospital, Japan
| | | | - Ken Matsuo
- Department of Nephrology, Shizuoka General Hospital, Japan
| | - Satoshi Tanaka
- Department of Nephrology, Shizuoka General Hospital, Japan
| | - Kiyoshi Mori
- Department of Nephrology, Shizuoka General Hospital, Japan
| |
Collapse
|
3
|
Groopman E, Milo Rasouly H. Navigating Genetic Testing in Nephrology: Options and Decision-Making Strategies. Kidney Int Rep 2025; 10:673-695. [PMID: 40225372 PMCID: PMC11993218 DOI: 10.1016/j.ekir.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 04/15/2025] Open
Abstract
Technological advances such as next-generation sequencing (NGS) have enabled high-throughput assessment of the human genome, supporting the usage of genetic testing as a first-line tool across clinical medicine. Although individually rare, genetic causes account for end-stage renal disease in 10% to 15% of adults and 70% of children, and in many of these individuals, genetic testing can identify a specific etiology and meaningfully impact management. However, with numerous options for genetic testing available, nephrologists may feel uncomfortable integrating genetics into their clinical practice. Here, we aim to demystify the process of genetic test selection and highlight the opportunities for interdisciplinary collaboration between nephrologists and genetics professionals, thereby supporting precision medicine for patients with kidney disease. We first detail the various clinical genetic testing modalities, highlighting their technical advantages and limitations, and then discuss indications for their usage. Next, we provide a generalized workflow for genetic test selection among individuals with kidney disease and illustrate how this workflow can be applied to genetic test selection across diverse clinical contexts. We then discuss key areas related to the usage of genetic testing in clinical nephrology that merit further research and approaches to investigate them.
Collapse
Affiliation(s)
- Emily Groopman
- Pediatrics and Medical Genetics Combined Residency Program, Children’s National Hospital, Washington, DC, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
4
|
König L, Schmidts M. The role of chromatin-related epigenetic modulations in CAKUT. Curr Top Dev Biol 2025; 163:169-227. [PMID: 40254345 DOI: 10.1016/bs.ctdb.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) represent a major health burden in humans. Phenotypes range from renal hypoplasia or renal agenesis, cystic renal dysplasia, duplicated or horseshoe kidneys to obstruction of the ureteropelvic junction, megaureters, duplicated ureters, urethral valves or bladder malformations. Over the past decade, next-generation sequencing has identified numerous causative genes; however, the genetic basis of most cases remains unexplained. It is assumed that environmental factors have a significant impact on the phenotype, but, overall, the pathogenesis has remained poorly understood. Interestingly however, CAKUT is a common phenotypic feature in two human syndromes, Kabuki and Koolen-de Vries syndrome, caused by dysfunction of genes encoding for KMT2D and KANSL1, both members of protein complexes playing an important role in histone modifications. In this chapter, we discuss current knowledge regarding epigenetic modulation in renal development and a putatively under-recognized role of epigenetics in CAKUT.
Collapse
Affiliation(s)
- Luise König
- Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Ma C, Huang R, Fu F, Zhou H, Wang Y, Yan S, Guo F, Chen H, Li L, Jing X, Li F, Han J, Li D, Li R, Liao C. Prenatal diagnosis and outcomes in fetuses with duplex kidney. Int J Gynaecol Obstet 2024; 166:353-359. [PMID: 38189110 DOI: 10.1002/ijgo.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE Duplex kidney is a relatively frequent form of urinary system abnormality. This study aimed to elucidate the value of chromosomal microarray analysis (CMA) and whole exome sequencing (WES) for duplex kidney and the perinatal outcomes of duplex kidney fetuses. METHODS This retrospective cohort study included 63 patients with duplex kidney diagnosed using antenatal ultrasound between August 2013 and January 2023. We reviewed the clinical characteristics, genetic test results, and pregnancy outcomes of the patients. RESULTS Among the 63 cases based on the inclusion criteria, the CMA detected seven (11.1%) clinically significant variants and nine variants of uncertain significance (VUS), and the pathogenic/likely pathogenic (P/LP) copy number variations (CNVs) in the recurrent region that were associated with prenatal duplex kidney included 17q12, 17p13.3, and 22q11.2. No significant disparity was observed in the CMA detection rate between the unilateral and bilateral groups, or between the isolated and non-isolated groups. WES identified three (50%) P/LP single-gene variants in six fetuses with duplex kidney. We detected the following pathogenic genes in the duplex kidney fetuses: KMT2D, SMPD4, and FANCI. Pregnancy termination in cases where clinically significant variants were detected by genetic testing was different in statistical significance from that in cases with negative results (9/10, 90.0% vs 8/48, 16.7%, P < 0.001). CONCLUSION This study elucidated the value of CMA and WES for fetal duplex kidney, proving that CMA and WES may be useful tools in prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Chunling Ma
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ruibin Huang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hang Zhou
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - You Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shujuan Yan
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fei Guo
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huanyi Chen
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lushan Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiangyi Jing
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fucheng Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jin Han
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dongzhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Can Liao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Rossini L, Ricci S, Montin D, Azzari C, Gambineri E, Tellini M, Conti F, Pession A, Saettini F, Naviglio S, Valencic E, Magnolato A, Baselli L, Azzolini S, Consolini R, Leonardi L, D'Alba I, Carraro E, Romano R, Melis D, Stagi S, Cirillo E, Giardino G, Biffi A, Pignata C, Putti MC, Marzollo A. Immunological Aspects of Kabuki Syndrome: A Retrospective Multicenter Study of the Italian Primary Immunodeficiency Network (IPINet). J Clin Immunol 2024; 44:105. [PMID: 38676773 DOI: 10.1007/s10875-024-01676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/23/2024] [Indexed: 04/29/2024]
Abstract
Kabuki Syndrome (KS) is a multisystemic genetic disorder. A portion of patients has immunological manifestations characterized by increased susceptibility to infections and autoimmunity. Aiming to describe the clinical and laboratory immunological aspects of KS, we conducted a retrospective multicenter observational study on patients with KS treated in centers affiliated to the Italian Primary Immunodeficiency Network.Thirty-nine patients were enrolled, with a median age at evaluation of 10 years (range: 3 m-21y). All individuals had organ malformations of variable severity. Congenital heart defect (CHD) was present in 19/39 patients (49%) and required surgical correction in 9/39 (23%), with associated thymectomy in 7/39 (18%). Autoimmune cytopenia occurred in 6/39 patients (15%) and was significantly correlated with thymectomy (p < 0.002), but not CHD. Individuals with cytopenia treated with mycophenolate as long-term immunomodulatory treatment (n = 4) showed complete response. Increased susceptibility to infections was observed in 22/32 patients (69%). IgG, IgA, and IgM were low in 13/29 (45%), 13/30 (43%) and 4/29 (14%) patients, respectively. Immunoglobulin substitution was required in three patients. Lymphocyte subsets were normal in all patients except for reduced naïve T-cells in 3/15 patients (20%) and reduced memory switched B-cells in 3/17 patients (18%). Elevated CD3 + TCRαβ + CD4-CD8-T-cells were present in 5/17 individuals (23%) and were correlated with hematological and overall autoimmunity (p < 0.05).In conclusion, immunological manifestations of KS in our cohort include susceptibility to infections, antibody deficiency, and autoimmunity. Autoimmune cytopenia is correlated with thymectomy and elevated CD3 + TCRαβ + CD4-CD8-T-cells, and benefits from treatment with mycophenolate.
Collapse
Affiliation(s)
- Linda Rossini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
- Maternal and Child Health Department, Padua University, Via Giustiniani, 3, Padua, 35128, Italy
| | - Silvia Ricci
- Immunology, Pediatric Unit, IRCCS Meyer Children's Hospital, viale G.Pieraccini 24, Florence, 50139, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Davide Montin
- Immunology and Rheumatology Unit, Regina Margherita Children Hospital, Turin, Italy
| | - Chiara Azzari
- Immunology, Pediatric Unit, IRCCS Meyer Children's Hospital, viale G.Pieraccini 24, Florence, 50139, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Eleonora Gambineri
- Centre of Excellence, Department of Pediatric Hematology-Oncology, IRCCS Meyer Children's Hospital, Florence, Italy
- Department of "NEUROFARBA", Section of Child's Health, University of Florence, Florence, Italy
| | - Marco Tellini
- Centre of Excellence, Department of Pediatric Hematology-Oncology, IRCCS Meyer Children's Hospital, Florence, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Dept. of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Dept. of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesco Saettini
- Tettamanti Research Center, University of Milano-Bicocca, University of Milano Bicocca, Monza, Italy
| | - Samuele Naviglio
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Erica Valencic
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Andrea Magnolato
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Lucia Baselli
- Department of Pediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Leonardi
- Maternal, Infantile and Urological Sciences Department, Sapienza University of Rome, Rome, Italy
| | - Irene D'Alba
- Paediatric Haematology-Oncology, Maternal Infant Hospital "G. Salesi", Ancona, Italy
| | - Elisa Carraro
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via Salvador Allende Baronissi, Campania, 84081, Italy
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, Florence, Italy
- Auxoendocrinology Division, Meyer Children's Hospital, IRCCS, viale G.Pieraccini 24, Florence, 50139, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
- Maternal and Child Health Department, Padua University, Via Giustiniani, 3, Padua, 35128, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Maria Caterina Putti
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy.
| |
Collapse
|
7
|
Huang Z, Shen Q, Wu B, Wang H, Dong X, Lu Y, Cheng G, Wang L, Lu W, Chen L, Kang W, Li L, Pan X, Wei Q, Zhuang D, Chen D, Yin Z, Yang L, Ni Q, Liu R, Li G, Zhang P, Qian Y, Peng X, Wang Y, Cao Y, Xu H, Hu L, Yang L, Zhou W. Genetic Spectrum of Congenital Anomalies of the Kidney and Urinary Tract in Chinese Newborn Genome Project. Kidney Int Rep 2023; 8:2376-2384. [PMID: 38025242 PMCID: PMC10658258 DOI: 10.1016/j.ekir.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) corresponds to a spectrum of defects. Several large-cohort studies have used high-throughput sequencing to investigate the genetic risk of CAKUT during antenatal, childhood, and adulthood period. However, our knowledge of newborns with CAKUT is limited. Methods This multicenter retrospective cohort study explored the genetic spectrum of CAKUT in a Chinese neonatal cohort. Clinical data and whole exome sequencing (WES) data of 330 newborns clinically diagnosed with CAKUT were collected. WES data were analyzed for putative deleterious single nucleotide variants (SNVs) and potential disease-associated copy number variants (CNVs). Results In this study, pathogenic variants were identified in 61 newborns (18.5%, 61/330), including 35 patients (57.4%) with SNVs, 25 patients (41%) with CNVs, and 1 patient with both an SNV and a CNV. Genetic diagnosis rates were significantly higher in patients with extrarenal manifestations (P<0.001), especially in those with cardiovascular malformations (P<0.05). SNVs in genes related to syndromic disorders (CAKUT with extrarenal manifestations) were common, affecting 20 patients (57.1%, 20/35). KMT2D was the most common gene (5 patients) and 17q12 deletion was the most common CNV (4 patients). Patient 110 was detected with both a CNV (17q12 deletion) and an SNV (a homozygous variant of SLC25A13). Among the newborns with positive genetic results, 22 (36.1%, 22/61) patients may benefit from a molecular diagnosis and change in clinical management (including early multidisciplinary treatment, disease-specific follow-up, and familial genetic counseling). Conclusion This study shows the heterogeneous genetic etiologies in a Chinese CAKUT neonatal cohort by using WES. Patients with CAKUT who have extrarenal manifestations are more likely to harbor genetic diagnoses. Kabuki syndrome and 17q12 deletion syndrome were the most common genetic findings. Approximately 36.1% of the patients may benefit from molecular diagnoses and a change in clinical management.
Collapse
Affiliation(s)
- Zhelan Huang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Guoqiang Cheng
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
| | - Laishuan Wang
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
| | - Wei Lu
- Department of Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Liping Chen
- Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Wenqing Kang
- Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Long Li
- Department of Neonatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xinnian Pan
- Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiufen Wei
- Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | | | - Dongmei Chen
- Quanzhou Women and Children’s Hospital, Quanzhou, China
| | | | - Ling Yang
- Hainan Women and Children’s Medical Center, Haikou, China
| | - Qi Ni
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Renchao Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Gang Li
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Ping Zhang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yanyan Qian
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaomin Peng
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yao Wang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yun Cao
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
| | - Liyuan Hu
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
- Xiamen Children’s Hospital, Xiamen, China
| |
Collapse
|
8
|
Zhao Z, Dai X, Jiang G, Lin F. ASH2L Controls Ureteric Bud Morphogenesis through the Regulation of RET/GFRA1 Signaling Activity in a Mouse Model. J Am Soc Nephrol 2023; 34:988-1002. [PMID: 36758123 PMCID: PMC10278782 DOI: 10.1681/asn.0000000000000099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT Causes of congenital anomalies of the kidney and urinary tract (CAKUT) remain unclear. The authors investigated whether and how inactivation of Ash2l -which encodes a subunit of the COMPASS methyltransferase responsible for genome-wide histone H3 lysine K4 (H3K4) methylation-might contribute to CAKUT. In a mouse model, inactivation of Ash2l in the ureteric bud (UB) lineage led to CAKUT-like phenotypes. Removal of ASH2L led to deficient H3K4 trimethylation, which slowed cell proliferation at the UB tip, delaying budding and impairing branching morphogenesis. The absence of ASH2L also downregulated the expression of Ret , Gfra1 , and Wnt11 genes involved in RET/GFRA1 signaling. These findings identify ASH2L-mediated H3K4 methylation as an upstream epigenetic regulator of signaling crucial for UB morphogenesis and indicate that deficiency or dysregulation of these processes may lead to CAKUT. BACKGROUND Ureteric bud (UB) induction and branching morphogenesis are fundamental to the establishment of the renal architecture and are key determinants of nephron number. Defective UB morphogenesis could give rise to a spectrum of malformations associated with congenital anomalies of the kidney and urinary tract (CAKUT). Signaling involving glial cell line-derived neurotrophic factor and its receptor rearranged during transfection (RET) and coreceptor GFRA1 seems to be particularly important in UB development. Recent epigenome profiling studies have uncovered dynamic changes of histone H3 lysine K4 (H3K4) methylation during metanephros development, and dysregulated H3K4 methylation has been associated with a syndromic human CAKUT. METHODS To investigate whether and how inactivation of Ash2l , which encodes a subunit of the COMPASS methyltransferase responsible for genome-wide H3K4 methylation, might contribute to CAKUT, we inactivated Ash2l specifically from the UB lineage in C57BL/6 mice and examined the effects on genome-wide H3K4 methylation and metanephros development. Genes and epigenome changes potentially involved in these effects were screened using RNA-seq combined with Cleavage Under Targets and Tagmentation sequencing. RESULTS UB-specific inactivation of Ash2l caused CAKUT-like phenotypes mainly involving renal dysplasia at birth, which were associated with deficient H3K4 trimethylation. Ash2l inactivation slowed proliferation of cells at the UB tip, delaying budding and impairing UB branching morphogenesis. These effects were associated with downregulation of Ret , Gfra1 , and Wnt11 , which participate in RET/GFRA1 signaling. CONCLUSIONS These experiments identify ASH2L-dependent H3K4 methylation in the UB lineage as an upstream epigenetic regulator of RET/GFRA1 signaling in UB morphogenesis, which, if deficient, may lead to CAKUT.
Collapse
Affiliation(s)
- Ziyi Zhao
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuantong Dai
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengru Jiang
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Fujun Lin
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|