1
|
Wang J, Wang P, Liu B, Kinney PL, Huang L, Chen K. Comprehensive evaluation framework for intervention on health effects of ambient temperature. ECO-ENVIRONMENT & HEALTH 2024; 3:154-164. [PMID: 38646097 PMCID: PMC11031729 DOI: 10.1016/j.eehl.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 04/23/2024]
Abstract
Despite the existence of many interventions to mitigate or adapt to the health effects of climate change, their effectiveness remains unclear. Here, we introduce the Comprehensive Evaluation Framework for Intervention on Health Effects of Ambient Temperature to evaluate study designs and effects of intervention studies. The framework comprises three types of interventions: proactive, indirect, and direct, and four categories of indicators: classification, methods, scope, and effects. We trialed the framework by an evaluation of existing intervention studies. The evaluation revealed that each intervention has its own applicable characteristics in terms of effectiveness, feasibility, and generalizability scores. We expanded the framework's potential by offering a list of intervention recommendations in different scenarios. Future applications are then explored to establish models of the relationship between study designs and intervention effects, facilitating effective interventions to address the health effects of ambient temperature under climate change.
Collapse
Affiliation(s)
- Jiaming Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
| | - Beibei Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Patrick L. Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Lei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
| | - Kai Chen
- Department of Environmental Health Sciences, Yale Center on Climate Change and Health, Yale School of Public Health, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Brocherie F, Pascal M, Lagarrigue R, Millet GP. Climate and health challenges for Paris 2024 Olympics and Paralympics. BMJ 2024; 384:e077925. [PMID: 38167179 DOI: 10.1136/bmj-2023-077925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Affiliation(s)
- Franck Brocherie
- Laboratory Sport, Expertise, and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | | | | | - Grégoire P Millet
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Forceville G, Lemonsu A, Goria S, Stempfelet M, Host S, Alessandrini JM, Cordeau E, Pascal M. Spatial contrasts and temporal changes in fine-scale heat exposure and vulnerability in the Paris region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167476. [PMID: 37778556 DOI: 10.1016/j.scitotenv.2023.167476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Heat is identified as a key climate risk in Europe. Vulnerability to heat can be aggravated by enhanced exposure (e.g., urban heat island), individual susceptibility (e.g., age, income), and adaptive capacity (e.g., home ownership, presence of vegetation). We investigated the spatial and temporal patterns of the environmental and social drivers of vulnerability to heat in the Paris region, France, over the 2000-2020 period, and their association with mortality (restricted to 2000-2017). Daily temperatures were modeled for the 5265 IRIS of the Paris region for 2000-2020. Annual land use and socioeconomic data were collected for each IRIS. They were used to identify a priori five classes of heat-vulnerable areas based on a cluster analysis. The temperature-mortality relationship was investigated using a time-series approach stratified by clusters of vulnerability. The Paris region exhibited a strong urban heat island effect, with a marked shift in temperature distributions after 2015. The clustering suggested that the most heat-vulnerable IRIS in the Paris region have a high or very high exposure to temperature in a highly urbanized environment with little vegetation, but are not systematically associated with social deprivation. A similar J-shape temperature-mortality relationship was observed in the five clusters. Between 2000 and 2017, around 8000 deaths were attributable to heat, 5600 of which were observed in the most vulnerable clusters. Vulnerability assessments based on geographical indicators are key tools for urban planners and decision-makers. They complement the knowledge about individual risk factors but should be further evaluated through interdisciplinary collaborations.
Collapse
Affiliation(s)
- Gauthier Forceville
- Santé publique France, National French Public Health Agency, Saint Maurice, France
| | - Aude Lemonsu
- CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
| | - Sarah Goria
- Santé publique France, National French Public Health Agency, Saint Maurice, France
| | - Morgane Stempfelet
- Santé publique France, National French Public Health Agency, Saint Maurice, France
| | | | | | | | - Mathilde Pascal
- Santé publique France, National French Public Health Agency, Saint Maurice, France.
| |
Collapse
|
4
|
Newman R, Noy I. The global costs of extreme weather that are attributable to climate change. Nat Commun 2023; 14:6103. [PMID: 37775690 PMCID: PMC10541421 DOI: 10.1038/s41467-023-41888-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Extreme weather events lead to significant adverse societal costs. Extreme Event Attribution (EEA), a methodology that examines how anthropogenic greenhouse gas emissions had changed the occurrence of specific extreme weather events, allows us to quantify the climate change-induced component of these costs. We collect data from all available EEA studies, combine these with data on the socio-economic costs of these events and extrapolate for missing data to arrive at an estimate of the global costs of extreme weather attributable to climate change in the last twenty years. We find that US[Formula: see text] 143 billion per year of the costs of extreme events is attributable to climatic change. The majority (63%), of this is due to human loss of life. Our results suggest that the frequently cited estimates of the economic costs of climate change arrived at by using Integrated Assessment Models may be substantially underestimated.
Collapse
Affiliation(s)
- Rebecca Newman
- Reserve Bank of New Zealand, 2 The Terrace, Wellington, 6140, New Zealand
| | - Ilan Noy
- Victoria University of Wellington, 33 Bunny St., Wellington, 6011, New Zealand.
| |
Collapse
|
5
|
Ragettli MS, Saucy A, Flückiger B, Vienneau D, de Hoogh K, Vicedo-Cabrera AM, Schindler C, Röösli M. Explorative Assessment of the Temperature-Mortality Association to Support Health-Based Heat-Warning Thresholds: A National Case-Crossover Study in Switzerland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4958. [PMID: 36981871 PMCID: PMC10049426 DOI: 10.3390/ijerph20064958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Defining health-based thresholds for effective heat warnings is crucial for climate change adaptation strategies. Translating the non-linear function between heat and health effects into an effective threshold for heat warnings to protect the population is a challenge. We present a systematic analysis of heat indicators in relation to mortality. We applied distributed lag non-linear models in an individual-level case-crossover design to assess the effects of heat on mortality in Switzerland during the warm season from 2003 to 2016 for three temperature metrics (daily mean, maximum, and minimum temperature), and various threshold temperatures and heatwave definitions. Individual death records with information on residential address from the Swiss National Cohort were linked to high-resolution temperature estimates from 100 m resolution maps. Moderate (90th percentile) to extreme thresholds (99.5th percentile) of the three temperature metrics implied a significant increase in mortality (5 to 38%) in respect of the median warm-season temperature. Effects of the threshold temperatures on mortality were similar across the seven major regions in Switzerland. Heatwave duration did not modify the effect when considering delayed effects up to 7 days. This nationally representative study, accounting for small-scale exposure variability, suggests that the national heat-warning system should focus on heatwave intensity rather than duration. While a different heat-warning indicator may be appropriate in other countries, our evaluation framework is transferable to any country.
Collapse
Affiliation(s)
- Martina S. Ragettli
- Swiss Tropical and Public Health Institute (SwissTPH), 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Apolline Saucy
- Swiss Tropical and Public Health Institute (SwissTPH), 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
| | - Benjamin Flückiger
- Swiss Tropical and Public Health Institute (SwissTPH), 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute (SwissTPH), 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute (SwissTPH), 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Ana M. Vicedo-Cabrera
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
- Oeschger Center for Climate Change Research (OCCR), University of Bern, 3012 Bern, Switzerland
| | - Christian Schindler
- Swiss Tropical and Public Health Institute (SwissTPH), 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute (SwissTPH), 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
6
|
Liu J, Yu W, Pan R, He Y, Wu Y, Yan S, Yi W, Li X, Song R, Yuan J, Liu L, Wei N, Jin X, Li Y, Liang Y, Sun X, Mei L, Song J, Cheng J, Su H. Association between sequential extreme precipitation-heatwaves events and hospitalizations for schizophrenia: The damage amplification effects of sequential extremes. ENVIRONMENTAL RESEARCH 2022; 214:114143. [PMID: 35998693 DOI: 10.1016/j.envres.2022.114143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES In the context of frequent global extreme weather events, there are few studies on the effects of sequential extreme precipitation (EP) and heatwaves (HW) events on schizophrenia. We aimed to quantify the effects of the events on hospitalizations for schizophrenia and compare them with EP and HW alone to explore the amplification effect of successive extremes on health loss. METHODS A time-series Poisson regression model combined with a distributed lag non-linear model was applied to estimate the association between sequential EP and HW events (EP-HW) and schizophrenia hospitalizations. The effects of EP-HW with different intervals and intensities on the admission of schizophrenia were compared. In addition, we calculated the mean attributable fraction (AF) and attributable numbers (AN) per exposure of extreme events to reflect the amplification effect of sequential extreme events on health hazards compared with individual extreme events. RESULTS EP-HW increased the risk of hospitalization for schizophrenia, with significant effects lasting from lag0 (RR and 95% CI: 1.150 (1.041-1.271)) to lag11 (1.046 (1.000-1.094)). Significant associations were found in the subgroups of male, female, married people, and those aged≥ 40 years old. Shorter-interval (0-3days) or higher-intensity EP-HW (both precipitation ≥ P97.5 and mean temperature ≥ P97.5) had a longer lag effect compared to EP-HW with longer intervals or lower intensity. We found that the mean AF and AN caused by each exposure to EP-HW (AF: 0.074% (0.015%-0.123%); AN: 4.284 (0.862-7.118)) were higher than those induced by each exposure to HW occurring alone (AF:0.032% (0.004%-0.058%); AN:1.845 (0.220-3.329)). CONCLUSIONS Sequential extreme precipitation-heatwaves events significantly increase the risk of hospitalizations for schizophrenia, with greater impact and disease burden than independently occurring extremes. The impact of consecutive extremes is supposed to be considered in local sector early warning systems for comprehensive public health decision-making.
Collapse
Affiliation(s)
- Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Wenping Yu
- Department of Geriatrics, Shandong Daizhuang Hospital, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Yudong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Shuangshuang Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Xuanxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Rong Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Jiajun Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Li Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Ning Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Xiaoyu Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Yuxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Yunfeng Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Xiaoni Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Lu Mei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China.
| |
Collapse
|
7
|
Ro C. Can Japan really reach “zero deaths” from heat stroke? BMJ : BRITISH MEDICAL JOURNAL 2022. [DOI: 10.1136/bmj.o2107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Syed S, O’Sullivan TL, Phillips KP. Extreme Heat and Pregnancy Outcomes: A Scoping Review of the Epidemiological Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2412. [PMID: 35206601 PMCID: PMC8874707 DOI: 10.3390/ijerph19042412] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Extreme heat caused by climate change is a major public health concern, disproportionately affecting poor and racialized communities. Gestational heat exposure is a well-established teratogen in animal studies, with a growing body of literature suggesting human pregnancies are similarly at risk. Characterization of extreme heat as a pregnancy risk is problematic due to nonstandard definitions of heat waves, and variable study designs. To better focus future research in this area, we conducted a scoping review to assess the effects of extreme heat on pregnancy outcomes. METHODS A scoping review of epidemiological studies investigating gestational heat-exposure and published 2010 and 2020, was conducted with an emphasis on study design, gestational windows of sensitivity, adverse pregnancy outcomes and characterization of environmental temperatures. RESULTS A sample of 84 studies was identified, predominantly set in high-income countries. Preterm birth, birthweight, congenital anomalies and stillbirth were the most common pregnancy outcome variables. Studies reported race/ethnicity and/or socioeconomic variables, however these were not always emphasized in the analysis. CONCLUSION Use of precise temperature data by most studies avoided pitfalls of imprecise, regional definitions of heat waves, however inconsistent study design, and exposure windows are a significant challenge to systematic evaluation of this literature. Despite the high risk of extreme heat events and limited mitigation strategies in the global south, there is a significant gap in the epidemiological literature from these regions. Greater consistency in study design and exposure windows would enhance the rigor of this field.
Collapse
Affiliation(s)
| | | | - Karen P. Phillips
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.S.); (T.L.O.)
| |
Collapse
|
9
|
Adélaïde L, Chanel O, Pascal M. Health effects from heat waves in France: an economic evaluation. THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2022; 23:119-131. [PMID: 34304326 PMCID: PMC8310615 DOI: 10.1007/s10198-021-01357-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/13/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Scarcity of data on the health impacts and associated economic costs of heat waves may limit the will to invest in adaptation measures. We assessed the economic impact associated with mortality, morbidity, and loss of well-being during heat waves in France between 2015 and 2019. METHODS Health indicators monitored by the French national heat wave plan were used to estimate excess visits to emergency rooms and outpatient clinics and hospitalizations for heat-related causes. Total excess mortality and years of life loss were considered, as well as the size of the population that experienced restricted activity. A cost-of-illness and willingness-to-pay approach was used to account for associated costs. RESULTS Between 2015 and 2019, the economic impact of selected health effects of heat waves amounts to €25.5 billion, mainly in mortality (€23.2 billion), minor restricted activity days (€2.3 billion), and morbidity (€0.031 billion). CONCLUSION The results highlight a significant economic burden on the French health system and the population. A better understanding of the economic impacts of climate change on health is required to alert decision-makers to the urgency of mitigation and to support concrete adaptation actions.
Collapse
Affiliation(s)
- Lucie Adélaïde
- Santé publique France (SpF), 12, rue du Val d'Osne, 94415, Saint-Maurice Cedex, France
| | - Olivier Chanel
- Aix-Marseille Univ, CNRS, AMSE, 5 boulevard Maurice Bourdet CS50498, 13205, Marseille Cedex 01, France.
| | - Mathilde Pascal
- Santé publique France (SpF), 12, rue du Val d'Osne, 94415, Saint-Maurice Cedex, France
| |
Collapse
|