1
|
Gray J, Kahl O, Zintl A. Pathogens transmitted by Ixodes ricinus. Ticks Tick Borne Dis 2024; 15:102402. [PMID: 39368217 DOI: 10.1016/j.ttbdis.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Ixodes ricinus is the most important tick vector in central and western Europe and one of the most researched parasites. However, in the published literature on the tick and the pathogens it transmits, conjecture about specific transmission cycles and the clinical significance of certain microbes is not always clearly separated from confirmed facts. This article aims to present up-to-date, evidence-based information about the well-researched human pathogens tick-borne encephalitis virus, louping-ill virus, Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato and several Babesia species, with a focus on their development in the tick, transmission dynamics and the reservoir hosts that support their circulation in the environment. Borrelia miyamotoi, Neoehrlichia mikurensis, Rickettsia helvetica and Rickettsia monacensis, which are much less common causes of disease but may affect immunocompromised patients, are also briefly discussed. Finally, the possible role of I. ricinus in the transmission of Coxiella burnetii, Francisella tularensis, Bartonella spp. and Spiroplasma ixodetis is reviewed.
Collapse
Affiliation(s)
- Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Annetta Zintl
- UCD School of Veterinary Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Sonnberger BW, Wortha LN, Rackl D, Obwaller AG, Joachim A, Fuehrer HP. Vector Surveillance and Pathogen Detection in the Working Areas of Military Working Dogs in Eastern Austria. Pathogens 2022; 11:pathogens11050506. [PMID: 35631026 PMCID: PMC9143989 DOI: 10.3390/pathogens11050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/27/2022] Open
Abstract
Vector-borne diseases play a major role in human and veterinary medicine worldwide. A previous study detected asymptomatic vector-borne pathogens in military working dogs stationed at a military base in eastern Austria, and a follow-up survey of potential arthropod vectors was conducted in spring 2019 and 2020 in the vicinity of the base to evaluate the presence of vectors and their carrier status for a range of canine and zoonotic pathogens. A total of 1324 ticks (nymphs and adults of Ixodes ricinus, comprising 92.9% of the collected specimens, and adults of Haemaphysalis inermis, a tick previously only rarely described in Austria, Haemaphysalis concinna, and Dermacentor reticulatus) were collected by flagging. In 44.1% (125/284) of all pools (n = 284), one infectious agent was found; in 27.8% (79/284) and in 1.1% (3/284), two and three different agents, respectively, could be identified. Overall, 72.9% of the pools contained at least one pathogen (Borrelia spp., Rickettsia spp., Bartonella spp., and Babesia microti). Borrelia mijamotoi, B. lustinaniae, and B. microti were previously only described in single cases in Austria. Mosquitoes were collected with BG-Sentinel traps monthly during the summer of 2019. A total of 71 individuals from 11 species were collected. No filarioid DNA was detected in the mosquito sample pools, although Dirofilaria repens had been present in the dogs from the military site. In conclusion, vector surveillance should be combined with the surveillance of an exposed population whenever possible to estimate the infection risks for dogs and their handlers.
Collapse
Affiliation(s)
- Bernhard W. Sonnberger
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine, 1210 Vienna, Austria; (B.W.S.); (L.N.W.); (A.J.)
- Office of the State Government of Upper Austria, Department of Food Security and Veterinary Affairs, Directorate Social Affairs and Health, 4021 Linz, Austria
| | - Licha N. Wortha
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine, 1210 Vienna, Austria; (B.W.S.); (L.N.W.); (A.J.)
| | - Dietmar Rackl
- Veterinary Service, Joint Support Command, Federal Ministry of Defense, 1120 Vienna, Austria;
| | - Adelheid G. Obwaller
- Research and Development, Division of Science, Federal Ministry of Defense, 1090 Vienna, Austria;
| | - Anja Joachim
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine, 1210 Vienna, Austria; (B.W.S.); (L.N.W.); (A.J.)
| | - Hans-Peter Fuehrer
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine, 1210 Vienna, Austria; (B.W.S.); (L.N.W.); (A.J.)
- Correspondence:
| |
Collapse
|
3
|
Kukla R, Kračmarová R, Ryšková L, Bavlovič J, Pellantová V, Bolehovská R, Fajfr M, Pavlík I, Boštík P. Francisella tularensis caused cervical lymphadenopathy in little children after a tick bite: Two case reports and a short literature review. Ticks Tick Borne Dis 2021; 13:101893. [PMID: 34990926 DOI: 10.1016/j.ttbdis.2021.101893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Although Francisella (F.) tularensis is a well-described and understood zoonotic pathogen, its importance in Central Europe is relatively minor and, as such, tularaemia may be missed in the differential diagnosis. The annual incidence of tularaemia in the Czech Republic is relatively stable with up to 100 reported cases per year, except in the epidemic years 1998 and 1999 with 225 and 222 reported cases, respectively. It is, however, higher in comparison with the neighbouring countries. The common route of transmission in Central Europe is handling infected animals. Tularaemia is not commonly recognized as a tick-borne disease. Here we report two rare cases of a tick bite-associated ulceroglandular form of tularaemia in 2.5-year-old and 6.5-year-old children presenting with cervical lymphadenopathy. The unusual and interesting features of those cases are the young age and relatively uncommon route of transmission suggesting possible changes in the epidemiology of tularaemia in the Czech Republic. Therefore, the infection with F. tularensis should be considered in the differential diagnosis after a tick bite even in infants.
Collapse
Affiliation(s)
- Rudolf Kukla
- Institute of Clinical Microbiology, University Hospital and Charles University, Faculty of Medicine in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Renata Kračmarová
- Clinic of Infectious Diseases, University Hospital, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Lenka Ryšková
- Institute of Clinical Microbiology, University Hospital and Charles University, Faculty of Medicine in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Jan Bavlovič
- Institute of Clinical Microbiology, University Hospital and Charles University, Faculty of Medicine in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic; Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebešská 1575, 50001 Hradec Králové, Czech Republic
| | - Věra Pellantová
- Clinic of Infectious Diseases, University Hospital, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Radka Bolehovská
- Institute of Clinical Microbiology, University Hospital and Charles University, Faculty of Medicine in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Miroslav Fajfr
- Institute of Clinical Microbiology, University Hospital and Charles University, Faculty of Medicine in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Ivo Pavlík
- Faculty of Regional Development and International Studies, Mendel University in Brno, tr. Generála Píky 7, 61300, Brno, Czech Republic
| | - Pavel Boštík
- Institute of Clinical Microbiology, University Hospital and Charles University, Faculty of Medicine in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic.
| |
Collapse
|
4
|
Hrnková J, Schneiderová I, Golovchenko M, Grubhoffer L, Rudenko N, Černý J. Role of Zoo-Housed Animals in the Ecology of Ticks and Tick-Borne Pathogens-A Review. Pathogens 2021; 10:210. [PMID: 33669161 PMCID: PMC7919684 DOI: 10.3390/pathogens10020210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Ticks are ubiquitous ectoparasites, feeding on representatives of all classes of terrestrial vertebrates and transmitting numerous pathogens of high human and veterinary medical importance. Exotic animals kept in zoological gardens, ranches, wildlife parks or farms may play an important role in the ecology of ticks and tick-borne pathogens (TBPs), as they may serve as hosts for local tick species. Moreover, they can develop diseases of varying severity after being infected by TBPs, and theoretically, can thus serve as reservoirs, thereby further propagating TBPs in local ecosystems. The definite role of these animals in the tick-host-pathogen network remains poorly investigated. This review provides a summary of the information currently available regarding ticks and TBPs in connection to captive local and exotic wildlife, with an emphasis on zoo-housed species.
Collapse
Affiliation(s)
- Johana Hrnková
- Centre for Infectious Animal Diseases and Zoonoses, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
| | - Irena Schneiderová
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 2 128 00 Prague, Czech Republic
| | - Marina Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
- Faculty of Sciences, University of South Bohemia, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Natalie Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
| | - Jiří Černý
- Centre for Infectious Animal Diseases and Zoonoses, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
| |
Collapse
|
5
|
Haut M, Król N, Obiegala A, Seeger J, Pfeffer M. Under the skin: Ixodes ticks in the subcutaneous tissue of red foxes (Vulpes vulpes) from Germany. Parasit Vectors 2020; 13:189. [PMID: 32312296 PMCID: PMC7171784 DOI: 10.1186/s13071-020-04061-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/01/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Ixodes spp. are vectors of zoonotic pathogens. All three active life stages (larvae, nymphs, adults) need to feed on a host in order to develop. Usually ticks parasitize attached to the external surface of their hosts' skin. Interestingly, in some cases ticks can also be found in the subcutaneous tissue in a variety of hosts, such as red foxes (Vulpes vulpes), raccoon dogs (Nyctereutes procyonoides) and dogs. METHODS The visceral side of 126 red fox-furs from Germany was examined visually searching for ticks. The localization of ticks was recorded and assigned to ten specific body parts. Morphological identification of ticks was performed according to standardized taxonomic protocols. Ticks which could not be further identified were examined genetically via conventional PCR targeting the 16S rRNA and cox1 gene. Hematoxylin and eosin (H&E) staining was used for histopathological examination. RESULTS In 111 out of 126 (88.1%) examined coats, at least one tick was found in the subcutaneous tissue. A total of 1203 ticks were removed from the subcutaneous tissue. Well-preserved ticks could be identified based on morphological criteria, but most ticks were in a progressed state of decomposition. Here, morphological species identification was not successful. Also, PCR methods did not lead to a successful species identification. The following species and development stages were found by morphological identification: Ixodes ricinus (female, n = 289; male, n = 8; nymph, n = 1), I. hexagonus (female, n = 2), I. canisuga (female, n = 1). Male I. ricinus were found individually or copulating in pairs with females. Subcutaneous ticks were localized at three predominant affected body parts: ears, axillar and inguinal region. Histological examination of subcutaneous ticks revealed a granulomatous panniculitis. CONCLUSIONS To the authors' knowledge, this is the first finding of highly prevalent subcutaneous ticks in red foxes from Germany. Subcutaneous location of ticks seems to be very common in red foxes and the rule rather than the exception. Deep embedment of longirostra and long feeding times of females seem to put the subcutaneous location in favor. Most foxes were infested in the inguinal area, where the skin is thin and less hairy.
Collapse
Affiliation(s)
- Maja Haut
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Johannes Seeger
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Krawczyk AI, van Duijvendijk GLA, Swart A, Heylen D, Jaarsma RI, Jacobs FHH, Fonville M, Sprong H, Takken W. Effect of rodent density on tick and tick-borne pathogen populations: consequences for infectious disease risk. Parasit Vectors 2020; 13:34. [PMID: 31959217 PMCID: PMC6971888 DOI: 10.1186/s13071-020-3902-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rodents are considered to contribute strongly to the risk of tick-borne diseases by feeding Ixodes ricinus larvae and by acting as amplifying hosts for pathogens. Here, we tested to what extent these two processes depend on rodent density, and for which pathogen species rodents synergistically contribute to the local disease risk, i.e. the density of infected nymphs (DIN). METHODS In a natural woodland, we manipulated rodent densities in plots of 2500 m2 by either supplementing a critical food source (acorns) or by removing rodents during two years. Untreated plots were used as controls. Collected nymphs and rodent ear biopsies were tested for the presence of seven tick-borne microorganisms. Linear models were used to capture associations between rodents, nymphs, and pathogens. RESULTS Investigation of data from all plots, irrespective of the treatment, revealed a strong positive association between rodent density and nymphal density, nymphal infection prevalence (NIP) with Borrelia afzelii and Neoehrlichia mikurensis, and hence DIN's of these pathogens in the following year. The NIP, but not the DIN, of the bird-associated Borrelia garinii, decreased with increasing rodent density. The NIPs of Borrelia miyamotoi and Rickettsia helvetica were independent of rodent density, and increasing rodent density moderately increased the DINs. In addition, NIPs of Babesia microti and Spiroplasma ixodetis decreased with increasing rodent density, which had a non-linear association with DINs of these microorganisms. CONCLUSIONS A positive density dependence for all rodent- and tick-associated tick-borne pathogens was found, despite the observation that some of them decreased in prevalence. The effects on the DINs were variable among microorganisms, more than likely due to contrasts in their biology (including transmission modes, host specificity and transmission efficiency). The strongest associations were found in rodent-associated pathogens that most heavily rely on horizontal transmission. Our results draw attention to the importance of considering transmission mode of a pathogen while developing preventative measures to successfully reduce the burden of disease.
Collapse
Affiliation(s)
- Aleksandra I Krawczyk
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands. .,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands.
| | | | - Arno Swart
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Dieter Heylen
- Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium.,Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Ln, Princeton, NJ, 08544, USA
| | - Ryanne I Jaarsma
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Frans H H Jacobs
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Manoj Fonville
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands.
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
7
|
Wang Y, Mao L, Sun Y, Wang Z, Zhang J, Zhang J, Peng Y, Xia L. A Novel Francisella-Like Endosymbiont in Haemaphysalis longicornis and Hyalomma asiaticum, China. Vector Borne Zoonotic Dis 2018; 18:669-676. [PMID: 30106668 DOI: 10.1089/vbz.2017.2252] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis causes a highly infectious zoonotic disease tularemia. Both Haemaphysalis longicornis and Hyalomma asiaticum are widely distributed in China, but the presence of Francisella and Francisella-like endosymbionts (FLEs) in the two tick species is poorly understood. Therefore, a total of 627 H. longicornis (471 adults and 156 nymphs) and 88 Hy. asiaticum ticks (adults) were collected, of which 88 were from Bole of Xinjiang, 236 from Liaoyang, and 176 from Shenyang of Liaoning, and 215 from Wuhan of Hubei. Notably, five H. longicornis pools from Liaoyang of Liaoning province might have harbored F. tularensis, showing a minimum prevalence of 2.12% (5/236). This study should alert the health department and veterinarians working within the region to prevent and control the emergence of tularemia. After the screening of 16S rRNA and tul4 genes, the results revealed that FLEs were detected in Hy. asiaticum ticks in Bole and in H. longicornis ticks in Liaoyang and Shenyang. Their infection rate was 100% (88/88), 3.39% (8/236 is a minimum), and 8.52% (15/176), respectively. Phylogenetic analyses indicated that the sequence named bole in Hy. Asiaticum from Bole, the sequence named liaoyang1 in H. longicornis from Liaoyang, and the sequence named shanyang1 in H. longicornis from Shenyang shared consistent 16S rRNA sequence, and the difference between Chinese FLEs and the known FLEs was obvious. These findings suggest that this FLE species might be a potentially novel FLE circulating in H. longicornis and Hy. asiaticum from China.
Collapse
Affiliation(s)
- Yanhua Wang
- 1 Department of Plague, National Institute for Communicable Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lingling Mao
- 2 Institute for the Prevention and Control of Infections and Infectious Diseases , Liaoning Center for Disease Control and Prevention, Shenyang, China
| | - Yingwei Sun
- 2 Institute for the Prevention and Control of Infections and Infectious Diseases , Liaoning Center for Disease Control and Prevention, Shenyang, China
| | - Zijiang Wang
- 2 Institute for the Prevention and Control of Infections and Infectious Diseases , Liaoning Center for Disease Control and Prevention, Shenyang, China
| | - Jiayong Zhang
- 3 Vector Biological Control Institute , Liaoning Center for Disease Control and Prevention, Shenyang, China
| | - Jibo Zhang
- 3 Vector Biological Control Institute , Liaoning Center for Disease Control and Prevention, Shenyang, China
| | - Yao Peng
- 1 Department of Plague, National Institute for Communicable Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lianxu Xia
- 1 Department of Plague, National Institute for Communicable Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
|
9
|
Susceptibility to Ticks and Lyme Disease Spirochetes Is Not Affected in Mice Coinfected with Nematodes. Infect Immun 2016; 84:1274-1286. [PMID: 26883594 PMCID: PMC4862734 DOI: 10.1128/iai.01309-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/26/2016] [Indexed: 01/16/2023] Open
Abstract
Small rodents serve as reservoir hosts for tick-borne pathogens, such as the spirochetes causing Lyme disease. Whether natural coinfections with other macroparasites alter the success of tick feeding, antitick immunity, and the host's reservoir competence for tick-borne pathogens remains to be determined. In a parasitological survey of wild mice in Berlin, Germany, approximately 40% of Ixodes ricinus-infested animals simultaneously harbored a nematode of the genus Heligmosomoides. We therefore aimed to analyze the immunological impact of the nematode/tick coinfection as well as its effect on the tick-borne pathogen Borrelia afzelii. Hosts experimentally coinfected with Heligmosomoides polygyrus and larval/nymphal I. ricinus ticks developed substantially stronger systemic type 2 T helper cell (Th2) responses, on the basis of the levels of GATA-3 and interleukin-13 expression, than mice infected with a single pathogen. During repeated larval infestations, however, anti-tick Th2 reactivity and an observed partial immunity to tick feeding were unaffected by concurrent nematode infections. Importantly, the strong systemic Th2 immune response in coinfected mice did not affect susceptibility to tick-borne B. afzelii. An observed trend for decreased local and systemic Th1 reactivity against B. afzelii in coinfected mice did not result in a higher spirochete burden, nor did it facilitate bacterial dissemination or induce signs of immunopathology. Hence, this study indicates that strong systemic Th2 responses in nematode/tick-coinfected house mice do not affect the success of tick feeding and the control of the causative agent of Lyme disease.
Collapse
|
10
|
Dugat T, Lagrée AC, Maillard R, Boulouis HJ, Haddad N. Opening the black box of Anaplasma phagocytophilum diversity: current situation and future perspectives. Front Cell Infect Microbiol 2015; 5:61. [PMID: 26322277 PMCID: PMC4536383 DOI: 10.3389/fcimb.2015.00061] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/31/2015] [Indexed: 01/28/2023] Open
Abstract
Anaplasma phagocytophilum is a zoonotic obligate intracellular bacterium known to be transmitted by ticks belonging to the Ixodes persulcatus complex. This bacterium can infect several mammalian species, and is known to cause diseases with variable symptoms in many domestic animals. Specifically, it is the causative agent of tick-borne fever (TBF), a disease of important economic impact in European domestic ruminants, and human granulocytic anaplasmosis (HGA), an emerging zoonotic disease in Asia, USA and Europe. A. phagocytophilum epidemiological cycles are complex and involve different ecotypes, vectors, and mammalian host species. Moreover, the epidemiology of A. phagocytophilum infection differs greatly between Europe and the USA. These different epidemiological contexts are associated with considerable variations in bacterial strains. Until recently, few A. phagocytophilum molecular typing tools were available, generating difficulties in completely elucidating the epidemiological cycles of this bacterium. Over the last few years, many A. phagocytophilum typing techniques have been developed, permitting in-depth epidemiological exploration. Here, we review the current knowledge and future perspectives regarding A. phagocytophilum epidemiology and phylogeny, and then focus on the molecular typing tools available for studying A. phagocytophilum genetic diversity.
Collapse
Affiliation(s)
- Thibaud Dugat
- Laboratoire de Santé Animale, UMR Biologie Moléculaire et Immunologie Parasitaires, Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail, Université Paris-Est Paris, France
| | - Anne-Claire Lagrée
- UMR Biologie Moléculaire et Immunologie Parasitaires, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Paris, France
| | - Renaud Maillard
- UMR Biologie Moléculaire et Immunologie Parasitaires, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Paris, France ; Unité Pathologie des Ruminants, Ecole Nationale Vétérinaire de Toulouse Toulouse, France
| | - Henri-Jean Boulouis
- UMR Biologie Moléculaire et Immunologie Parasitaires, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Paris, France
| | - Nadia Haddad
- UMR Biologie Moléculaire et Immunologie Parasitaires, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Paris, France
| |
Collapse
|
11
|
Ferreri L, Giacobini M, Bajardi P, Bertolotti L, Bolzoni L, Tagliapietra V, Rizzoli A, Rosà R. Pattern of tick aggregation on mice: larger than expected distribution tail enhances the spread of tick-borne pathogens. PLoS Comput Biol 2014; 10:e1003931. [PMID: 25393293 PMCID: PMC4230730 DOI: 10.1371/journal.pcbi.1003931] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 09/23/2014] [Indexed: 12/30/2022] Open
Abstract
The spread of tick-borne pathogens represents an important threat to human and animal health in many parts of Eurasia. Here, we analysed a 9-year time series of Ixodes ricinus ticks feeding on Apodemus flavicollis mice (main reservoir-competent host for tick-borne encephalitis, TBE) sampled in Trentino (Northern Italy). The tail of the distribution of the number of ticks per host was fitted by three theoretical distributions: Negative Binomial (NB), Poisson-LogNormal (PoiLN), and Power-Law (PL). The fit with theoretical distributions indicated that the tail of the tick infestation pattern on mice is better described by the PL distribution. Moreover, we found that the tail of the distribution significantly changes with seasonal variations in host abundance. In order to investigate the effect of different tails of tick distribution on the invasion of a non-systemically transmitted pathogen, we simulated the transmission of a TBE-like virus between susceptible and infective ticks using a stochastic model. Model simulations indicated different outcomes of disease spreading when considering different distribution laws of ticks among hosts. Specifically, we found that the epidemic threshold and the prevalence equilibria obtained in epidemiological simulations with PL distribution are a good approximation of those observed in simulations feed by the empirical distribution. Moreover, we also found that the epidemic threshold for disease invasion was lower when considering the seasonal variation of tick aggregation. Our work analyses a 9-year time series of tick co-feeding patterns on Yellow-necked mice. Our data shows a strong heterogeneity, where most mice are parasitised by a small number of ticks while few host a much larger number. We describe the number of ticks per host by the commonly used Negative Binomial model, by the Poisson-LogNormal model, and we propose the Power Law model as an alternative. In our data, the last model seems to better describe the strong heterogeneity. In order to understand the epidemiological consequences, we use a computational model to reproduce a peculiar way of transmission, observed in some cases in nature, where uninfected ticks acquire an infection by feeding on a host where infected ticks are present, without any remarkable epidemiological involvement of the host itself. In particular, we are interested in determining the conditions leading to pathogen spread. We observe that the effective transmission of this infection in nature is highly dependent on the capability of the implemented model to describe the tick burden. In addition, we also consider seasonal changes in tick aggregation on mice, showing its influence on the spread of the infection.
Collapse
Affiliation(s)
- Luca Ferreri
- Computational Epidemiology Group, Department of Veterinary Sciences, University of Torino, Torino, Italy
- Applied Research on Computational Complex Systems Group, Department of Computer Science, University of Torino, Torino, Italy
- * E-mail:
| | - Mario Giacobini
- Computational Epidemiology Group, Department of Veterinary Sciences, University of Torino, Torino, Italy
- Applied Research on Computational Complex Systems Group, Department of Computer Science, University of Torino, Torino, Italy
- Complex Systems Unit, Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Paolo Bajardi
- Computational Epidemiology Group, Department of Veterinary Sciences, University of Torino, Torino, Italy
- Applied Research on Computational Complex Systems Group, Department of Computer Science, University of Torino, Torino, Italy
| | - Luigi Bertolotti
- Computational Epidemiology Group, Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Luca Bolzoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Parma, Italy
- Dipartimento Biodiversità ed Ecologia Molecolare, Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Valentina Tagliapietra
- Dipartimento Biodiversità ed Ecologia Molecolare, Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Annapaola Rizzoli
- Dipartimento Biodiversità ed Ecologia Molecolare, Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Roberto Rosà
- Dipartimento Biodiversità ed Ecologia Molecolare, Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
12
|
Tappe J, Jordan D, Janecek E, Fingerle V, Strube C. Revisited: Borrelia burgdorferi sensu lato infections in hard ticks (Ixodes ricinus) in the city of Hanover (Germany). Parasit Vectors 2014; 7:441. [PMID: 25233844 PMCID: PMC4262061 DOI: 10.1186/1756-3305-7-441] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/25/2014] [Indexed: 11/14/2022] Open
Abstract
Background The present study investigated the prevalence of Borrelia burgdorferi sensu lato (s.l.) genospecies in Ixodes ricinus ticks collected in Hanover, Northern Germany, in 2010. At the same time the study served as fifth-year-follow-up study for data comparison with 2005. Methods A total of 2100 questing ticks were collected and analysed by quantitative real-time PCR (qPCR) with subsequent species differentiation via Reverse Line Blot and Sanger sequencing. Simultaneously, results obtained in 2010 were compared to infection rates from 2005 to evaluate the development of B. burgdorferi s.l. infection rates in Hanoverian ticks. Results Overall, 22.7% (476/2,100) of collected ticks were tested positive for B. burgdorferi s.l. infections. Adult ticks showed an infection rate of 33.3% (124/372), subdivided into 29.6% (58/196) positive males and 37.5% (66/176) positive females. Nymph and larvae infection rates were found to be 20.3% (344/1,697) and 25.8% (8/31), respectively. Species identification was successful for 59.2% (282/476) of positive ticks with B. afzelii as the most frequently detected genospecies, followed by B. garinii (including B. bavariensis) and B. spielmanii. B. burgdorferi sensu stricto (s.s.), B. bissettii, B. valaisiana and B. lusitaniae were also identified. Significant differences concerning seasonal fluctuations as well as local differences were observed. Comparing infection rates of Hanoverian ticks between years, a significant increase (P = 0.002) could be observed for larvae with 1.7% positives (2/60) in 2005 and 25.8% positives (8/31) in 2010. In the latter year, coinfections with Borrelia and Rickettsiales were detected in a total of 7.8% (163/2,100) of collected ticks. Of these, 7.3% (153/2,100) were coinfected with Rickettsia spp., 0.3% (7/2,100) with A. phagocytophilum and 0.1% (3/2,100) were coinfected with all three pathogens. Between years 2005 and 2010, no statistically significant differences in coinfection rates were found. Conclusions Comparing B. burgdorferi s.l. infections in Hanoverian I. ricinus ticks in 2010 with data from 2005, a statistically significant increase of infected larvae was noted, whereas the other stages revealed no statistically significant differences. Whether the increased larvae infection rate is an isolated event or results from factual circumstances, e.g. increasing effectiveness of transovarial transmission due to unknown factors, has to be evaluated in further studies.
Collapse
Affiliation(s)
| | | | | | | | - Christina Strube
- Institute for Parasitology, University of Veterinary Medicine, Buenteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
13
|
Schwarz A, Tenzer S, Hackenberg M, Erhart J, Gerhold-Ay A, Mazur J, Kuharev J, Ribeiro JMC, Kotsyfakis M. A systems level analysis reveals transcriptomic and proteomic complexity in Ixodes ricinus midgut and salivary glands during early attachment and feeding. Mol Cell Proteomics 2014; 13:2725-35. [PMID: 25048707 DOI: 10.1074/mcp.m114.039289] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although pathogens are usually transmitted within the first 24-48 h of attachment of the castor bean tick Ixodes ricinus, little is known about the tick's biological responses at these earliest phases of attachment. Tick midgut and salivary glands are the main tissues involved in tick blood feeding and pathogen transmission but the limited genomic information for I. ricinus delays the application of high-throughput methods to study their physiology. We took advantage of the latest advances in the fields of Next Generation RNA-Sequencing and Label-free Quantitative Proteomics to deliver an unprecedented, quantitative description of the gene expression dynamics in the midgut and salivary glands of this disease vector upon attachment to the vertebrate host. A total of 373 of 1510 identified proteins had higher expression in the salivary glands, but only 110 had correspondingly high transcript levels in the same tissue. Furthermore, there was midgut-specific expression of 217 genes at both the transcriptome and proteome level. Tissue-dependent transcript, but not protein, accumulation was revealed for 552 of 885 genes. Moreover, we discovered the enrichment of tick salivary glands in proteins involved in gene transcription and translation, which agrees with the secretory role of this tissue; this finding also agrees with our finding of lower tick t-RNA representation in the salivary glands when compared with the midgut. The midgut, in turn, is enriched in metabolic components and proteins that support its mechanical integrity in order to accommodate and metabolize the ingested blood. Beyond understanding the physiological events that support hematophagy by arthropod ectoparasites, we discovered more than 1500 proteins located at the interface between ticks, the vertebrate host, and the tick-borne pathogens. Thus, our work significantly improves the knowledge of the genetics underlying the transmission lifecycle of this tick species, which is an essential step for developing alternative methods to better control tick-borne diseases.
Collapse
Affiliation(s)
- Alexandra Schwarz
- From the ‡Biology Center, Academy of Sciences of Czech Republic, Budweis, 37005, Czech Republic
| | - Stefan Tenzer
- §Institute for Immunology, University Medical Center of the Johannes Gutenberg-Universität Mainz, Mainz, 55131, Germany
| | - Michael Hackenberg
- ¶Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, Granada, 18071, Spain
| | - Jan Erhart
- From the ‡Biology Center, Academy of Sciences of Czech Republic, Budweis, 37005, Czech Republic
| | - Aslihan Gerhold-Ay
- ‖Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-Universität Mainz, Mainz, 55131, Germany
| | - Johanna Mazur
- ‖Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-Universität Mainz, Mainz, 55131, Germany
| | - Jörg Kuharev
- §Institute for Immunology, University Medical Center of the Johannes Gutenberg-Universität Mainz, Mainz, 55131, Germany
| | - José M C Ribeiro
- From the ‡Biology Center, Academy of Sciences of Czech Republic, Budweis, 37005, Czech Republic
| | - Michail Kotsyfakis
- From the ‡Biology Center, Academy of Sciences of Czech Republic, Budweis, 37005, Czech Republic;
| |
Collapse
|
14
|
Abstract
INTRODUCTION As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses. Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the venomous properties of tick saliva. RESULTS Based on our extensive literature mining and in silico research, we demonstrate that ticks share several similarities with other venomous taxa. Many tick salivary protein families and their previously described functions are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a structural and functional convergence between several molecular components in tick saliva and the venoms from other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore, by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with that of ticks we find evidence that ticks resemble more venomous than non-venomous animals. Finally, we introduce our considerations regarding the evolution of venoms in Arachnida. CONCLUSIONS Taking into account the composition of tick saliva, the venomous functions that ticks have while interacting with their hosts, and the distinguishable differences between human (non-venomous) and tick salivary proteins, we consider that ticks should be referred to as venomous ectoparasites.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
- SaBio. Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real 13005, Spain
| | - James J Valdés
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, 37005, Czech Republic
| |
Collapse
|
15
|
Sirmarová J, Tichá L, Golovchenko M, Salát J, Grubhoffer L, Rudenko N, Nowotny N, Růžek D. Seroprevalence of Borrelia burgdorferi sensu lato and tick-borne encephalitis virus in zoo animal species in the Czech Republic. Ticks Tick Borne Dis 2014; 5:523-7. [PMID: 24889036 DOI: 10.1016/j.ttbdis.2014.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/30/2022]
Abstract
This study was conducted to evaluate the prevalence of antibodies against Borrelia bugdorferi (Bb) s.l. and tick-borne encephalitis virus (TBEV) in zoo animals in the Czech Republic. We collected 133 serum samples from 69 animal species from 5 zoos located in different parts of the country. The samples were obtained from even-toed ungulates (n=78; 42 species), odd-toed ungulates (n=32; 11 species), carnivores (n=13; 9 species), primates (n=2, 2 species), birds (n=3; 2 species), and reptiles (n=5; 3 species). A high antibody prevalence (60%) was observed for Bb s.l. On the other hand, only two animals had TBEV-specific antibodies: a markhor (Capra falconeri) and a reindeer (Rangifer tarandus), both from the same zoo, located in an area endemic for TBEV. Both of these animals were also positive for Bb s.l. antibodies. Our results indicate that a high number of animal species in the Czech zoos were exposed to Bb s.l. and that TBEV infection occurred at least in one of the investigated zoos. Considering the pathogenic potential of these two tick-borne pathogens, clinical and serological monitoring should be continued, and therapeutic and preventive measures should be taken when necessary.
Collapse
Affiliation(s)
- Jana Sirmarová
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Lucie Tichá
- Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Marina Golovchenko
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Jiří Salát
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Nataliia Rudenko
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Norbert Nowotny
- Department of Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria; Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Daniel Růžek
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.
| |
Collapse
|
16
|
Tonk M, Cabezas-Cruz A, Valdés JJ, Rego ROM, Rudenko N, Golovchenko M, Bell-Sakyi L, de la Fuente J, Grubhoffer L. Identification and partial characterisation of new members of the Ixodes ricinus defensin family. Gene 2014; 540:146-52. [PMID: 24607035 DOI: 10.1016/j.gene.2014.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/18/2014] [Accepted: 03/02/2014] [Indexed: 01/12/2023]
Abstract
The hard-bodied tick Ixodes ricinus (castor bean tick) is the most common tick species in Europe. I. ricinus is a vector of the causative agents of diseases that affect humans and animals including tick-borne encephalitis, borreliosis, tick-borne fever and babesiosis. The innate immune system provides ticks with quite an efficient defence against some pathogenic microorganisms in the event of their penetration into the tick body or through the blood meal. Antimicrobial peptides (AMPs) constitute an important feature of the tick immune system. Defensins are a well-known class of AMPs. Members of the defensin family of proteins have been reported in several tick species. So far, only two defensins had been identified from I. ricinus. In this study, we report the identification of six novel putative defensins from I. ricinus at the genomic and transcriptional levels. At the genomic level they show differences with one being intronless, while others contain two introns. The expression pattern of these molecules in the salivary glands, midgut, ovary, Malpighian tubules, haemolymph and the tick cell line IRE/CTVM19 was determined. Some of them are tissue specific while others seem to be ubiquitous. Molecular and phylogenetic analyses show that these novel members of the I. ricinus defensin family differ phylogenetically and structurally; nevertheless, the cysteine pattern is highly conserved among the family members. Finally, antimicrobial-peptide prediction tools were used to predict putative antimicrobial activity of our defensins. They show putative antimicrobial activity mainly against Gram-positive bacteria. This study displays the diversity of the defensin family in the tick I. ricinus.
Collapse
Affiliation(s)
- Miray Tonk
- Biology Centre of the AS CR, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Alejandro Cabezas-Cruz
- Biology Centre of the AS CR, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - James J Valdés
- Biology Centre of the AS CR, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Ryan O M Rego
- Biology Centre of the AS CR, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Nataliia Rudenko
- Biology Centre of the AS CR, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Maryna Golovchenko
- Biology Centre of the AS CR, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | | | - José de la Fuente
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA; SaBio, Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain.
| | - Libor Grubhoffer
- Biology Centre of the AS CR, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, Branišovská 31, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
17
|
Špitalská E, Boldiš V, Derdáková M, Selyemová D, Rusňáková Tarageľová V. Rickettsial infection in Ixodes ricinus ticks in urban and natural habitats of Slovakia. Ticks Tick Borne Dis 2013; 5:161-5. [PMID: 24342052 DOI: 10.1016/j.ttbdis.2013.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/02/2013] [Accepted: 10/11/2013] [Indexed: 11/19/2022]
Abstract
A total of 1810 Ixodes ricinus ticks was collected from the vegetation from 2 different habitat types: urban and natural. Urban habitats were represented by cemeteries and public parks in the following towns: Bratislava, Malacky, and Martin at 150 m and 400 m above sea level. Natural habitats were selected in the mountain forest of the Martinské hole Mts. in Central Slovakia at 3 different altitudinal levels, i.e. 600 m, 800 m and 1000 ma.s.l. All ticks were tested for the presence of spotted fever group rickettsiae. The DNA of Rickettsia spp. was identified in 9% of all tested ticks. Rickettsia-infected ticks were present in both, urban and sylvatic sites at all studied altitudes. Four different species of Rickettsia were present in positive I. ricinus ticks. Rickettsia helvetica was identified in 77 out of 87 Rickettsia-positive I. ricinus ticks, followed by 8 samples that belonged to Rickettsia monacensis and 2 of the positive ticks were infected with different unidentified Rickettsia spp. Due to the association of R. helvetica and R. monacensis with human infections, it is essential to understand which species of Rickettsia circulate in the natural foci of Slovakia. Circulation of pathogenic rickettsiae in urban as well as natural habitats at different altitudinal levels in Slovakia emphasizes that infection risk is very common throughout this Central European country.
Collapse
Affiliation(s)
- Eva Špitalská
- Institute of Virology, Slovak Academy of Sciences, Dúbravska cesta 9, 845 05 Bratislava, Slovak Republic.
| | - Vojtech Boldiš
- HPL (Ltd) Medical Laboratories, Department of Parasitology, Istrijská 20, 841 07 Bratislava, Slovak Republic
| | - Markéta Derdáková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravska cesta 9, 845 06 Bratislava, Slovak Republic; Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic
| | - Diana Selyemová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravska cesta 9, 845 06 Bratislava, Slovak Republic
| | | |
Collapse
|
18
|
Schwarz A, von Reumont BM, Erhart J, Chagas AC, Ribeiro JMC, Kotsyfakis M. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J 2013; 27:4745-56. [PMID: 23964076 DOI: 10.1096/fj.13-232140] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tick salivary gland (SG) proteins possess powerful pharmacologic properties that facilitate tick feeding and pathogen transmission. For the first time, SG transcriptomes of Ixodes ricinus, an important disease vector for humans and animals, were analyzed using next-generation sequencing. SGs were collected from different tick life stages fed on various animal species, including cofeeding of nymphs and adults on the same host. Four cDNA samples were sequenced, discriminating tick SG transcriptomes of early- and late-feeding nymphs or adults. In total, 441,381,454 pyrosequencing reads and 67,703,183 Illumina reads were assembled into 272,220 contigs, of which 34,560 extensively annotated coding sequences are disclosed; 8686 coding sequences were submitted to GenBank. Overall, 13% of contigs were classified as secreted proteins that showed significant differences in the transcript representation among the 4 SG samples, including high numbers of sample-specific transcripts. Detailed phylogenetic reconstructions of two relatively abundant SG-secreted protein families demonstrated how this study improves our understanding of the molecular evolution of hematophagy in arthropods. Our data significantly increase the available genomic information for I. ricinus and form a solid basis for future tick genome/transcriptome assemblies and the functional analysis of effectors that mediate the feeding physiology and parasite-vector interaction of I. ricinus.
Collapse
Affiliation(s)
- Alexandra Schwarz
- 2Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, AS CR v.v.i., Branišovska 31, 37005 České Budějovice, Czech Republic.
| | | | | | | | | | | |
Collapse
|
19
|
Maggi RG, Ericson M, Mascarelli PE, Bradley JM, Breitschwerdt EB. Bartonella henselae bacteremia in a mother and son potentially associated with tick exposure. Parasit Vectors 2013; 6:101. [PMID: 23587194 PMCID: PMC3637281 DOI: 10.1186/1756-3305-6-101] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/21/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bartonella henselae is a zoonotic, alpha Proteobacterium, historically associated with cat scratch disease (CSD), but more recently associated with persistent bacteremia, fever of unknown origin, arthritic and neurological disorders, and bacillary angiomatosis, and peliosis hepatis in immunocompromised patients. A family from the Netherlands contacted our laboratory requesting to be included in a research study (NCSU-IRB#1960), designed to characterize Bartonella spp. bacteremia in people with extensive arthropod or animal exposure. All four family members had been exposed to tick bites in Zeeland, southwestern Netherlands. The mother and son were exhibiting symptoms including fatigue, headaches, memory loss, disorientation, peripheral neuropathic pain, striae (son only), and loss of coordination, whereas the father and daughter were healthy. METHODS Each family member was tested for serological evidence of Bartonella exposure using B. vinsonii subsp. berkhoffii genotypes I-III, B. henselae and B. koehlerae indirect fluorescent antibody assays and for bacteremia using the BAPGM enrichment blood culture platform. RESULTS The mother was seroreactive to multiple Bartonella spp. antigens and bacteremia was confirmed by PCR amplification of B. henselae DNA from blood, and from a BAPGM blood agar plate subculture isolate. The son was not seroreactive to any Bartonella sp. antigen, but B. henselae DNA was amplified from several blood and serum samples, from BAPGM enrichment blood culture, and from a cutaneous striae biopsy. The father and daughter were seronegative to all Bartonella spp. antigens, and negative for Bartonella DNA amplification. CONCLUSIONS Historically, persistent B. henselae bacteremia was not thought to occur in immunocompetent humans. To our knowledge, this study provides preliminary evidence supporting the possibility of persistent B. henselae bacteremia in immunocompetent persons from Europe. Cat or flea contact was considered an unlikely source of transmission and the mother, a physician, reported that clinical symptoms developed following tick exposure. To our knowledge, this is the first time that a B. henselae organism has been visualized in and amplified from a striae lesion. As the tick bites occurred three years prior to documentation of B. henselae bacteremia, the mode of transmission could not be determined.
Collapse
Affiliation(s)
- Ricardo G Maggi
- Intracellular Pathogens Research Laboratory, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | | | | | | | | |
Collapse
|
20
|
Bingsohn L, Beckert A, Zehner R, Kuch U, Oehme R, Kraiczy P, Amendt J. Prevalences of tick-borne encephalitis virus and Borrelia burgdorferi sensu lato in Ixodes ricinus populations of the Rhine-Main region, Germany. Ticks Tick Borne Dis 2013; 4:207-13. [PMID: 23415373 DOI: 10.1016/j.ttbdis.2012.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) and Lyme borreliosis are the most common tick-borne zooanthroponoses in Germany. The federal risk map for TBE in this country is based on recorded cases of human infection, whereas information on the vector-based prevalence of either pathogen is fragmentary. In this study, a total of 12,497 host-seeking nymphal and adult Ixodes ricinus ticks (Acari: Ixodidae) were collected from March to October 2009 and April to June 2010, in 5 TBE non-risk and 4 TBE risk areas of the Rhine-Main region (Hesse) via flagging. A total of 3615 ticks was examined for infection with Borrelia burgdorferi sensu lato and 9115 ticks were analyzed for TBE virus (TBEV). Pathogens were detected by real-time polymerase chain reaction. Among 3615 questing ticks, 344 (9.5%) were found infected with B. burgdorferi sensu lato. Five Borrelia genospecies were identified by sequencing the OspA gene: B. afzelii (81.3%), B. garinii (14.0%), B. valaisiana (2.7%), B. spielmanii (1.3%), and B. bavariensis (0.7%). TBE infection of ticks differed between areas classified as TBE risk and TBE non-risk areas. While the prevalence of TBEV was between 0 and 0.2% (3 of 3947 ticks) in the TBE risk areas, no TBEV-infected tick was detected from TBE non-risk areas. The results show that B. burgdorferi sensu lato occurred in all 9 examined locations, indicating that Lyme borreliosis is prevalent in the Rhine-Main region, whereas TBEV was detected only in previously classified risk areas.
Collapse
Affiliation(s)
- Linda Bingsohn
- Division of Medical Entomology, Institute of Forensic Medicine, Goethe University Hospital, 60596 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Schwarz A, Hönig V, Vavrušková Z, Grubhoffer L, Balczun C, Albring A, Schaub GA. Abundance of Ixodes ricinus and prevalence of Borrelia burgdorferi s.l. in the nature reserve Siebengebirge, Germany, in comparison to three former studies from 1978 onwards. Parasit Vectors 2012; 5:268. [PMID: 23171708 PMCID: PMC3523962 DOI: 10.1186/1756-3305-5-268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 11/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the last decades, population densities of Ixodes ricinus and prevalences of Borrelia burgdorferi s.l. have increased in different regions in Europe. In the present study, we determined tick abundance and the prevalence of different Borrelia genospecies in ticks from three sites in the Siebengebirge, Germany, which were already examined in the years 1987, 1989, 2001 and 2003. Data from all investigations were compared. METHODS In 2007 and 2008, host-seeking I. ricinus were collected by monthly blanket dragging at three distinct vegetation sites in the Siebengebirge, a nature reserve and a well visited local recreation area near Bonn, Germany. In both years, 702 ticks were tested for B. burgdorferi s.l. DNA by nested PCR, and 249 tick samples positive for Borrelia were further genotyped by reverse line blotting. RESULTS A total of 1046 and 1591 I. ricinus were collected in 2007 and 2008, respectively. In comparison to previous studies at these sites, the densities at all sites increased from 1987/89 and/or from 2003 until 2008. Tick densities and Borrelia prevalences in 2007 and 2008, respectively, were not correlated for all sites and both years. Overall, Borrelia prevalence of all ticks decreased significantly from 2007 (19.5%) to 2008 (16.5%), thus reaching the same level as in 2001 two times higher than in 1987/89 (7.6%). Since 2001, single infections with a Borrelia genospecies predominated in all collections, but the number of multiple infections increased, and in 2007, for the first time, triple Borrelia infections occurred. Prevalences of Borrelia genospecies differed considerably between the three sites, but B. garinii or B. afzelii were always the most dominant genospecies. B. lusitaniae was detected for the first time in the Siebengebirge, also in co-infections with B. garinii or B. valaisiana. CONCLUSIONS Over the last two centuries tick densities have changed in the Siebengebirge at sites that remained unchanged by human activity since they belong to a nature reserve. Abiotic and biotic conditions most likely favored the host-seeking activity of I. ricinus and the increase of multiple Borrelia infections in ticks. These changes have led to a potential higher risk of humans and animals to be infected with Lyme borreliosis.
Collapse
Affiliation(s)
- Alexandra Schwarz
- Institute of Parasitology, Biology Centre, Academy of Sciences of Czech Republic, České Budĕjovice, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
22
|
Gehringer H, Schacht E, Maylaender N, Zeman E, Kaysser P, Oehme R, Pluta S, Splettstoesser WD. Presence of an emerging subclone of Francisella tularensis holarctica in Ixodes ricinus ticks from south-western Germany. Ticks Tick Borne Dis 2012; 4:93-100. [PMID: 23141103 DOI: 10.1016/j.ttbdis.2012.09.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/25/2022]
Abstract
The zoonotic disease tularaemia is caused by the bacterial pathogen Francisella tularensis. Although the causative agent is known for 100 years, knowledge of its enzootic cycles is still rudimentary. Apart from tabanids and mosquitoes, hard ticks have been described as important vectors and potential reservoirs for F. tularensis. Available data on the incidence of human tularaemia indicate an increase in cases in the federal state of Baden-Wuerttemberg. To determine whether ticks are involved in the reported increase in F. tularensis infections in humans and wildlife in this south-western part of Germany, 916 Ixodes ricinus and 211 adult Dermacentor marginatus and D. reticulatus ticks were collected in two different locations. Screening for the presence of F. tularensis was performed by real-time PCR of the 16S rRNA gene. Of the 95 pools of I. ricinus ticks (representing 916 individual ticks), 8 tick pools (8.4%) were positive in this PCR. 30-bp deletion PCR confirmed that the F. tularensis subspecies holarctica was present. FtM24 VNTR analysis revealed that they belong to the emerging Franco-Iberian subclone group of F. tularensis holarctica. Of the 211 ticks of the genus Dermacentor, 35 randomly chosen DNAs were subjected to 16S rRNA gene screening PCR; 20 of these (57%) gave positive signals. For cluster analysis, the lpnA gene region of all Francisella-positive I. ricinus pools and 6 Dermacentor ticks with a positive reaction in the screening PCR was amplified and sequenced. In the resulting neighbour-joining tree, all Francisella-positive I. ricinus samples clustered with sequences of F. tularensis, whilst all Dermacentor tick samples clustered with FLE (Francisella-like endosymbiont) sequences. This study shows that I. ricinus ticks may serve as vectors and/or reservoirs of F. tularensis in Germany and supports the hypothesis that the state of Baden-Wuerttemberg represents an emerging endemic focus of tularaemia.
Collapse
|
23
|
Silaghi C, Woll D, Hamel D, Pfister K, Mahling M, Pfeffer M. Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents--analyzing the host-pathogen-vector interface in a metropolitan area. Parasit Vectors 2012; 5:191. [PMID: 22950642 PMCID: PMC3480827 DOI: 10.1186/1756-3305-5-191] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/07/2012] [Indexed: 11/10/2022] Open
Abstract
Background The aims of this study were to evaluate the host-tick-pathogen interface of Babesia spp. and Anaplasma phagocytophilum in restored areas in both questing and host-attached Ixodes ricinus and Dermacentor reticulatus and their small mammalian hosts. Methods Questing ticks were collected from 5 sites within the city of Leipzig, Germany, in 2009. Small mammals were trapped at 3 of the 5 sites during 2010 and 2011. DNA extracts of questing and host-attached I. ricinus and D. reticulatus and of several tissue types of small mammals (the majority bank voles and yellow-necked mice), were investigated by PCR followed by sequencing for the occurrence of DNA of Babesia spp. and by real-time PCR for A. phagocytophilum. A selected number of samples positive for A. phagocytophilum were further investigated for variants of the partial 16S rRNA gene. Co-infection with Rickettsia spp. in the questing ticks was additionally investigated. Results 4.1% of questing I. ricinus ticks, but no D. reticulatus, were positive for Babesia sp. and 8.7% of I. ricinus for A. phagocytophilum. Sequencing revealed B. microti, B. capreoli and Babesia spp. EU1 in Leipzig and sequence analysis of the partial 16S RNA gene of A. phagocytophilum revealed variants either rarely reported in human cases or associated with cervid hosts. The statistical analysis revealed significantly less ticks infected with A. phagocytophilum in a city park in Leipzig as compared to the other sampling sites. A. phagocytophilum-DNA was detected in 2 bank voles, DNA of B. microti in 1 striped field-mouse and of Babesia sp. EU1 in the skin tissue of a mole. Co-infections were detected. Conclusion Our results show the involvement of small mammals in the natural endemic cycles of tick-borne pathogens. A more thorough understanding of the interactions of ticks, pathogens and hosts is the essential basis for effective preventive control measures.
Collapse
Affiliation(s)
- Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Sonnleitner ST, Simeoni J, Lang S, Dobler G, Speck S, Zelger R, Schennach H, Lass-Flörl C, Walder G. Spotted fever group--Rickettsiae in the Tyrols: evidence by seroepidemiology and PCR. Zoonoses Public Health 2012; 60:284-90. [PMID: 22883690 DOI: 10.1111/j.1863-2378.2012.01534.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of our study was to assess the occurrence of Rickettsia in the inner-alpine valleys of the Eastern Alps and to determine the amount of seroreaction among the local human population. Ticks were investigated by PCR and the percentage of seropositives was determined among local blood donors by an in-house immunofluorescence assay. The local cut-off titre for screening of IgG was set at 1 : 128 with a well-characterised low-risk collective according to WHO-guidelines. Positive sera were confirmed by independent re-testing. Rickettsia is present in ticks north and south of the continental divide. Of 259 ticks investigated, 12.4% are positive for Rickettsia. Of over 1200 blood donors tested so far, 7.7% bear IgG at a titre of 1 : 128 or higher against R. helvetica. R. helvetica is present in the study area, causes immunoreaction among local residents and is associated with anamnestic erythema. Furthermore, screening with a second Spotted Fever Group Rickettsia indicates that significant parts of the Tyrolean population are exposed to a Rickettsia other than R. helvetica.
Collapse
Affiliation(s)
- S T Sonnleitner
- Department of Hygiene, Medical Microbiology and Social Medicine, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schicht S, Schnieder T, Strube C. Rickettsia spp. and coinfections with other pathogenic microorganisms in hard ticks from northern Germany. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:766-771. [PMID: 22679887 DOI: 10.1603/me11204] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Rickettsia species are the causative agent of different forms of spotted fever and thus, monitored in a number of prevalence studies. The current study examined the status of ticks from the city of Hanover, Northern Germany, regarding the presence of Rickettsia spp. and coinfections with Borrelia burgdorferi sensu lato (sl) and Anaplasma phagocytophilum. In total, 1,089 questing Ixodes ricinus L. ticks were analyzed using quantitative real time polymerase chain reaction. A duplex quantitative real time polymerase chain reaction for simultaneous detection of Rickettsia spp. and Ixodes spp.-DNA as positive control for successful DNA-isolation was established. Rickettsia spp. were detected in 363 (33.3%) of the 1,089 investigated ticks. Quantification of Rickettsia showed that larvae contained up to 50,000 bacteria, nymphs up to 85 million and adults up to 200 million per tick. Species differentiation was possible in 178 out of 363 Rickettsia positive samples and resulted in a predominant occurrence of R. helvetica (98.9%, 176/178), whereas R. monacensis was rarely found (1.1%, 2/178). Besides detection of Rickettsia, positive ticks were compared with results from previous studies to examine coinfections with B. burgdorferi sl and A. phagocytophilum. The resulting coinfection rates were 9.1% (99/1,089) for B. burgdorferi sl and 2.8% (11/391) for A. phagocytophilum. Triple-infection with Rickettsia spp., B. burgdorferi sl, and A. phagocytophilum occurred in 5 (1.3%) out of 391 ticks. The current study is the first presenting quantitative data concerning the load of Ixodes ticks with Rickettsia individuals.
Collapse
Affiliation(s)
- Sabine Schicht
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | | | | |
Collapse
|
26
|
Capelli G, Ravagnan S, Montarsi F, Ciocchetta S, Cazzin S, Porcellato E, Babiker AM, Cassini R, Salviato A, Cattoli G, Otranto D. Occurrence and identification of risk areas of Ixodes ricinus-borne pathogens: a cost-effectiveness analysis in north-eastern Italy. Parasit Vectors 2012; 5:61. [PMID: 22452970 PMCID: PMC3337281 DOI: 10.1186/1756-3305-5-61] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/27/2012] [Indexed: 12/30/2022] Open
Abstract
Background Ixodes ricinus, a competent vector of several pathogens, is the tick species most frequently reported to bite humans in Europe. The majority of human cases of Lyme borreliosis (LB) and tick-borne encephalitis (TBE) occur in the north-eastern region of Italy. The aims of this study were to detect the occurrence of endemic and emergent pathogens in north-eastern Italy using adult tick screening, and to identify areas at risk of pathogen transmission. Based on our results, different strategies for tick collection and pathogen screening and their relative costs were evaluated and discussed. Methods From 2006 to 2008 adult ticks were collected in 31 sites and molecularly screened for the detection of pathogens previously reported in the same area (i.e., LB agents, TBE virus, Anaplasma phagocytophilum, Rickettsia spp., Babesia spp., "Candidatus Neoehrlichia mikurensis"). Based on the results of this survey, three sampling strategies were evaluated a-posteriori, and the impact of each strategy on the final results and the overall cost reductions were analyzed. The strategies were as follows: tick collection throughout the year and testing of female ticks only (strategy A); collection from April to June and testing of all adult ticks (strategy B); collection from April to June and testing of female ticks only (strategy C). Results Eleven pathogens were detected in 77 out of 193 ticks collected in 14 sites. The most common microorganisms detected were Borrelia burgdorferi sensu lato (17.6%), Rickettsia helvetica (13.1%), and "Ca. N. mikurensis" (10.5%). Within the B. burgdorferi complex, four genotypes (i.e., B. valaisiana, B. garinii, B. afzelii, and B. burgdorferi sensu stricto) were found. Less prevalent pathogens included R. monacensis (3.7%), TBE virus (2.1%), A. phagocytophilum (1.5%), Bartonella spp. (1%), and Babesia EU1 (0.5%). Co-infections by more than one pathogen were diagnosed in 22% of infected ticks. The prevalences of infection assessed using the three alternative strategies were in accordance with the initial results, with 13, 11, and 10 out of 14 sites showing occurrence of at least one pathogen, respectively. The strategies A, B, and C proposed herein would allow to reduce the original costs of sampling and laboratory analyses by one third, half, and two thirds, respectively. Strategy B was demonstrated to represent the most cost-effective choice, offering a substantial reduction of costs, as well as reliable results. Conclusions Monitoring of tick-borne diseases is expensive, particularly in areas where several zoonotic pathogens co-occur. Cost-effectiveness studies can support the choice of the best monitoring strategy, which should take into account the ecology of the area under investigation, as well as the available budget.
Collapse
Affiliation(s)
- Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro (Pd), Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bolzoni L, Rosà R, Cagnacci F, Rizzoli A. Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models. Int J Parasitol 2012; 42:373-81. [PMID: 22429768 DOI: 10.1016/j.ijpara.2012.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 11/18/2022]
Abstract
Tick-borne encephalitis is an emerging vector-borne zoonotic disease reported in several European and Asiatic countries with complex transmission routes that involve various vertebrate host species other than a tick vector. Understanding and quantifying the contribution of the different hosts involved in the TBE virus cycle is crucial in estimating the threshold conditions for virus emergence and spread. Some hosts, such as rodents, act both as feeding hosts for ticks and reservoirs of the infection. Other species, such as deer, provide important sources of blood for feeding ticks but they do not support TBE virus transmission, acting instead as dead-end (i.e., incompetent) hosts. Here, we introduce an eco-epidemiological model to explore the dynamics of tick populations and TBE virus infection in relation to the density of two key hosts. In particular, our aim is to validate and interpret in a robust theoretical framework the empirical findings regarding the effect of deer density on tick infestation on rodents and thus TBE virus occurrence from selected European foci. Model results show hump-shaped relationships between deer density and both feeding ticks on rodents and the basic reproduction number for TBE virus. This suggests that deer may act as tick amplifiers, but may also divert tick bites from competent hosts, thus diluting pathogen transmission. However, our model shows that the mechanism responsible for the dilution effect is more complex than the simple reduction of tick burden on competent hosts. Indeed, while the number of feeding ticks on rodents may increase with deer density, the proportion of blood meals on competent compared with incompetent hosts may decrease, triggering a decline in infection. As a consequence, using simply the number of ticks per rodent as a predictor of TBE transmission potential could be misleading if competent hosts share habitats with incompetent hosts.
Collapse
Affiliation(s)
- L Bolzoni
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre - Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | | | | | | |
Collapse
|
28
|
Sekeyova Z, Subramanian G, Mediannikov O, Diaz MQ, Nyitray A, Blaskovicova H, Raoult D. Evaluation of clinical specimens forRickettsia,Bartonella,Borrelia,Coxiella,Anaplasma,FranciscellaandDiplorickettsiapositivity using serological and molecular biology methods. ACTA ACUST UNITED AC 2012; 64:82-91. [DOI: 10.1111/j.1574-695x.2011.00907.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/04/2011] [Accepted: 11/10/2011] [Indexed: 11/30/2022]
|
29
|
Hildebrandt A, Straube E, Neubauer H, Schmoock G. Coxiella burnetiiand Coinfections inIxodes ricinusTicks in Central Germany. Vector Borne Zoonotic Dis 2011; 11:1205-7. [DOI: 10.1089/vbz.2010.0180] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anke Hildebrandt
- Medical University Laboratories, Institute of Medical Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Eberhard Straube
- Medical University Laboratories, Institute of Medical Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses at the Federal Research Institute for Animal Health (Friedrich-Loeffler-Institut), Jena, Germany
| | - Gernot Schmoock
- Institute of Bacterial Infections and Zoonoses at the Federal Research Institute for Animal Health (Friedrich-Loeffler-Institut), Jena, Germany
| |
Collapse
|
30
|
Schorn S, Pfister K, Reulen H, Mahling M, Silaghi C. Occurrence of Babesia spp., Rickettsia spp. and Bartonella spp. in Ixodes ricinus in Bavarian public parks, Germany. Parasit Vectors 2011; 4:135. [PMID: 21762494 PMCID: PMC3154157 DOI: 10.1186/1756-3305-4-135] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/15/2011] [Indexed: 11/10/2022] Open
Abstract
Background Only limited information is available about the occurrence of ticks and tick-borne pathogens in public parks, which are areas strongly influenced by human beings. For this reason, Ixodes ricinus were collected in public parks of different Bavarian cities in a 2-year survey (2009 and 2010) and screened for DNA of Babesia spp., Rickettsia spp. and Bartonella spp. by PCR. Species identification was performed by sequence analysis and alignment with existing sequences in GenBank. Additionally, coinfections with Anaplasma phagocytophilum were investigated. Results The following prevalences were detected: Babesia spp.: 0.4% (n = 17, including one pool of two larvae) in 2009 and 0.5 to 0.7% (n = 11, including one pool of five larvae) in 2010; Rickettsia spp.: 6.4 to 7.7% (n = 285, including 16 pools of 76 larvae) in 2009. DNA of Bartonella spp. in I. ricinus in Bavarian public parks could not be identified. Sequence analysis revealed the following species: Babesia sp. EU1 (n = 25), B. divergens (n = 1), B. divergens/capreoli (n = 1), B. gibsoni-like (n = 1), R. helvetica (n = 272), R. monacensis IrR/Munich (n = 12) and unspecified R. monacensis (n = 1). The majority of coinfections were R. helvetica with A. phagocytophilum (n = 27), but coinfections between Babesia spp. and A. phagocytophilum, or Babesia spp. and R. helvetica were also detected. Conclusions I. ricinus ticks in urban areas of Germany harbor several tick-borne pathogens and coinfections were also observed. Public parks are of particularly great interest regarding the epidemiology of tick-borne pathogens, because of differences in both the prevalence of pathogens in ticks as well as a varying species arrangement when compared to woodland areas. The record of DNA of a Babesia gibsoni-like pathogen detected in I. ricinus suggests that I. ricinus may harbor and transmit more Babesia spp. than previously known. Because of their high recreational value for human beings, urban green areas are likely to remain in the research focus on public health issues.
Collapse
Affiliation(s)
- Sabine Schorn
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | |
Collapse
|
31
|
Svihrova V, Hudeckova H, Jesenak M, Schwarzova K, Kostanova Z, Ciznar I. Lyme borreliosis—analysis of the trends in Slovakia, 1999–2008. Folia Microbiol (Praha) 2011; 56:270-5. [DOI: 10.1007/s12223-011-0036-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 05/04/2011] [Indexed: 12/24/2022]
|
32
|
Hildebrandt A, Franke J, Schmoock G, Pauliks K, Krämer A, Straube E. Diversity and coexistence of tick-borne pathogens in central Germany. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:651-655. [PMID: 21661327 DOI: 10.1603/me10254] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In total, 1000 Ixodes ricinus L. ticks were collected from a small recreational forest area in central Germany (Thuringia) and investigated for the presence of Borrelia spp., Babesia spp., Anaplasma spp., Rickettsia spp., Coxiella burnetii, and Francisella tularensis. Overall, 43.6% of the ticks were infected with at least one pathogen. In 8.4% of ticks double infections were detected, and 1.6% harbored more than two pathogens. In this study, we present data on the coexistence of established and emerging pathogens in questing nymphs and adult ticks in a recreational area in central Germany, indicating the need for further studies for a reliable risk assessment.
Collapse
Affiliation(s)
- Anke Hildebrandt
- Medical University Laboratories, Institute of Medical Microbiology, Friedrich-Schiller-University, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Franke J, Hildebrandt A, Meier F, Straube E, Dorn W. Prevalence of Lyme disease agents and several emerging pathogens in questing ticks from the German Baltic coast. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:441-444. [PMID: 21485387 DOI: 10.1603/me10182] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In summer 2008, a total of 512 Ixodes ricinus (Acari: Ixodidae) ticks was collected from vegetation in four areas at the Baltic coast of Germany and tested for the presence of Lyme disease spirochetes. Among them, 293 ticks from three areas were screened for Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), rickettsiae of the spotted fever group (Rickettsiales: Rickettsiaceae), and Babesia spp. (Piroplasmida: Babesiidae), respectively. Borrelia burgdorferi sensu lato genospecies (Spirochaetales: Spirochaetaceae) were detected in 3.1% of the tick samples. The prevalence ofA. phagocytophilum was 1.0%, rickettsiae were present in 8.5%, and pathogenic Babesia spp. in 8.9% of analyzed ticks. Coinfections occurred in five ticks. With this study we report first data on the coexistence of established and emerging pathogens in questing ticks from recreational areas of northeastern Germany, indicating the need of further studies for a reliable risk assessment.
Collapse
Affiliation(s)
- Jan Franke
- Institute of Nutrition, Department of Food and Environmental Hygiene, Friedrich-Schiller-University, Jena, Dornburger Str. 29, D-07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
34
|
Coexistence of pathogens in host-seeking and feeding ticks within a single natural habitat in Central Germany. Appl Environ Microbiol 2010; 76:6829-36. [PMID: 20729315 DOI: 10.1128/aem.01630-10] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of established and emerging tick-borne pathogens in Central and Northern Europe is steadily increasing. In 2007, we collected Ixodes ricinus ticks feeding on birds (n = 211) and rodents (n = 273), as well as host-seeking stages (n = 196), in a habitat in central Germany. In order to find out more about their natural transmission cycles, the ticks were tested for the presence of Lyme disease borreliae, Anaplasma phagocytophilum, spotted fever group (SFG) rickettsiae, Francisella tularensis, and babesiae. Altogether, 20.1% of the 680 ticks examined carried at least one pathogen. Bird-feeding ticks were more frequently infected with Borrelia spp. (15.2%) and A. phagocytophilum (3.2%) than rodent-feeding ticks (2.6%; 1.1%) or questing ticks (5.1%; 0%). Babesia spp. showed higher prevalence rates in ticks parasitizing birds (13.2%) and host-seeking ticks (10.7%), whereas ticks from small mammals were less frequently infected (6.6%). SFG rickettsiae and F. tularensis were also found in ticks collected off birds (2.1%; 1.2%), rodents (1.8%; 1.5%), and vegetation (4.1%; 1.6%). Various combinations of coinfections occurred in 10.9% of all positive ticks, indicating interaction of transmission cycles. Our results suggest that birds not only are important reservoirs for several pathogens but also act as vehicles for infected ticks and might therefore play a key role in the dispersal of tick-borne diseases.
Collapse
|