1
|
Gherlan GS, Lazar DS, Florescu SA, Dirtu RM, Codreanu DR, Lupascu S, Nica M. Non-toxigenic Vibrio cholerae - just another cause of vibriosis or a potential new pandemic? Arch Clin Cases 2025; 12:5-16. [PMID: 39925986 PMCID: PMC11801190 DOI: 10.22551/2025.46.1201.10305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Although nontoxigenic Vibrio cholerae usually stands in the shadow of the two serogroups (O1 and O139) that cause pandemic cholera, its role in human pathology is increasingly recognized and described in the literature. The habitat of these pathogens is brackish seawater or even freshwater, and the infections caused by them include contact with these waters or consumption of seafood originating in this habitat, which is constantly expanding because of global warming. This habitat extension is a typical example of climate change's impact on infectious diseases. Although nontoxigenic Vibrio cholerae strains are rarely capable of producing the classical cholera toxin, they possess many other virulence factors, can secrete various other toxins, and thus produce illnesses that are sometimes even severe or life-threatening, more frequently in immunocompromised patients. Vibriosis may manifest as gastrointestinal illnesses, wounds, skin or subcutaneous tissue infections, or septicemia. To establish the correct etiological diagnosis for these infections, a high index of suspicion must be maintained, as the diagnostic techniques require targeted investigations and specific collection and transportation of the samples. Empiric treatment recommendations are available, but owing to the increasing resistance of this pathogen, susceptibility testing is needed for every diagnosed case. We intend to raise awareness regarding these infections, as they tend to be more frequent than they were in the past and to appear in areas where they had not been recognized before.
Collapse
Affiliation(s)
- George Sebastian Gherlan
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Dragos Stefan Lazar
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Simin Aysel Florescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Raluca Mihaela Dirtu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Daniel Romeo Codreanu
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Stefan Lupascu
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Maria Nica
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Victor Babeş Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| |
Collapse
|
2
|
Jacqueline C, Román Soto S, Herrera-Leon S. Non-toxigenic cases of Vibrio cholerae in Spain from 2012 to 2022. Microb Genom 2024; 10:001315. [PMID: 39661068 PMCID: PMC11633944 DOI: 10.1099/mgen.0.001315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/01/2024] [Indexed: 12/12/2024] Open
Abstract
Non-toxigenic non-O1/non-O139 Vibrio cholerae (NVC) isolates are associated with diarrhoeal disease globally. NVC-related infections are on the rise, representing one of the most striking examples of emerging human diseases linked to climate change. This study aims to give a better picture of the evolution of NCV incidence in Spain from 2012 to 2022. In this context, we realized a descriptive analysis and a logistic regression using the isolates submitted to the National Center of Microbiology (NCM) during this period. To elucidate the heterogeneity of sporadic clinical strains of NVC among patients residing in Spain, we conducted whole-genome sequencing (WGS) of a selection of isolates. First, we observed an increase in the number of isolates sent to the NCM after 2019, which was not concomitant to a change in the national surveillance protocol. Furthermore, the number of cases and hospitalizations increased with age. Second, we found a high diversity of NVC strains, which suggested that the usefulness of WGS studies might be limited in waterborne outbreak situations to find the infectious source. Finally, we characterized the genetic determinants responsible for antimicrobial resistance and virulence and found that 21% of the isolates were resistant to β-lactamases. To the best of our knowledge, the present study is the first in Spain to report genomic data on non-toxigenic cases at the national level. Because of the high percentage of hospitalization observed for NVC cases (40%), it might be beneficial to test for V. cholerae in all the suspected cases.
Collapse
Affiliation(s)
- Camille Jacqueline
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
- European Public Health Microbiology Training Program (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Sergio Román Soto
- Laboratorio de Microbiología Clínica y Biología Molecular, Hospital Comarcal de Melilla, Rusadir, Spain
| | - Silvia Herrera-Leon
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
3
|
Agyei FK, Scharf B, Duodu S. Vibrio cholerae Bacteremia: An Enigma in Cholera-Endemic African Countries. Trop Med Infect Dis 2024; 9:103. [PMID: 38787036 PMCID: PMC11125774 DOI: 10.3390/tropicalmed9050103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 05/25/2024] Open
Abstract
Cholera is highly endemic in many sub-Saharan African countries. The bacterium Vibrio cholerae is responsible for this severe dehydrating diarrheal disease that accounts for over 100,000 deaths each year globally. In recent years, the pathogen has been found to invade intestinal layers and translocate into the bloodstream of humans. The non-toxigenic strains of V. cholerae (non-O1/O139), also known as NOVC, which do not cause epidemic or pandemic cases of cholera, are the major culprits of V. cholerae bacteremia. In non-cholera-endemic regions, clinical reports on NOVC infection have been noted over the past few decades, particularly in Europe and America. Although low-middle-income countries are most susceptible to cholera infections because of challenges with access to clean water and inappropriate sanitation issues, just a few cases of V. cholerae bloodstream infections have been reported. The lack of evidence-based research and surveillance of V. cholerae bacteremia in Africa may have significant clinical implications. This commentary summarizes the existing knowledge on the host risk factors, pathogenesis, and diagnostics of NOVC bacteremia.
Collapse
Affiliation(s)
- Foster K. Agyei
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra LG54, Ghana;
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Birgit Scharf
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Samuel Duodu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra LG54, Ghana;
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra LG54, Ghana
| |
Collapse
|
4
|
Schmidt K, Scholz HC, Appelt S, Michel J, Jacob D, Dupke S. Virulence and resistance patterns of Vibrio cholerae non-O1/non-O139 acquired in Germany and other European countries. Front Microbiol 2023; 14:1282135. [PMID: 38075873 PMCID: PMC10703170 DOI: 10.3389/fmicb.2023.1282135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 01/25/2025] Open
Abstract
Global warming has caused an increase in the emergence of Vibrio species in marine and estuarine environments as well as fresh water bodies. Over the past decades, antimicrobial resistance (AMR) has evolved among Vibrio species toward various antibiotics commonly used for the treatment of Vibrio infections. In this study, we assessed virulence and resistance patterns of Vibrio cholerae non-O1/non-O139 strains derived from Germany and other European countries. A total of 63 clinical and 24 environmental Vibrio cholerae non-O1/non-O139 strains, collected between 2011 and 2021, were analyzed. In silico antibiotic resistances were compared with resistance phenotypes according to EUCAST breakpoints. Additionally, genetic relatedness between isolates was assessed by two cgMLST schemes (SeqSphere +, pubMLST). Both cgMLST schemes yielded similar results, indicating high genetic diversity among V. cholerae non-O1/non-O139 isolates. Some isolates were found to be genetically closely related (allelic distance < 20), which suggests an epidemiological link. Thirty-seven virulence genes (VGs) were identified among 87 V. cholerae non-O1/non-O139 isolates, which resulted in 38 virulence profiles (VPs). VPs were similar between clinical and environmental isolates, with the exception of one clinical isolate that displayed a higher abundance of VGs. Also, a cluster of 11 environmental isolates was identified to have the lowest number of VGs. Among all strains, the predominant virulence factors were quorum sensing protein (luxS), repeats-in-toxins (rtxC/rtxD), hemolysin (hlyA) and different type VI secretion systems (T6SS) genes. The genotypic profiles revealed antibiotic resistance genes (ARGs) associated with resistance to beta-lactams, quinolones, macrolides, tetracycline, antifolate, aminoglycosides, fosfomycin, phenicols and sulfonamide. Carbapenemase gene VCC-1 was detected in 10 meropenem-resistant V. cholerae non-O1/non-O139 isolates derived from surface water in Germany. The proportion of resistance among V. cholerae non-O1/non-O139 species isolates against first line treatment (3rd generation cephalosporin, tetracycline and fluoroquinolone) was low. Empirical treatment would likely have been effective for all of the clinical V. cholerae non-O1/non-O139 isolates examined. Nevertheless, carbapenem-resistant isolates have been present in fresh water in Germany and might represent a reservoir for ARGs. Monitoring antimicrobial resistance is crucial for public health authorities to minimize the risks for the human population.
Collapse
Affiliation(s)
- Katarzyna Schmidt
- Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
- ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Holger C Scholz
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Sandra Appelt
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Jana Michel
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Daniela Jacob
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Susann Dupke
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
5
|
Rehm C, Kolm C, Pleininger S, Heger F, Indra A, Reischer GH, Farnleitner AAH, Kirschner AKT. Vibrio cholerae-An emerging pathogen in Austrian bathing waters? Wien Klin Wochenschr 2023; 135:597-608. [PMID: 37530997 PMCID: PMC10651712 DOI: 10.1007/s00508-023-02241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 08/03/2023]
Abstract
Vibrio cholerae, an important human pathogen, is naturally occurring in specific aquatic ecosystems. With very few exceptions, only the cholera-toxigenic strains belonging to the serogroups O1 and O139 are responsible for severe cholera outbreaks with epidemic or pandemic potential. All other nontoxigenic, non-O1/non-O139 V. cholerae (NTVC) strains may cause various other diseases, such as mild to severe infections of the ears, of the gastrointestinal and urinary tracts as well as wound and bloodstream infections. Older, immunocompromised people and patients with specific preconditions have an elevated risk. In recent years, worldwide reports demonstrated that NTVC infections are on the rise, caused amongst others by elevated water temperatures due to global warming.The aim of this review is to summarize the knowledge gained during the past two decades on V. cholerae infections and its occurrence in bathing waters in Austria, with a special focus on the lake Neusiedler See. We investigated whether NTVC infections have increased and which specific environmental conditions favor the occurrence of NTVC. We present an overview of state of the art methods that are currently available for clinical and environmental diagnostics. A preliminary public health risk assessment concerning NTVC infections related to the Neusiedler See was established. In order to raise awareness of healthcare professionals for NTVC infections, typical symptoms, possible treatment options and the antibiotic resistance status of Austrian NTVC isolates are discussed.
Collapse
Affiliation(s)
- Carmen Rehm
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria
- Interuniversity Cooperation Centre Water & Health
| | - Claudia Kolm
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Sonja Pleininger
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Florian Heger
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Alexander Indra
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Georg H Reischer
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Andreas A H Farnleitner
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Alexander K T Kirschner
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria.
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria.
- Interuniversity Cooperation Centre Water & Health, .
| |
Collapse
|
6
|
Sacheli R, Philippe C, Meex C, Mzougui S, Melin P, Hayette MP. Occurrence of Vibrio spp. in Selected Recreational Water Bodies in Belgium during 2021 Bathing Season. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6932. [PMID: 37887670 PMCID: PMC10606296 DOI: 10.3390/ijerph20206932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
In recent years, a global increase in the number of reports of human vibriosis involving V. cholerae non-O1/O139 (NOVC) and other Vibrio spp. has been observed. In this context, the Belgian National Reference Center for Vibrio conducted an assessment of the presence of Vibrio spp. in recreational waters. Water sampling was performed monthly in different lakes in Wallonia and Flanders, including the North Sea. The collected water was then filtrated and cultured, and Vibrio spp. was quantified according to the Most Probable Number (MPN). Presumptive colonies were confirmed via MALDI-TOF, and PCR for virulence genes was applied if justified. No Vibrio spp. was found in the analyzed water bodies in Wallonia. However, NOVC was isolated from three different lakes in Flanders and from coastal water. In addition, V. alginolyticus and V. parahaemolyticus were also detected in coastal water. No clear impact of the pH and temperature was observed on Vibrio spp. occurrence. Our study demonstrates the presence of Vibrio spp. in different bathing water bodies, mostly in the north of Belgium, and supports the recommendation to include Vibrio spp. as a water quality indicator for bathing water quality assessment to ensure the safety of water recreational users in Belgium.
Collapse
Affiliation(s)
- Rosalie Sacheli
- Department of Clinical Microbiology, Belgian National Reference Center Vibrio cholerae and Vibrio parahaemolyticus, Center for Interdisciplinary Research on Medicines (CIRM), University Hospital of Liege, 4000 Liège, Belgium; (C.P.); (C.M.); (S.M.); (P.M.); (M.-P.H.)
| | | | | | | | | | | |
Collapse
|
7
|
Rehm C, Lippert K, Indra A, Kolarević S, Kračun‐Kolarević M, Leopold M, Steinbacher S, Schachner I, Campostrini L, Risslegger A, Farnleitner AH, Kolm C, Kirschner AK. First report on the occurrence of Vibrio cholerae nonO1/nonO139 in natural and artificial lakes and ponds in Serbia: Evidence for a long-distance transfer of strains and the presence of Vibrio paracholerae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:142-152. [PMID: 36779243 PMCID: PMC10103850 DOI: 10.1111/1758-2229.13136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/09/2022] [Indexed: 05/20/2023]
Abstract
Vibrio cholerae are natural inhabitants of specific aquatic environments. Strains not belonging to serogroups O1 and O139 are usually unable to produce cholera toxin and cause cholera. However, non-toxigenic V. cholerae (NTVC) are able to cause a variety of mild-to-severe human infections (via seafood consumption or recreational activities). The number of unreported cases is considered substantial, as NTVC infections are not notifiable and physicians are mostly unaware of this pathogen. In the northern hemisphere, NTVC infections have been reported to increase due to global warming. In Eastern Europe, climatic and geological conditions favour the existence of inland water-bodies harbouring NTVC. We thus investigated the occurrence of NTVC in nine Serbian natural and artificial lakes and ponds, many of them used for fishing and bathing. With the exception of one highly saline lake, all investigated water-bodies harboured NTVC, ranging from 5.4 × 101 to 1.86 × 104 CFU and 4.5 × 102 to 5.6 × 106 genomic units per 100 ml. The maximum values observed were in the range of bathing waters in other countries, where infections have been reported. Interestingly, 7 out of 39 fully sequenced presumptive V. cholerae isolates were assigned as V. paracholerae, a recently described sister species of V. cholerae. Some clones and sublineages of both V. cholerae and V. paracholerae were shared by different environments indicating an exchange of strains over long distances. Important pathogenicity factors such as hlyA, toxR, and ompU were present in both species. Seasonal monitoring of ponds/lakes used for recreation in Serbia is thus recommended to be prepared for potential occurrence of infections promoted by climate change-induced rise in water temperatures.
Collapse
Affiliation(s)
- Carmen Rehm
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Institute for Hygiene and Applied Immunology – Water MicrobiologyMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| | - Kathrin Lippert
- Institute für Medical Microbiology and Hygiene, Austrian Agency for Health and Food SafetyViennaAustria
| | - Alexander Indra
- Institute für Medical Microbiology and Hygiene, Austrian Agency for Health and Food SafetyViennaAustria
| | - Stoimir Kolarević
- Institute for Biological Research ¨Siniša Stanković¨, National Institute of the Republic of Serbia, Department for Hydroecology and Water ProtectionUniversity of BelgradeBelgradeSerbia
| | - Margareta Kračun‐Kolarević
- Institute for Biological Research ¨Siniša Stanković¨, National Institute of the Republic of Serbia, Department for Hydroecology and Water ProtectionUniversity of BelgradeBelgradeSerbia
| | - Melanie Leopold
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität WienViennaAustria
| | - Sophia Steinbacher
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität WienViennaAustria
| | - Iris Schachner
- Institute for Hygiene and Applied Immunology – Water MicrobiologyMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| | - Lena Campostrini
- Institute for Hygiene and Applied Immunology – Water MicrobiologyMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| | - Alexandra Risslegger
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| | - Andreas H. Farnleitner
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität WienViennaAustria
| | - Claudia Kolm
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität WienViennaAustria
| | - Alexander K.T. Kirschner
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Institute for Hygiene and Applied Immunology – Water MicrobiologyMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| |
Collapse
|
8
|
Igere BE, Okoh AI, Nwodo UU. Non-serogroup O1/O139 agglutinable Vibrio cholerae: a phylogenetically and genealogically neglected yet emerging potential pathogen of clinical relevance. Arch Microbiol 2022; 204:323. [PMID: 35567650 PMCID: PMC9107296 DOI: 10.1007/s00203-022-02866-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 12/19/2022]
Abstract
Somatic antigen agglutinable type-1/139 Vibrio cholerae (SAAT-1/139-Vc) members or O1/O139 V. cholerae have been described by various investigators as pathogenic due to their increasing virulence potential and production of choleragen. Reported cholera outbreak cases around the world have been associated with these choleragenic V. cholerae with high case fatality affecting various human and animals. These virulent Vibrio members have shown genealogical and phylogenetic relationship with the avirulent somatic antigen non-agglutinable strains of 1/139 V. cholerae (SANAS-1/139- Vc) or O1/O139 non-agglutinating V. cholerae (O1/O139-NAG-Vc). Reports on implication of O1/O139-NAGVc members in most sporadic cholera/cholera-like cases of diarrhea, production of cholera toxin and transmission via consumption and/or contact with contaminated water/seafood are currently on the rise. Some reported sporadic cases of cholera outbreaks and observed change in nature has also been tracable to these non-agglutinable Vibrio members (O1/O139-NAGVc) yet there is a sustained paucity of research interest on the non-agglutinable V. cholerae members. The emergence of fulminating extraintestinal and systemic vibriosis is another aspect of SANAS-1/139- Vc implication which has received low attention in terms of research driven interest. This review addresses the need to appraise and continually expand research based studies on the somatic antigen non-serogroup agglutinable type-1/139 V. cholerae members which are currently prevalent in studies of water bodies, fruits/vegetables, foods and terrestrial environment. Our opinion is amassed from interest in integrated surveillance studies, management/control of cholera outbreaks as well as diarrhea and other disease-related cases both in the rural, suburban and urban metropolis.
Collapse
Affiliation(s)
- Bright E Igere
- Department of Microbiology and Biotechnology, Western Delta University, Oghara, Delta State, Nigeria.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Uchechukwu U Nwodo
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
9
|
Brehm TT, Berneking L, Sena Martins M, Dupke S, Jacob D, Drechsel O, Bohnert J, Becker K, Kramer A, Christner M, Aepfelbacher M, Schmiedel S, Rohde H. Heatwave-associated Vibrio infections in Germany, 2018 and 2019. ACTA ACUST UNITED AC 2021; 26. [PMID: 34651572 PMCID: PMC8518310 DOI: 10.2807/1560-7917.es.2021.26.41.2002041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Vibrio spp. are aquatic bacteria that prefer warm seawater with moderate salinity. In humans, they can cause gastroenteritis, wound infections, and ear infections. During the summers of 2018 and 2019, unprecedented high sea surface temperatures were recorded in the German Baltic Sea. Aim We aimed to describe the clinical course and microbiological characteristics of Vibrio infections in Germany in 2018 and 2019. Methods We performed an observational retrospective multi-centre cohort study of patients diagnosed with domestically-acquired Vibrio infections in Germany in 2018 and 2019. Demographic, clinical, and microbiological data were assessed, and isolates were subjected to whole genome sequencing and antimicrobial susceptibility testing. Results Of the 63 patients with Vibrio infections, most contracted the virus between June and September, primarily in the Baltic Sea: 44 (70%) were male and the median age was 65 years (range: 2–93 years). Thirty-eight patients presented with wound infections, 16 with ear infections, six with gastroenteritis, two with pneumonia (after seawater aspiration) and one with primary septicaemia. The majority of infections were attributed to V. cholerae (non–O1/non-O139) (n = 30; 48%) or V. vulnificus (n = 22; 38%). Phylogenetic analyses of 12 available isolates showed clusters of three identical strains of V. vulnificus, which caused wound infections, suggesting that some clonal lines can spread across the Baltic Sea. Conclusions During the summers of 2018 and 2019, severe heatwaves facilitated increased numbers of Vibrio infections in Germany. Since climate change is likely to favour the proliferation of these bacteria, a further increase in Vibrio-associated diseases is expected.
Collapse
Affiliation(s)
- Thomas Theo Brehm
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,These authors contributed equally to this article and share first authorship
| | - Laura Berneking
- These authors contributed equally to this article and share first authorship.,Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meike Sena Martins
- Institut für Meereskunde, Centrum für Erdsystemwissenschaften und Nachhaltigkeit, University Hamburg, Hamburg, Germany
| | - Susann Dupke
- Robert Koch Institute, ZBS 2: Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms, Berlin, Germany
| | - Daniela Jacob
- Robert Koch Institute, ZBS 2: Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms, Berlin, Germany
| | | | - Jürgen Bohnert
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Martin Christner
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Aepfelbacher
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Schmiedel
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Holger Rohde
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | -
- The members of the Study Group are listed at the end of the article
| |
Collapse
|
10
|
Wu M, Zhou L, Cao L. Acute hemorrhagic necrotizing enterocolitis caused by non-O1/non-O139 Vibrio cholerae infection: A case report. Medicine (Baltimore) 2021; 100:e26460. [PMID: 34160447 PMCID: PMC8238361 DOI: 10.1097/md.0000000000026460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Acute hemorrhagic necrotizing enterocolitis (AHNE) is a rapidly progressive and extremely dangerous disease. Here we report a rare case caused by Vibrio cholerae (V cholerae). PATIENT CONCERNS A 70-year-old man was admitted to our emergency department because of a sudden loss of consciousness. DIAGNOSES On admission with severe toxic shock, the patient presented with elevated body temperature, decreased blood pressure, abdominal tenderness and rebound pain, predominantly on the right side. Computed tomography showed swelling and thickening of the right colon and peritoneal effusion. Necrosis was found in the hepatic flexure of the colon. On the basis of these results, the patient was diagnosed with AHNE. INTERVENTIONS AND OUTCOMES After fluid resuscitation, an exploratory laparotomy was performed immediately. The procedure was successful. Despite antibiotic therapy, the patient's clinical condition progressively deteriorated and he died of multi-organ failure on day 3 after admission. LESSONS AHNE is a rapidly progressive and extremely dangerous disease. Here we report a case of AHNE caused by non-O1/non-O139 V cholerae infection. The clinical features, phenotypic analyses and the presence of a panel of known virulence genes in the isolated strain are described. To the best of our knowledge, this is the first report of V cholerae causing severe AHNE, which is of profound pedagogical significance.
Collapse
|
11
|
Tsuruta K, Ueyama T, Watanabe T, Nakano K, Uno K, Fukushima H. Intensive care management of a patient with necrotizing fasciitis due to non-O1/O139 Vibrio cholerae after traveling to Taiwan: a case report. BMC Infect Dis 2020; 20:618. [PMID: 32831039 PMCID: PMC7444193 DOI: 10.1186/s12879-020-05343-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background Vibrio cholerae are oxidase-positive bacteria that are classified into various serotypes based on the O surface antigen. V. cholerae serotypes are divided into two main groups: the O1 and O139 group and the non-O1/non-O139 group. O1 and O139 V. cholerae are related to cholera infection, whereas non-O1/non-O139 V. cholerae (NOVC) can cause cholera-like diarrhea. A PubMed search revealed that only 16 cases of necrotizing fasciitis caused by NOVC have been recorded in the scientific literature to date. We report the case of a Japanese woman who developed necrotizing fasciitis caused by NOVC after traveling to Taiwan and returning to Japan. Case presentation A 63-year-old woman visited our hospital because she had experienced left knee pain for the past 3 days. She had a history of colon cancer (Stage IV: T3N3 M1a) and had received chemotherapy. She had visited Taiwan 5 days previously, where she had received a massage. She was diagnosed with septic shock owing to necrotizing fasciitis. She underwent fasciotomy and received intensive care. She recovered from the septic shock; however, after 3 weeks, she required an above-knee amputation for necrosis and infection. Her condition improved, and she was discharged after 22 weeks in the hospital. Conclusions With the increase in tourism, it is important for clinicians to check patients’ travel history. Clinicians should be alert to the possibility of necrotizing fasciitis in patients with risk factors. Necrotizing fasciitis caused by NOVC is severe and requires early fasciotomy and debridement followed by intensive postoperative care.
Collapse
Affiliation(s)
- Keisuke Tsuruta
- Emergency Department, Minaminara General Hospital, 8-1 Ooazafukugami, Ooyodocho, Yoshino-gun, Nara, 638-0833, Japan.
| | - Toru Ueyama
- Emergency Department, Minaminara General Hospital, 8-1 Ooazafukugami, Ooyodocho, Yoshino-gun, Nara, 638-0833, Japan
| | - Tomoo Watanabe
- Emergency Department, Minaminara General Hospital, 8-1 Ooazafukugami, Ooyodocho, Yoshino-gun, Nara, 638-0833, Japan
| | - Kenichi Nakano
- Orthopedic Department, Minaminara General Hospital, Nara, Japan
| | - Kenji Uno
- Infectious Diseases Department, Minaminara General Hospital, Nara, Japan
| | - Hidetada Fukushima
- Department of Emergency and Critical Care Medicine, Nara Medical University, Nara, Japan
| |
Collapse
|
12
|
Van Bonn SM, Schraven SP, Schuldt T, Heimesaat MM, Mlynski R, Warnke PC. Chronic otitis media following infection by non-O1/non-O139 Vibrio cholerae: A case report and review of the literature. Eur J Microbiol Immunol (Bp) 2020; 10:186-191. [PMID: 32796134 PMCID: PMC7592514 DOI: 10.1556/1886.2020.00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
We report a case of a chronic mesotympanic otitis media with a smelly purulent secretion from both ears and recurrent otalgia over the last five years in a six-year-old girl after swimming in the German Baltic Sea. Besides Staphylococcus aureus a non-O1/non-O139 Vibrio cholerae strain could be isolated from patient samples. An antibiotic therapy with ciprofloxacin and ceftriaxone was administered followed by atticotomy combined with tympanoplasty. We conclude that V. cholerae should not be overlooked as a differential diagnosis to otitis infections, especially when patients present with extra-intestinal infections after contact with brackish- or saltwater aquatic environments.
Collapse
Affiliation(s)
- Sara M Van Bonn
- 1Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner Rostock University Medical Center, Rostock, Germany
| | - Sebastian P Schraven
- 1Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner Rostock University Medical Center, Rostock, Germany
| | - Tobias Schuldt
- 1Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner Rostock University Medical Center, Rostock, Germany
| | - Markus M Heimesaat
- 3Institute of Microbiology, Infectious Diseases and Immunology Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Robert Mlynski
- 1Department of Otorhinolaryngology, Head and Neck Surgery, Otto Körner Rostock University Medical Center, Rostock, Germany
| | - Philipp C Warnke
- 2Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medicical Center, Rostock, Germany
| |
Collapse
|
13
|
Vezzulli L, Baker-Austin C, Kirschner A, Pruzzo C, Martinez-Urtaza J. Global emergence of environmental non-O1/O139 Vibrio cholerae infections linked with climate change: a neglected research field? Environ Microbiol 2020; 22:4342-4355. [PMID: 32337781 DOI: 10.1111/1462-2920.15040] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
The bacterium Vibrio cholerae is a natural inhabitant of aquatic ecosystems across the planet. V. cholerae serogroups O1 and O139 are responsible for cholera outbreaks in developing countries accounting for 3-5 million infections worldwide and 28.800-130.000 deaths per year according to the World Health Organization. In contrast, V. cholerae serogroups other than O1 and O139, also designated as V. cholerae non-O1/O139 (NOVC), are not associated with epidemic cholera but can cause other illnesses that may range in severity from mild (e.g. gastroenteritis, otitis, etc.) to life-threatening (e.g. necrotizing fasciitis). Although generally neglected, NOVC-related infections are on the rise and represent one of the most striking examples of emerging human diseases linked to climate change. NOVC strains are also believed to potentially contribute to the emergence of new pathogenic strains including strains with epidemic potential as a direct consequence of genetic exchange mechanisms such as horizontal gene transfer and genetic recombination. Besides general features concerning the biology and ecology of NOVC strains and their associated diseases, this review aims to highlight the most relevant aspects related to the emergence and potential threat posed by NOVC strains under a rapidly changing environmental and climatic scenario.
Collapse
Affiliation(s)
- Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science, CEFAS, Weymouth, UK
| | - Alexander Kirschner
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University of Vienna, Vienna, Austria.,Division Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture Science, CEFAS, Weymouth, UK.,Department of Genetics and Microbiology, Facultat de Biociéncies, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
14
|
Zhang X, Lu Y, Qian H, Liu G, Mei Y, Jin F, Xia W, Ni F. Non-O1, Non-O139 Vibrio cholerae (NOVC) Bacteremia: Case Report and Literature Review, 2015-2019. Infect Drug Resist 2020; 13:1009-1016. [PMID: 32308442 PMCID: PMC7156264 DOI: 10.2147/idr.s245806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/22/2020] [Indexed: 12/22/2022] Open
Abstract
Non-O1, non-O139 Vibrio cholerae (NOVC) does not agglutinate with O1 and O139 antisera and can cause intestinal and extraintestinal infections in immunocompromised individuals. NOVC bacteremia has the highest mortality among NOVC infections, and the number of reports has increased in recent years. Nevertheless, some clinicians are poorly informed about this disease. Herein, we describe a documented case of NOVC bacteremia in a male patient with impaired liver function. Blood cultures revealed the presence of V. cholerae, but this strain showed self-coagulation on the serum agglutination test. To our knowledge, this phenomenon is unreported among cases of NOVC infections. This pathogen was finally confirmed as NOVC via PCR. Because the patient worked as a garbage transporter, he was likely infected after contact with contaminated water through a foot wound. The patient developed septic shock shortly after admission and ultimately died from the illness. This paper reviews 23 cases of NOVC bacteremia from 2015 to 2019. To improve the accuracy of identifying NOVC and analyze its virulence factors, relevant detection methods were reviewed and analyzed.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Nanjing, People's Republic of China
| | - Yanfei Lu
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Nanjing, People's Republic of China
| | - Huimin Qian
- Key Laboratory of Enteric Pathogenic Microbiology of Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Genyan Liu
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Nanjing, People's Republic of China
| | - Yaning Mei
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Nanjing, People's Republic of China
| | - Fei Jin
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Nanjing, People's Republic of China
| | - Wenying Xia
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Nanjing, People's Republic of China
| | - Fang Ni
- Department of Laboratory Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People's Republic of China.,National Key Clinical Department of Laboratory Medicine, Nanjing, People's Republic of China
| |
Collapse
|
15
|
Potential pathogenicity and antibiotic resistance of aquatic Vibrio isolates from freshwater in Slovakia. Folia Microbiol (Praha) 2019; 65:545-555. [PMID: 31773555 DOI: 10.1007/s12223-019-00760-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to evaluate the potential pathogenicity and antibiotic resistance of 31 environmental Vibrio isolates obtained from surface water in southern and eastern Slovakia. Isolates were identified as Vibrio cholerae non-O1/non-O139 and Vibrio metschnikovii by biochemical tests, MALDI biotyping, and 16S RNA gene sequencing. Analysis of the susceptibility to 13 antibacterial agents showed susceptibility of all isolates to ciprofloxacin, trimethoprim/sulfamethoxazole, chloramphenicol, gentamicin, imipenem, tetracyclin, and doxycycline. We recorded high rates of resistance to β-lactams and streptomycin. Investigation of antibiotic resistance showed five different antibiotic profiles with resistance to antibacterials from three classes, but no multidrug resistance was observed. The investigation of the pathogenic potential of V. cholerae isolates showed that neither the cholera toxin coding gene ctxA nor the genes zot (zonula occludens toxin), ace (accessory cholera toxin), and tcpA (toxin-coregulated pilus) were present in any of 31 isolated samples. Gene ompU (outer membrane protein) was confirmed in 80% and central regulatory protein-coding gene toxR in 71% of V. cholerae isolates, respectively. A high prevalence of the hemolysin coding gene hlyA in all V. cholerae was observed. The data point toward the importance of systematic monitoring and comparative studies of potentially pathogenic vibrios in European countries.
Collapse
|
16
|
Lepuschitz S, Baron S, Larvor E, Granier SA, Pretzer C, Mach RL, Farnleitner AH, Ruppitsch W, Pleininger S, Indra A, Kirschner AKT. Phenotypic and Genotypic Antimicrobial Resistance Traits of Vibrio cholerae Non-O1/Non-O139 Isolated From a Large Austrian Lake Frequently Associated With Cases of Human Infection. Front Microbiol 2019; 10:2600. [PMID: 31781080 PMCID: PMC6857200 DOI: 10.3389/fmicb.2019.02600] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
Vibrio cholerae belonging to serogroups other than O1 and O139 are opportunistic pathogens which cause infections with a variety of clinical symptoms. Due to the increasing number of V. cholerae non-O1/non-O139 infections in association with recreational waters in the past two decades, they have received increasing attention in recent literature and by public health authorities. Since the treatment of choice is the administration of antibiotics, we investigated the distribution of antimicrobial resistance properties in a V. cholerae non-O1/non-O139 population in a large Austrian lake intensively used for recreation and in epidemiologically linked clinical isolates. In total, 82 environmental isolates - selected on the basis of comprehensive phylogenetic information - and nine clinical isolates were analyzed for their phenotypic antimicrobial susceptibility. The genomes of 46 environmental and eight clinical strains were screened for known genetic antimicrobial resistance traits in CARD and ResFinder databases. In general, antimicrobial susceptibility of the investigated V. cholerae population was high. The environmental strains were susceptible against most of the 16 tested antibiotics, except sulfonamides (97.5% resistant strains), streptomycin (39% resistant) and ampicillin (20.7% resistant). Clinical isolates partly showed additional resistance to amoxicillin-clavulanic acid. Genome analysis showed that crp, a regulator of multidrug efflux genes, and the bicyclomycin/multidrug efflux system of V. cholerae were present in all isolates. Nine isolates additionally carried variants of bla CARB-7 and bla CARB-9, determinants of beta-lactam resistance and six isolates carried catB9, a determinant of phenicol resistance. Three isolates had both bla CARB-7 and catB9. In 27 isolates, five out of six subfamilies of the MATE-family were present. For all isolates no genes conferring resistance to aminoglycosides, macrolides and sulfonamides were detected. The apparent lack of either known antimicrobial resistance traits or mobile genetic elements indicates that in cholera non-epidemic regions of the world, V. cholerae non-O1/non-O139 play a minor role as a reservoir of resistance in the environment. The discrepancies between the phenotypic and genome-based antimicrobial resistance assessment show that for V. cholerae non-O1/non-O139, resistance databases are currently inappropriate for an assessment of antimicrobial resistance. Continuous collection of both data over time may solve such discrepancies between genotype and phenotype in the future.
Collapse
Affiliation(s)
- Sarah Lepuschitz
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, Vienna, Austria
- Research Division of Biochemical Technology, Institute of Chemical, Environmental and BioScience Engineering, Technische Universität Wien, Vienna, Austria
| | - Sandrine Baron
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Emeline Larvor
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Sophie A. Granier
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougeres Laboratory, Fougeres, France
| | - Carina Pretzer
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria
| | - Robert L. Mach
- Research Division of Biochemical Technology, Institute of Chemical, Environmental and BioScience Engineering, Technische Universität Wien, Vienna, Austria
| | - Andreas H. Farnleitner
- Research Division of Biochemical Technology, Institute of Chemical, Environmental and BioScience Engineering, Technische Universität Wien, Vienna, Austria
- Division Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Interuniversity Cooperation Centre for Water and Health, Vienna, Austria
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Sonja Pleininger
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Alexander Indra
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Alexander K. T. Kirschner
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria
- Division Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Interuniversity Cooperation Centre for Water and Health, Vienna, Austria
| |
Collapse
|
17
|
|
18
|
Schwartz K, Hammerl JA, Göllner C, Strauch E. Environmental and Clinical Strains of Vibrio cholerae Non-O1, Non-O139 From Germany Possess Similar Virulence Gene Profiles. Front Microbiol 2019; 10:733. [PMID: 31031724 PMCID: PMC6474259 DOI: 10.3389/fmicb.2019.00733] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Vibrio cholerae is a natural inhabitant of aquatic ecosystems globally. Strains of the serogroups O1 and O139 cause the epidemic diarrheal disease cholera. In Northern European waters, V. cholerae bacteria belonging to other serogroups (designated non-O1, non-O139) are present, of which some strains have been associated with gastrointestinal infections or extraintestinal infections, like wound infections or otitis. For this study, environmental strains from the German coastal waters of the North Sea and the Baltic Sea were selected (100 strains) and compared to clinical strains (10 isolates) that were from patients who contracted the infections in the same geographical region. The strains were characterized by MLST and examined by PCR for the presence of virulence genes encoding the cholera toxin, the toxin-coregulated pilus (TCP), and other virulence-associated accessory factors. The latter group comprised hemolysins, RTX toxins, cholix toxin, pandemic islands, and type III secretion system (TTSS). Phenotypic assays for hemolytic activity against human and sheep erythrocytes were also performed. The results of the MLST analysis revealed a considerable heterogeneity of sequence types (in total 74 STs). The presence of virulence genes was also variable and 30 profiles were obtained by PCR. One profile was found in 38 environmental strains and six clinical strains. Whole genome sequencing (WGS) was performed on 15 environmental and 7 clinical strains that were ST locus variants in one, two, or three alleles. Comparison of WGS results revealed that a set of virulence genes found in some clinical strains is also present in most environmental strains irrespective of the ST. In few strains, more virulence factors are acquired through horizontal gene transfer (i.e., TTSS, genomic islands). A distinction between clinical and environmental strains based on virulence gene profiles is not possible for our strains. Probably, many virulence traits of V. cholerae evolved in response to biotic and abiotic pressure and serve adaptation purposes in the natural aquatic environment, but provide a prerequisite for infection of susceptible human hosts. These findings indicate the need for surveillance of Vibrio spp. in Germany, as due to global warming abundance of Vibrio will rise and infections are predicted to increase.
Collapse
Affiliation(s)
- Keike Schwartz
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Cornelia Göllner
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Eckhard Strauch
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
19
|
Kirschner A, Pleininger S, Jakwerth S, Rehak S, Farnleitner A, Huhulescu S, Indra A. Application of three different methods to determine the prevalence, the abundance and the environmental drivers of culturable Vibrio cholerae in fresh and brackish bathing waters. J Appl Microbiol 2018; 125:1186-1198. [PMID: 29856502 PMCID: PMC6175421 DOI: 10.1111/jam.13940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 02/01/2023]
Abstract
AIMS Three cultivation methods were used to study the prevalence and abundance of Vibrio cholerae in Eastern Austrian bathing waters and to elucidate the main factors controlling their distribution. METHODS AND RESULTS Vibrio cholerae abundance was monitored at 36 inland bathing sites with membrane filtration (MF), a standard most probable number (MPN) approach and direct plating (DP). Membrane filtration yielded the most reliable and sensitive results and allowed V. cholerae detection at 22 sites with concentrations up to 39 000 CFU per 100 ml, all belonging to serogroups other than O1 and O139 and not coding for cholera toxin and toxin coregulated pilus. Direct plating turned out as an easy method for environments with high V. cholerae abundances, conductivity was the only significant predictor of V. cholerae abundance in the bathing waters at warm water temperatures. CONCLUSIONS Vibrio cholerae nonO1/nonO139 are widely prevalent in Eastern Austrian bathing waters. Instead of the standard MPN approach, MF and DP are recommended for V. cholerae monitoring. Conductivity can be used as a first easy-to-measure parameter to identify potential bathing waters at risk. SIGNIFICANCE AND IMPACT OF THE STUDY Vibrio cholerae nonO1/nonO139 infections associated with bathing activities are an increasing public health issue in many countries of the northern hemisphere. However, there are only limited data available on the prevalence and abundance of V. cholerae in coastal and inland bathing waters. For monitoring V. cholerae prevalence and abundance, reliable and simple quantification methods are needed. Moreover, prediction of V. cholerae abundance from environmental parameters would be a helpful tool for risk assessment. This study identified the best culture-based quantification methods and a first quick surrogate parameter to attain these aims.
Collapse
Affiliation(s)
- A.K.T. Kirschner
- Institute for Hygiene and Applied ImmunologyWater HygieneMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre for Water & HealthViennaAustria
- Research Department Water Quality and HealthKarl Landsteiner University of Health SciencesKremsAustria
| | - S. Pleininger
- Institute for Medical Microbiology and HygieneAustrian Agency for Health and Food SafetyViennaAustria
| | - S. Jakwerth
- Institute for Hygiene and Applied ImmunologyWater HygieneMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre for Water & HealthViennaAustria
| | - S. Rehak
- Institute for Medical Microbiology and HygieneAustrian Agency for Health and Food SafetyViennaAustria
| | - A.H. Farnleitner
- Interuniversity Cooperation Centre for Water & HealthViennaAustria
- Institute of Chemical, Environmental & Bioscience EngineeringTechnische Universität WienViennaAustria
- Research Department Water Quality and HealthKarl Landsteiner University of Health SciencesKremsAustria
| | - S. Huhulescu
- Institute for Medical Microbiology and HygieneAustrian Agency for Health and Food SafetyViennaAustria
| | - A. Indra
- Institute for Medical Microbiology and HygieneAustrian Agency for Health and Food SafetyViennaAustria
| |
Collapse
|
20
|
Bliem R, Reischer G, Linke R, Farnleitner A, Kirschner A. Spatiotemporal Dynamics of Vibrio cholerae in Turbid Alkaline Lakes as Determined by Quantitative PCR. Appl Environ Microbiol 2018; 84:e00317-18. [PMID: 29625977 PMCID: PMC5960970 DOI: 10.1128/aem.00317-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/23/2018] [Indexed: 11/20/2022] Open
Abstract
In recent years, global warming has led to a growing number of Vibrio cholerae infections in bathing water users in regions formerly unaffected by this pathogen. It is therefore of high importance to monitor V. cholerae in aquatic environments and to elucidate the main factors governing its prevalence and abundance. For this purpose, rapid and standardizable methods that can be performed by routine water laboratories are prerequisite. In this study, we applied a recently developed multiplex quantitative PCR (qPCR) strategy (i) to monitor the spatiotemporal variability of V. cholerae abundance in two small soda pools and a large lake that is intensively used for recreation and (ii) to elucidate the main factors driving V. cholerae dynamics in these environments. V. cholerae was detected with qPCR at high concentrations of up to 970,000 genomic units 100 ml-1 during the warm season, up to 2 orders of magnitude higher than values obtained by cultivation. An independent cytometric approach led to results comparable to qPCR data but with significantly more positive samples due to problems with DNA recovery for qPCR. Not a single sample was positive for toxigenic V. cholerae, indicating that only nontoxigenic V. cholerae (NTVC) was present. Temperature was the main predictor of NTVC abundance, but the quality and quantity of dissolved organic matter were also important environmental correlates. Based on this study, we recommend using the developed qPCR strategy for quantification of toxigenic and nontoxigenic V. cholerae in bathing waters with the need for improvements in DNA recovery.IMPORTANCE There is a definitive need for rapid and standardizable methods to quantify waterborne bacterial pathogens. Such methods have to be thoroughly tested for their applicability to environmental samples. In this study, we critically tested a recently developed multiplex qPCR strategy for its applicability to determine the spatiotemporal variability of V. cholerae abundance in lakes with a challenging water matrix. Several qPCR protocols for V. cholerae detection have been developed in the laboratory, but comprehensive studies on the application to environmental samples are extremely scarce. In our study, we demonstrate that our developed qPCR approach is a valuable tool but that there is a need for improvement in DNA recovery for complex water matrices. Furthermore, we found that nontoxigenic V. cholerae is present in very high numbers in the investigated ecosystems, while toxigenic V. cholerae is apparently absent. Such information is of importance for public health.
Collapse
Affiliation(s)
- Rupert Bliem
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria
- Armament and Defence Technology Agency, NBC & Environmental Protection Technology Division, Vienna, Austria
| | - Georg Reischer
- Technische Universität Wien, Institute of Chemical, Environmental & Bioscience Engineering, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| | - Rita Linke
- Technische Universität Wien, Institute of Chemical, Environmental & Bioscience Engineering, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| | - Andreas Farnleitner
- Technische Universität Wien, Institute of Chemical, Environmental & Bioscience Engineering, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Alexander Kirschner
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria
- Interuniversity Cooperation Centre for Water and Health‡
| |
Collapse
|
21
|
Ceccarelli D, Garriss G, Choi SY, Hasan NA, Stepanauskas R, Pop M, Huq A, Colwell RR. Characterization of Two Cryptic Plasmids Isolated in Haiti from Clinical Vibrio cholerae Non-O1/Non-O139. Front Microbiol 2017; 8:2283. [PMID: 29218035 PMCID: PMC5703827 DOI: 10.3389/fmicb.2017.02283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022] Open
Abstract
We report the complete sequence of two novel plasmids, pSDH-1 and pSDH-2, isolated from clinical Vibrio cholerae non-O1/non-O139 during the early phase of the 2010 Haitian cholera epidemic. Plasmids were revealed by employing single-cell genomics and their genome content suggests self-mobilization and, for pSDH-2, a toxin-antitoxin (TA) system for plasmid stabilization was identified. The putative origin of replication of pSDH-2 was mapped suggesting it replicates following the ColE1 model of plasmid replication. pSDH-1 and pSDH-2 were widespread among environmental V. cholerae non-O1/non-O139 with variable prevalence in four Haitian Departments. pSDH-2 was the most common element, either alone or with pSDH-1. The two plasmids detection adds to the composite scenario of mobile genetic elements (MGEs) observed in V. cholerae in Haiti. The role these small cryptic plasmids circulating in Vibrio spp. play in bacterial fitness or pathogenicity merits further investigation.
Collapse
Affiliation(s)
- Daniela Ceccarelli
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States.,Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Geneviève Garriss
- Department of Microbiology, Cell Biology and Tumor Biology, Karolinska Institutet, Stockholm, Sweden
| | - Seon Y Choi
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States.,CosmosID Inc., Rockville, MD, United States
| | - Nur A Hasan
- CosmosID Inc., Rockville, MD, United States.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | | | - Mihai Pop
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | - Anwar Huq
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States.,Maryland Institute of Applied Environmental Health, University of Maryland, College Park, MD, United States
| | - Rita R Colwell
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States.,CosmosID Inc., Rockville, MD, United States.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States.,Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
22
|
Baron S, Larvor E, Chevalier S, Jouy E, Kempf I, Granier SA, Lesne J. Antimicrobial Susceptibility among Urban Wastewater and Wild Shellfish Isolates of Non-O1/Non-O139 Vibrio cholerae from La Rance Estuary (Brittany, France). Front Microbiol 2017; 8:1637. [PMID: 28955305 PMCID: PMC5601046 DOI: 10.3389/fmicb.2017.01637] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/11/2017] [Indexed: 12/26/2022] Open
Abstract
The early 2000s marked the end of the Golden age of the antibiotics and the beginning of the awareness on the potential threat to human health due to the dissemination of antimicrobial resistance. As a base-line study, we investigated the antimicrobial susceptibility of 99 strains of non-O1/non-O139 Vibrio cholerae isolated from wastewater and shellfish in 2000/2001 within La Rance estuary (Brittany, France). All isolates were susceptible to amoxicillin-clavulanic acid, cefotaxime, imipenem, chloramphenicol, nalidixic acid, ciprofloxacin, norfloxacin, amikacin, gentamicin, tetracycline, doxycycline, trimethoprim-sulfamethoxazole, and erythromycin. The only resistances were to streptomycin, sulfonamides and ampicillin: 54.6% of the isolates had acquired resistance to at least one antimicrobial agent among them and only six isolates from cockles were multidrug resistant. On the basis of the distribution of a limited selection of resistance associated genes, our study shows that V. cholerae can constitute an environmental reservoir for these genes. However, none of our isolates harbored integron. This result casts doubt on the capacity of non-O1/non-O139 V. cholerae to acquire resistance-associated genes in such context, and on its potential role of indicator of the dissemination of antimicrobial resistance in the aquatic environment.
Collapse
Affiliation(s)
- Sandrine Baron
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (Anses)Ploufragan, France.,Bretagne-Loire UniversityRennes, France
| | - Emeline Larvor
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (Anses)Ploufragan, France.,Bretagne-Loire UniversityRennes, France
| | - Séverine Chevalier
- Bretagne-Loire UniversityRennes, France.,Ecole des Hautes Etudes en Santé Publique, Laboratoire d'Etude et de Recherche en Environnement et Santé, Institut de Recherche en Santé, Environnement et Travail, UMR 1085Rennes, France
| | - Eric Jouy
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (Anses)Ploufragan, France.,Bretagne-Loire UniversityRennes, France
| | - Isabelle Kempf
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (Anses)Ploufragan, France.,Bretagne-Loire UniversityRennes, France
| | - Sophie A Granier
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health and Safety (Anses), Paris-Est UniversityMaisons-Alfort, France
| | - Jean Lesne
- Bretagne-Loire UniversityRennes, France.,Ecole des Hautes Etudes en Santé Publique, Laboratoire d'Etude et de Recherche en Environnement et Santé, Institut de Recherche en Santé, Environnement et Travail, UMR 1085Rennes, France
| |
Collapse
|
23
|
Kechker P, Senderovich Y, Ken-Dror S, Laviad-Shitrit S, Arakawa E, Halpern M. Otitis Media Caused by V. cholerae O100: A Case Report and Review of the Literature. Front Microbiol 2017; 8:1619. [PMID: 28894440 PMCID: PMC5581382 DOI: 10.3389/fmicb.2017.01619] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022] Open
Abstract
Infections due to Vibrio cholerae are rarely documented in Israel. Here we report a case of recurrent otitis media in a young male, caused by V. cholerae non-O1/O139. This extra-intestinal infection was caused by V. cholerae O100 and has been associated with freshwater exposure and travel. Symptoms of chronic periodic earaches along with purulent exudate began about one week after the patient suffered a water skiing accident on a river in Australia. The condition lasted for three years, until his ear exudate was examined in a clinical laboratory, diagnosed and treated. Five bacterial isolates were identified as V. cholerae O100. The isolates were screened for genetic characteristics and were found positive for the presence of hapA, hlyA, and ompU virulence genes. All isolates were negative for the presence of ctxA. Based on antibiogram susceptibility testing, ciprofloxacin ear drops were used until the patient’s symptoms disappeared. This case demonstrates that exposure to freshwater can cause otitis media by V. cholerae non-O1/O139 in young and otherwise healthy humans.
Collapse
Affiliation(s)
- Peter Kechker
- W. Hirsch Regional Microbiology Laboratory, Clalit Health ServicesHaifa, Israel
| | - Yigal Senderovich
- W. Hirsch Regional Microbiology Laboratory, Clalit Health ServicesHaifa, Israel
| | - Shifra Ken-Dror
- W. Hirsch Regional Microbiology Laboratory, Clalit Health ServicesHaifa, Israel
| | - Sivan Laviad-Shitrit
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of HaifaHaifa, Israel
| | - Eiji Arakawa
- National Institute of Infectious DiseasesToyama, Japan
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of HaifaHaifa, Israel.,Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa at OranimTivon, Israel
| |
Collapse
|
24
|
Marinello S, Marini G, Parisi G, Gottardello L, Rossi L, Besutti V, Cattelan AM. Vibrio cholerae non-O1, non-O139 bacteraemia associated with pneumonia, Italy 2016. Infection 2016; 45:237-240. [PMID: 27837335 DOI: 10.1007/s15010-016-0961-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/03/2016] [Indexed: 11/26/2022]
Abstract
This paper describes an elderly male patient, living in the Veneto Region, Italy, who developed Vibrio cholerae bacteraemia and pneumonia. Some days previously, while on holiday in the Lagoon of Venice, he had been collecting clams in seawater, during which he suffered small abrasions of the skin. On admission to hospital, he was confused, had fever and a cough, but neither diarrhoea nor signs of gastroenteritis were found. Both blood and stool cultures grew V. cholerae of non-O1 non-O-139 type, and the patient recovered after prompt administration of intravenous ceftriaxone for 2 weeks. This clinical case emphasises the role of global warming and climate changes in causing increasing numbers of water-borne infections.
Collapse
Affiliation(s)
- Serena Marinello
- Department of Infectious Diseases, Azienda Ospedaliera and University of Padova, Padua, Italy.
| | - Giulia Marini
- Department of Infectious Diseases, Azienda Ospedaliera and University of Padova, Padua, Italy
| | - Giancarlo Parisi
- Department of Internal Medicine, Hospital of Piove di Sacco, Padua, Italy
| | - Lorena Gottardello
- Department of Hygiene and Public Health, Azienda Ospedaliera and University of Padova, Padua, Italy
| | - Lucia Rossi
- Department of Microbiology, Azienda Ospedaliera and University of Padova, Padua, Italy
| | - Valeria Besutti
- Department of Microbiology, Azienda Ospedaliera and University of Padova, Padua, Italy
| | - Anna Maria Cattelan
- Department of Infectious Diseases, Azienda Ospedaliera and University of Padova, Padua, Italy
| |
Collapse
|
25
|
CROWE SJ, NEWTON AE, GOULD LH, PARSONS MB, STROIKA S, BOPP CA, FREEMAN M, GREENE K, MAHON BE. Vibriosis, not cholera: toxigenic Vibrio cholerae non-O1, non-O139 infections in the United States, 1984-2014. Epidemiol Infect 2016; 144:3335-3341. [PMID: 27510301 PMCID: PMC9150200 DOI: 10.1017/s0950268816001783] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/13/2016] [Accepted: 07/20/2016] [Indexed: 11/07/2022] Open
Abstract
Toxigenic strains of Vibrio cholerae serogroups O1 and O139 have caused cholera epidemics, but other serogroups - such as O75 or O141 - can also produce cholera toxin and cause severe watery diarrhoea similar to cholera. We describe 31 years of surveillance for toxigenic non-O1, non-O139 infections in the United States and map these infections to the state where the exposure probably originated. While serogroups O75 and O141 are closely related pathogens, they differ in how and where they infect people. Oysters were the main vehicle for O75 infection. The vehicles for O141 infection include oysters, clams, and freshwater in lakes and rivers. The patients infected with serogroup O75 who had food traceback information available ate raw oysters from Florida. Patients infected with O141 ate oysters from Florida and clams from New Jersey, and those who only reported being exposed to freshwater were exposed in Arizona, Michigan, Missouri, and Texas. Improving the safety of oysters, specifically, should help prevent future illnesses from these toxigenic strains and similar pathogenic Vibrio species. Post-harvest processing of raw oysters, such as individual quick freezing, heat-cool pasteurization, and high hydrostatic pressurization, should be considered.
Collapse
Affiliation(s)
- S. J. CROWE
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Enteric Diseases Epidemiology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - A. E. NEWTON
- Enteric Diseases Epidemiology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - L. H. GOULD
- Enteric Diseases Epidemiology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M. B. PARSONS
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - S. STROIKA
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - C. A. BOPP
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M. FREEMAN
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - K. GREENE
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - B. E. MAHON
- Enteric Diseases Epidemiology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
26
|
Baron S, Lesne J, Jouy E, Larvor E, Kempf I, Boncy J, Rebaudet S, Piarroux R. Antimicrobial Susceptibility of Autochthonous Aquatic Vibrio cholerae in Haiti. Front Microbiol 2016; 7:1671. [PMID: 27818656 PMCID: PMC5073147 DOI: 10.3389/fmicb.2016.01671] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022] Open
Abstract
We investigated the antimicrobial susceptibility of 50 environmental isolates of Vibrio cholerae non-O1/non-O139 collected in surface waters in Haiti in July 2012, during an active cholera outbreak. A panel of 16 antibiotics was tested on the isolates using the disk diffusion method and PCR detection of seven resistance-associated genes (strA/B, sul1/2, ermA/B, and mefA). All isolates were susceptible to amoxicillin-clavulanic acid, cefotaxime, imipenem, ciprofloxacin, norfloxacin, amikacin, and gentamicin. Nearly a quarter (22.0%) of the isolates were susceptible to all 16 antimicrobials tested and only 8.0% of the isolates (n = 4) were multidrug-resistant. The highest proportions of resistant isolates were observed for sulfonamide (70.0%), amoxicillin (12.0%), and trimethoprim-sulfamethoxazole (10.0%). One strain was resistant to erythromycin and one to doxycycline, two antibiotics used to treat cholera in Haiti. Among the 50 isolates, 78% possessed at least two resistance-associated genes, and the genes sul1, ermA, and strB were detected in all four multidrug-resistant isolates. Our results clearly indicate that the autochthonous population of V. cholerae non-O1/non-O139 found in surface waters in Haiti shows antimicrobial patterns different from that of the outbreak strain. The presence in the Haitian aquatic environment of V. cholerae non-O1/non-O139 with reduced susceptibility or resistance to antibiotics used in human medicine may constitute a mild public health threat.
Collapse
Affiliation(s)
- Sandrine Baron
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Jean Lesne
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Eric Jouy
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Emeline Larvor
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Isabelle Kempf
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Jacques Boncy
- National Public Health Laboratory, Ministry of Public Health and Population Port au Prince, Haiti
| | | | | |
Collapse
|
27
|
Dobrović K, Rudman F, Ottaviani D, Šestan Crnek S, Leoni F, Škrlin J. A rare case of necrotizing fasciitis caused by Vibrio cholerae O8 in an immunocompetent patient. Wien Klin Wochenschr 2016; 128:728-730. [PMID: 27604649 DOI: 10.1007/s00508-016-1060-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/18/2016] [Indexed: 11/28/2022]
Abstract
We report a case of necrotizing fasciitis of the leg caused by Vibrio cholerae O8 in a 63-year-old immunocompetent man after he had been fishing in a lake on a Croatian island. The strain was cytotoxic, invasive and adhesive and contained a fragment of the gene for El Tor-like hemolysin (El Tor hlyA). After surgical and antibiotic treatment, the patient fully recovered.
Collapse
Affiliation(s)
- Karolina Dobrović
- Dubrava University Hospital, Av. G. Šuška 6, 10000, Zagreb, Croatia.
| | - Franjo Rudman
- Dubrava University Hospital, Av. G. Šuška 6, 10000, Zagreb, Croatia
| | | | | | - Francesca Leoni
- Istituto Zooprofilattico dell'Umbria e delle Marche, CEREM, Ancona, Italy
| | - Jasenka Škrlin
- Dubrava University Hospital, Av. G. Šuška 6, 10000, Zagreb, Croatia
| |
Collapse
|