1
|
Iglesias-Moya J, Cebrián G, Garrido D, Martínez C, Jamilena M. The ethylene receptor mutation etr2b reveals crosstalk between ethylene and ABA in the control of Cucurbita pepo germination. PHYSIOLOGIA PLANTARUM 2023; 175:e13864. [PMID: 36718078 DOI: 10.1111/ppl.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The enhanced salt tolerance of squash ethylene-insensitive mutants during germination and early stages of seedling development suggested that abscisic acid (ABA) could mediate this tolerance. To gain insight into the crosstalk between ethylene and ABA in seed germination, the germination rate and early seedling growth of wild type (WT) and ethylene-insensitive etr2b mutant were compared in seeds germinated under water and exogenous ABA treatment. The etr2b seeds germinated earlier than WT under both water and ABA, and the effect of ABA on radicle length and seedling growth of etr2b was lower than in WT, indicating that etr2b is also insensitive to ABA. The comparison of ABA and ethylene contents and ABA and ethylene gene expression profiles in WT and etr2b dry and imbibed seeds in either water, NaCl or ABA demonstrated a clear crosstalk between ethylene and ABA in germination. The expression profiles of ethylene genes in WT and etr2b indicated that the role of ethylene in seed germination does not appear to follow the canonical ethylene signaling pathway. Instead, etr2b reduces ABA content during formation of the seeds (dry seeds) and in response to seed imbibition and germination, which means diminished dormancy in the ethylene mutant. The etr2b mutation downregulated the expression of ABA biosynthesis and signaling genes during germination, demonstrating the positive role of ethylene receptor gene CpETR2B on seed germination and early seedling growth in squash is mediated by ABA. The reduced effect of exogenous ABA on ethylene production and ethylene gene expression in etr2b seeds suggests that this regulation is also dependent on ethylene.
Collapse
Affiliation(s)
- Jessica Iglesias-Moya
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - Gustavo Cebrián
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - Dolores Garrido
- Department of Plant Physiology, University of Granada, Granada, Spain
| | - Cecilia Martínez
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Centre CIAMBITAL, University of Almería, Almería, Spain
| |
Collapse
|
2
|
Wang Y, Yan C, Zou B, Wang C, Xu W, Cui C, Qu S. Morphological, Transcriptomic and Hormonal Characterization of Trimonoecious and Subandroecious Pumpkin ( Cucurbita maxima) Suggests Important Roles of Ethylene in Sex Expression. Int J Mol Sci 2019; 20:ijms20133185. [PMID: 31261811 PMCID: PMC6651883 DOI: 10.3390/ijms20133185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Sex expression is a complex process, and in-depth knowledge of its mechanism in pumpkin is important. In this study, young shoot apices at the one-true-leaf stage and 10-leaf stage in Cucurbita maxima trimonoecious line ‘2013–12’ and subandroecious line ‘9–6’ were collected as materials, and transcriptome sequencing was performed using an Illumina HiSeqTM 2000 System. 496 up-regulated genes and 375 down-regulated genes were identified between shoot apices containing mostly male flower buds and only female flower buds. Based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the differentially expressed genes were mainly enriched in the ethylene and auxin synthesis and signal transduction pathways. In addition, shoot apices at the 4-leaf stage were treated with the ethylene-releasing agent 2-chloroethylphosphonic acid (Ethrel), aminoethoxyvinyl glycine (AVG), AgNO3 and indoleacetic acid (IAA). The number of female flowers up to node 20 on the main stem of ‘2013–12’ increased significantly after Ethrel and IAA treatment and decreased significantly after AVG and AgNO3 treatment. The female flowers in ‘9–6’ showed slight changes after treatment with the exogenous chemicals. The expression of key genes in ethylene synthesis and signal transduction (CmaACS7, CmaACO1, CmaETR1 and CmaEIN3) was determined using quantitative RT-PCR, and the expression of these four genes was positively correlated with the number of female flowers in ‘2013–12’. The variations in gene expression, especially that of CmaACS7, after chemical treatment were small in ‘9–6’. From stage 1 (S1) to stage 7 (S7) of flower development, the expression of CmaACS7 in the stamen was much lower than that in the ovary, stigma and style. These transcriptome data and chemical treatment results indicated that IAA might affect pumpkin sex expression by inducing CmaACS7 expression and indirectly affecting ethylene production, and the ethylene synthesis and signal transduction pathways play crucial roles in pumpkin flower sex expression. A possible reason for the differences in sex expression between pumpkin lines ‘2013–12’ and ‘9–6’ was proposed based on the key gene expression. Overall, these transcriptome data and chemical treatment results suggest important roles for ethylene in pumpkin sex expression.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Chundong Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Bingxue Zou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Chaojie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Chongshi Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Li D, Sheng Y, Niu H, Li Z. Gene Interactions Regulating Sex Determination in Cucurbits. FRONTIERS IN PLANT SCIENCE 2019; 10:1231. [PMID: 31649699 PMCID: PMC6796545 DOI: 10.3389/fpls.2019.01231] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/05/2019] [Indexed: 05/13/2023]
Abstract
The family Cucurbitaceae includes many economically important crops, such as cucumber (Cucumis sativus), melon (Cucumis melo), watermelon (Citrullus lanatus), and zucchini (Cucurbita pepo), which share homologous gene pathways that control similar phenotypes. Sex determination is a research hotspot associated with yield and quality, and the genes involved are highly orthologous and conserved in cucurbits. In the field, six normal sex types have been categorized according to the distribution of female, male, or bisexual flowers in a given plant. To date, five orthologous genes involved in sex determination have been cloned, and their various combinations and expression patterns can explain all the identified sex types. In addition to genetic mechanisms, ethylene controls sex expression in this family. Two ethylene signaling components have been identified recently, which will help us to explore the ethylene signaling-mediated interactions among sex-related genes. This review discusses recent advances relating to the mechanism of sex determination in cucurbits and the prospects for research in this area.
Collapse
Affiliation(s)
- Dandan Li
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Yunyan Sheng
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Huanhuan Niu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Manzano S, Megías Z, Martínez C, García A, Aguado E, Chileh T, López-Alonso D, García-Maroto F, Kejnovský E, Široký J, Kubát Z, Králová T, Vyskot B, Jamilena M. Overexpression of a flower-specific aerolysin-like protein from the dioecious plant Rumex acetosa alters flower development and induces male sterility in transgenic tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:58-72. [PMID: 27599169 DOI: 10.1111/tpj.13322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 05/07/2023]
Abstract
Sex determination in Rumex acetosa, a dioecious plant with a complex XY1 Y2 sex chromosome system (females are XX and males are XY1 Y2 ), is not controlled by an active Y chromosome but depends on the ratio between the number of X chromosomes and autosomes. To gain insight into the molecular mechanisms of sex determination, we generated a subtracted cDNA library enriched in genes specifically or predominantly expressed in female floral buds in early stages of development, when sex determination mechanisms come into play. In the present paper, we report the molecular and functional characterization of FEM32, a gene encoding a protein that shares a common architecture with proteins in different plants, animals, bacteria and fungi of the aerolysin superfamily; many of these function as β pore-forming toxins. The expression analysis, assessed by northern blot, RT-PCR and in situ hybridization, demonstrates that this gene is specifically expressed in flowers in both early and late stages of development, although its transcripts accumulate much more in female flowers than in male flowers. The ectopic expression of FEM32 under both the constitutive promoter 35S and the flower-specific promoter AP3 in transgenic tobacco showed no obvious alteration in vegetative development but was able to alter floral organ growth and pollen fertility. The 35S::FEM32 and AP3::FEM32 transgenic lines showed a reduction in stamen development and pollen viability, as well as a diminution in fruit set, fruit development and seed production. Compared with other floral organs, pistil development was, however, enhanced in plants overexpressing FEM32. According to these effects, it is likely that FEM32 functions in Rumex by arresting stamen and pollen development during female flower development. The aerolysin-like pore-forming proteins of eukaryotes are mainly involved in defence mechanisms against bacteria, fungi and insects and are also involved in apoptosis and programmed cell death (PCD), a mechanism that could explain the role of FEM32 in Rumex sex determination.
Collapse
Affiliation(s)
- Susana Manzano
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
| | - Zoraida Megías
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
| | - Cecilia Martínez
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
| | - Alicia García
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
| | - Encarnación Aguado
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
| | - Tarik Chileh
- Grupo de investigación 'Biotecnología de productos naturales', BITAL, CeiA3, Universidad de Almería, 04120, Almería, Spain
| | - Diego López-Alonso
- Grupo de investigación 'Biotecnología de productos naturales', BITAL, CeiA3, Universidad de Almería, 04120, Almería, Spain
| | - Federico García-Maroto
- Grupo de investigación 'Biotecnología de productos naturales', BITAL, CeiA3, Universidad de Almería, 04120, Almería, Spain
| | - Eduard Kejnovský
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jiří Široký
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Zdeněk Kubát
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Tereza Králová
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Manuel Jamilena
- Grupo de investigación 'Genética de hortícolas' (BIO293), Centro de Investigación en Biotencología Agroalimentaria (BITAL), Agrifood Campus of International Excellence (CeiA3), Universidad de Almería, 04120, Almería, Spain
| |
Collapse
|
5
|
Manzano S, Aguado E, Martínez C, Megías Z, García A, Jamilena M. The Ethylene Biosynthesis Gene CitACS4 Regulates Monoecy/Andromonoecy in Watermelon (Citrullus lanatus). PLoS One 2016; 11:e0154362. [PMID: 27149159 PMCID: PMC4858226 DOI: 10.1371/journal.pone.0154362] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022] Open
Abstract
Monoecious and andromonoecious cultivars of watermelon are characterised by the production of male and female flower or male and hermaphrodite flowers, respectively. The segregation analysis in the offspring of crosses between monoecious and andromonoecious lines has demonstrated that this trait is controlled by a single gene pair, being the monoecious allele M semi-dominant to the andromonoecious allele A. The two studied F1 hybrids (MA) had a predominantly monoecious phenotype since both produced not only female flowers, but also bisexual flowers with incomplete stamens, and hermaphrodite flowers with pollen. Given that in other cucurbit species andromonoecy is conferred by mutations in the ethylene biosynthesis genes CmACS7, CsACS2 and CpACS27A we have cloned and characterised CitACS4, the watermelon gene showing the highest similarity with the formers. CitACS4 encoded for a type ACS type III enzyme that is predominantly expressed in pistillate flowers of watermelon. In the andromonoecious line we have detected a missense mutation in a very conserved residue of CitACS4 (C364W) that cosegregates with the andromonoecious phenotype in two independent F2 populations, concomitantly with a reduction in ethylene production in the floral buds that will develop as hermaphrodite flowers. The gene does not however co-segregates with other sex expression traits regulated by ethylene in this species, including pistillate flowering transition and the number of pistillate flowers per plant. These data indicate that CitAC4 is likely to be involved in the biosynthesis of the ethylene required for stamen arrest during the development of female flowers. The C364W mutation would reduce the production of ethylene in pistillate floral buds, promoting the conversion of female into hermaphrodite flowers, and therefore of monoecy into andromonoecy.
Collapse
Affiliation(s)
- Susana Manzano
- Departamento de Biología y Geología, Agrifood Campus of International Excellence (ceiA3) and BITAL, Universidad de Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| | - Encarnación Aguado
- Departamento de Biología y Geología, Agrifood Campus of International Excellence (ceiA3) and BITAL, Universidad de Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| | - Cecilia Martínez
- Departamento de Biología y Geología, Agrifood Campus of International Excellence (ceiA3) and BITAL, Universidad de Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| | - Zoraida Megías
- Departamento de Biología y Geología, Agrifood Campus of International Excellence (ceiA3) and BITAL, Universidad de Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| | - Alicia García
- Departamento de Biología y Geología, Agrifood Campus of International Excellence (ceiA3) and BITAL, Universidad de Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| | - Manuel Jamilena
- Departamento de Biología y Geología, Agrifood Campus of International Excellence (ceiA3) and BITAL, Universidad de Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| |
Collapse
|
6
|
Gangwar M, Sood H, Chauhan RS. Genomics and relative expression analysis identifies key genes associated with high female to male flower ratio in Jatropha curcas L. Mol Biol Rep 2016; 43:305-22. [PMID: 26878857 DOI: 10.1007/s11033-016-3953-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/09/2016] [Indexed: 02/02/2023]
Abstract
Jatropha curcas, has been projected as a major source of biodiesel due to high seed oil content (42 %). A major roadblock for commercialization of Jatropha-based biodiesel is low seed yield per inflorescence, which is affected by low female to male flower ratio (1:25-30). Molecular dissection of female flower development by analyzing genes involved in phase transitions and floral organ development is, therefore, crucial for increasing seed yield. Expression analysis of 42 genes implicated in floral organ development and sex determination was done at six floral developmental stages of a J. curcas genotype (IC561235) with inherently higher female to male flower ratio (1:8-10). Relative expression analysis of these genes was done on low ratio genotype. Genes TFL1, SUP, AP1, CRY2, CUC2, CKX1, TAA1 and PIN1 were associated with reproductive phase transition. Further, genes CUC2, TAA1, CKX1 and PIN1 were associated with female flowering while SUP and CRY2 in female flower transition. Relative expression of these genes with respect to low female flower ratio genotype showed up to ~7 folds increase in transcript abundance of SUP, TAA1, CRY2 and CKX1 genes in intermediate buds but not a significant increase (~1.25 folds) in female flowers, thereby suggesting that these genes possibly play a significant role in increased transition towards female flowering by promoting abortion of male flower primordia. The outcome of study has implications in feedstock improvement of J. curcas through functional validation and eventual utilization of key genes associated with female flowering.
Collapse
Affiliation(s)
- Manali Gangwar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, 173234, Solan, Himachal Pradesh, India
| | - Hemant Sood
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, 173234, Solan, Himachal Pradesh, India
| | - Rajinder Singh Chauhan
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, 173234, Solan, Himachal Pradesh, India.
| |
Collapse
|
7
|
Physical and chemical characterization in fruit from 22 summer squash (Cucurbita pepo L.) cultivars. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Bie B, Sun J, Pan J, He H, Cai R. Ectopic expression of CsCTR1, a cucumber CTR-like gene, attenuates constitutive ethylene signaling in an Arabidopsis ctr1-1 mutant and expression pattern analysis of CsCTR1 in cucumber (Cucumis sativus). Int J Mol Sci 2014; 15:16331-50. [PMID: 25226540 PMCID: PMC4200800 DOI: 10.3390/ijms150916331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/13/2014] [Accepted: 08/25/2014] [Indexed: 12/01/2022] Open
Abstract
The gaseous plant hormone ethylene regulates many aspects of plant growth, development and responses to the environment. Constitutive triple response 1 (CTR1) is a central regulator involved in the ethylene signal transduction pathway. To obtain a better understanding of this particular pathway in cucumber, the cDNA-encoding CTR1 (designated CsCTR1) was isolated from cucumber. A sequence alignment and phylogenetic analyses revealed that CsCTR1 has a high degree of homology with other plant CTR1 proteins. The ectopic expression of CsCTR1 in the Arabidopsis ctr1-1 mutant attenuates constitutive ethylene signaling of this mutant, suggesting that CsCTR1 indeed performs its function as negative regulator of the ethylene signaling pathway. CsCTR1 is constitutively expressed in all of the examined cucumber organs, including roots, stems, leaves, shoot apices, mature male and female flowers, as well as young fruits. CsCTR1 expression gradually declined during male flower development and increased during female flower development. Additionally, our results indicate that CsCTR1 can be induced in the roots, leaves and shoot apices by external ethylene. In conclusion, this study provides a basis for further studies on the role of CTR1 in the biological processes of cucumber and on the molecular mechanism of the cucumber ethylene signaling pathway.
Collapse
Affiliation(s)
- Beibei Bie
- Plant Science Department, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China.
| | - Jin Sun
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China.
| | - Junsong Pan
- Plant Science Department, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China.
| | - Huanle He
- Plant Science Department, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China.
| | - Run Cai
- Plant Science Department, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Martínez C, Manzano S, Megías Z, Barrera A, Boualem A, Garrido D, Bendahmane A, Jamilena M. Molecular and functional characterization of CpACS27A gene reveals its involvement in monoecy instability and other associated traits in squash (Cucurbita pepo L.). PLANTA 2014; 239:1201-15. [PMID: 24595516 DOI: 10.1007/s00425-014-2043-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/05/2014] [Indexed: 05/13/2023]
Abstract
A number of Cucurbita pepo genotypes showing instable monoecy or partial andromonoecy, i.e. an incomplete conversion of female into bisexual flowers, have been detected. Given that in melon and cucumber andromonoecy is the result of reduction of ethylene production in female floral buds, caused by mutations in the ethylene biosynthesis genes CmACS7 and CsACS2; we have cloned and characterized two related C. pepo genes, CpACS27A and CpACS27B. The molecular structure of CpACS27A and its specific expression in the carpels of female flowers during earlier stages of flower development suggests that this gene is the Cucurbita ortholog of CmACS7 and CsACS2. CpACS27B is likely to be a paralogous pseudogene since it has not been found to be expressed in any of the analyzed tissues. CpACS27A was sequenced in Bolognese (Bog) and Vegetable Spaghetti (Veg), two monoecious inbred lines whose F2 was segregating for partial andromonoecy. The Bog allele of CpACS27A carried a missense mutation that resulted in a substitution of the conserved serine residue in position 176 by an alanine. Segregation analysis indicated that this mutant variant is necessary but not sufficient to confer the andromonoecious phenotype in squash. In concordance with its involvement in stamen arrest, a reduction in CpACS27A expression has been found in bisexual flower buds at earlier stages of development. This reduction in CpACS27A expression was concomitant with a downregulation of other ethylene biosynthesis and signaling genes during earlier and later stages of ovary development. The role of CpACS27A is discussed regarding the regulation of ethylene biosynthesis and signaling genes in the control of andromonoecy-associated traits, such as the delayed maturation of corolla and stigma as well as the parthenocarpic development of the fruit.
Collapse
Affiliation(s)
- Cecilia Martínez
- Departamento de Biología y Geología, Agrifood Campus of International Excellence (ceiA3), Universidad de Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Molecular cloning, characterizing, and expression analysis of CTR1 genes in harvested papaya fruit. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2131-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Martínez C, Manzano S, Megías Z, Garrido D, Picó B, Jamilena M. Involvement of ethylene biosynthesis and signalling in fruit set and early fruit development in zucchini squash (Cucurbita pepo L.). BMC PLANT BIOLOGY 2013; 13:139. [PMID: 24053311 PMCID: PMC3856489 DOI: 10.1186/1471-2229-13-139] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/17/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND We have identified a kind of parthenocarpy in zucchini squash which is associated with an incomplete andromonoecy, i.e. a partial conversion of female into bisexual flowers. Given that andromonoecy in this and other cucurbit species is caused by a reduction of ethylene production in the female flower, the associated parthenocarpic development of the fruit suggested the involvement of ethylene in fruit set and early fruit development. RESULTS We have compared the production of ethylene as well as the expression of 13 ethylene biosynthesis and signalling genes in pollinated and unpollinated ovaries/fruits of two cultivars, one of which is parthenocarpic (Cavili), while the other is non-parthenocarpic (Tosca). In the latter, unpollinated ovaries show an induction of ethylene biosynthesis and ethylene signal transduction pathway genes three days after anthesis, which is concomitant with the initiation of fruit abortion and senescence. Fruit set and early fruit development in pollinated flowers of both cultivars and unpollinated flowers of Cavili is coupled with low ethylene biosynthesis and signalling, which would also explain the partial andromonoecy in the parthenocarpic genotype. The reduction of ethylene production in the ovary cosegregates with parthenocarpy and partial andromonoecy in the selfing progeny of Cavili. Moreover, the induction of ethylene in anthesis (by ethephon treatments) reduced the percentage of bisexual parthenocarpic flowers in Cavili, while the inhibition of ethylene biosynthesis or response (by AVG and STS treatments) induces not only andromonoecy but also the parthenocarpic development of the fruit in both cultivars. CONCLUSIONS Results demonstrate that a reduction of ethylene production or signalling in the zucchini flower is able to induce fruit set and early fruit development, and therefore that ethylene is actively involved in fruit set and early fruit development. Auxin and TIBA treatments, inducing fruit set and early fruit development in this species, also inhibit ethylene production and the expression of ethylene biosynthesis and response genes. A model is presented that discusses the crosstalk between ethylene and auxin in the control of fruit set and early fruit development in zucchini squash.
Collapse
Affiliation(s)
- Cecilia Martínez
- Departamento de Biología y Geología, Agrifood Campus of International Excellence (ceiA3), Universidad de Almería, La Cañada de San Urbano s/n, 04120 Almería, Spain
| | - Susana Manzano
- Departamento de Biología y Geología, Agrifood Campus of International Excellence (ceiA3), Universidad de Almería, La Cañada de San Urbano s/n, 04120 Almería, Spain
| | - Zoraida Megías
- Departamento de Biología y Geología, Agrifood Campus of International Excellence (ceiA3), Universidad de Almería, La Cañada de San Urbano s/n, 04120 Almería, Spain
| | - Dolores Garrido
- Departamento de Fisiología Vegetal, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Belén Picó
- Departamento de Biotecnología, Universidad Politécnica de Valencia, Valencia, Spain
| | - Manuel Jamilena
- Departamento de Biología y Geología, Agrifood Campus of International Excellence (ceiA3), Universidad de Almería, La Cañada de San Urbano s/n, 04120 Almería, Spain
| |
Collapse
|
12
|
Agarwal G, Choudhary D, Singh VP, Arora A. Role of ethylene receptors during senescence and ripening in horticultural crops. PLANT SIGNALING & BEHAVIOR 2012; 7:827-46. [PMID: 22751331 PMCID: PMC3583974 DOI: 10.4161/psb.20321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity.
Collapse
Affiliation(s)
| | | | - Virendra P. Singh
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| |
Collapse
|
13
|
Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics 2011; 12:104. [PMID: 21310031 PMCID: PMC3049757 DOI: 10.1186/1471-2164-12-104] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/10/2011] [Indexed: 11/25/2022] Open
Abstract
Background Cucurbita pepo belongs to the Cucurbitaceae family. The "Zucchini" types rank among the highest-valued vegetables worldwide, and other C. pepo and related Cucurbita spp., are food staples and rich sources of fat and vitamins. A broad range of genomic tools are today available for other cucurbits that have become models for the study of different metabolic processes. However, these tools are still lacking in the Cucurbita genus, thus limiting gene discovery and the process of breeding. Results We report the generation of a total of 512,751 C. pepo EST sequences, using 454 GS FLX Titanium technology. ESTs were obtained from normalized cDNA libraries (root, leaves, and flower tissue) prepared using two varieties with contrasting phenotypes for plant, flowering and fruit traits, representing the two C. pepo subspecies: subsp. pepo cv. Zucchini and subsp. ovifera cv Scallop. De novo assembling was performed to generate a collection of 49,610 Cucurbita unigenes (average length of 626 bp) that represent the first transcriptome of the species. Over 60% of the unigenes were functionally annotated and assigned to one or more Gene Ontology terms. The distributions of Cucurbita unigenes followed similar tendencies than that reported for Arabidopsis or melon, suggesting that the dataset may represent the whole Cucurbita transcriptome. About 34% unigenes were detected to have known orthologs of Arabidopsis or melon, including genes potentially involved in disease resistance, flowering and fruit quality. Furthermore, a set of 1,882 unigenes with SSR motifs and 9,043 high confidence SNPs between Zucchini and Scallop were identified, of which 3,538 SNPs met criteria for use with high throughput genotyping platforms, and 144 could be detected as CAPS. A set of markers were validated, being 80% of them polymorphic in a set of variable C. pepo and C. moschata accessions. Conclusion We present the first broad survey of gene sequences and allelic variation in C. pepo, where limited prior genomic information existed. The transcriptome provides an invaluable new tool for biological research. The developed molecular markers are the basis for future genetic linkage and quantitative trait loci analysis, and will be essential to speed up the process of breeding new and better adapted squash varieties.
Collapse
Affiliation(s)
- José Blanca
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universidad Politécnica de Valencia (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|