1
|
Rumpold H, Hackl M, Petzer A, Wolf D. Improvement in colorectal cancer outcomes over time is limited to patients with left-sided disease. J Cancer Res Clin Oncol 2022; 148:3007-3014. [PMID: 34977964 DOI: 10.1007/s00432-021-03868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Incidence and mortality of colorectal cancer (CRC) declined over the last decades. However, survival depends on the primary tumor location. It is unknown if all progress in outcomes vary depending on left-sided (LCRC) versus right-sided (RCC) colorectal cancer. We compare incidence and mortality rates over time according to the primary tumor location. METHODS Data from the Austrian National Cancer Registry spanning from 1983 to 2018 were used to calculate annual incidence and mortality rates and survival stratified by primary tumor localization and stage. Joinpoint regression with linear regression models were used on different subgroups to identify significant changes of incidence- and mortality slopes. RESULTS A total of 168,260 (incidence dataset) and 87,355 cases (mortality dataset) were identified. Survival of disseminated RCC was worse compared to LCRC (HR 1.14; CI 1.106-1.169). Total and LCRC incidence and mortality rates declined steadily over time, whereas the rates of RCC did not. Incidence of disseminated RCC declined significantly less (slope - 0.07; CI - 0.086; - 0.055) than in LCRC (slope - 0.159; CI - 0.183; - 0.136); mortality rate of RCC was unchanged over time. Incidence and mortality of localized RCC remained unchanged over time, whereas both rates declined independently of stage in LCRC. CONCLUSION Colorectal cancer outcomes during the last 35 years have preferentially improved in LCRC but not in RCC, indicating that the progress made is limited to LCRC. It is necessary to define RCC as a distinct form of CRC and to focus on specific strategies for its early detection and treatment.
Collapse
Affiliation(s)
- Holger Rumpold
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Seilerstaette 4, 4010, Linz, Austria. .,Medical Faculty, Johannes Kepler University, Linz, Austria.
| | - M Hackl
- National Cancer Registry, Statistics Austria, Vienna, Austria
| | - A Petzer
- Department of Medical Oncology and Hematology, Ordensklinikum Linz, Linz, Austria
| | - D Wolf
- Internal Medicine 5, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Daza-Cajigal V, Albuquerque AS, Young DF, Ciancanelli MJ, Moulding D, Angulo I, Jeanne-Julien V, Rosain J, Minskaia E, Casanova JL, Boisson-Dupuis S, Bustamante J, Randall RE, McHugh TD, Thrasher AJ, Burns SO. Partial human Janus kinase 1 deficiency predominantly impairs responses to interferon gamma and intracellular control of mycobacteria. Front Immunol 2022; 13:888427. [PMID: 36159783 PMCID: PMC9501714 DOI: 10.3389/fimmu.2022.888427] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Janus kinase-1 (JAK1) tyrosine kinase mediates signaling from multiple cytokine receptors, including interferon alpha/beta and gamma (IFN-α/β and IFN-γ), which are important for viral and mycobacterial protection respectively. We previously reported autosomal recessive (AR) hypomorphic JAK1 mutations in a patient with recurrent atypical mycobacterial infections and relatively minor viral infections. This study tests the impact of partial JAK1 deficiency on cellular responses to IFNs and pathogen control. Methods We investigated the role of partial JAK1 deficiency using patient cells and cell models generated with lentiviral vectors expressing shRNA. Results Partial JAK1 deficiency impairs IFN-γ-dependent responses in multiple cell types including THP-1 macrophages, Epstein-Barr Virus (EBV)-transformed B cells and primary dermal fibroblasts. In THP-1 myeloid cells, partial JAK1 deficiency reduced phagosome acidification and apoptosis and resulted in defective control of mycobacterial infection with enhanced intracellular survival. Although both EBV-B cells and primary dermal fibroblasts with partial JAK1 deficiency demonstrate reduced IFN-α responses, control of viral infection was impaired only in patient EBV-B cells and surprisingly intact in patient primary dermal fibroblasts. Conclusion Our data suggests that partial JAK1 deficiency predominantly affects susceptibility to mycobacterial infection through impact on the IFN-γ responsive pathway in myeloid cells. Susceptibility to viral infections as a result of reduced IFN-α responses is variable depending on cell type. Description of additional patients with inherited JAK1 deficiency will further clarify the spectrum of bacterial and viral susceptibility in this condition. Our results have broader relevance for anticipating infectious complications from the increasing use of selective JAK1 inhibitors.
Collapse
Affiliation(s)
- Vanessa Daza-Cajigal
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom.,School of Medicine, Universidad Complutense, Madrid, Spain.,Department of Immunology, Hospital Universitario Son Espases, Palma, Spain.,Research Unit, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma, Spain
| | - Adriana S Albuquerque
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Dan F Young
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Michael J Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States
| | - Dale Moulding
- Molecular and Cellular Immunology Section, University College London Institute of Child Health, London, United Kingdom
| | - Ivan Angulo
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Valentine Jeanne-Julien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Ekaterina Minskaia
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, New York, NY, United States
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France.,Study Center of Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Richard E Randall
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Timothy D McHugh
- Research Department of Infection, University College London Centre for Clinical Microbiology, London, United Kingdom
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Section, University College London Institute of Child Health, London, United Kingdom.,Immunology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
3
|
Devos T, Selleslag D, Granacher N, Havelange V, Benghiat FS. Updated recommendations on the use of ruxolitinib for the treatment of myelofibrosis. Hematology 2021; 27:23-31. [PMID: 34957926 DOI: 10.1080/16078454.2021.2009645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Myelofibrosis is a rare bone marrow disorder associated with a high symptom burden, poor prognosis, and shortened survival. While allogeneic hematopoietic stem cell transplantation (HSCT) is the only curative treatment for myelofibrosis, the only approved and reimbursed pharmacotherapy for non-HSCT candidates in Belgium is ruxolitinib. METHODS These updated recommendations are based on a consensus reached during two meetings and provide guidance for ruxolitinib administration in myelofibrosis patients considering the particularities of Belgian reimbursement criteria. RESULTS AND DISCUSSION In Belgium, ruxolitinib is indicated and reimbursed for transplant-ineligible myelofibrosis patients from intermediate-2- and high-risk groups and from the intermediate-1-risk group with splenomegaly. Our recommendation is to also make ruxolitinib available in the pre-transplant setting for myelofibrosis patients with splenomegaly or heavy symptom burden. Before ruxolitinib initiation, complete blood cell counts are recommended, and the decision on the optimal dosage should be based on platelet count and clinical parameters. In anemic patients, we recommend starting doses of ruxolitinib of 10 mg twice daily for 12 weeks and we propose the use of erythropoiesis-stimulating agents in patients with endogenous erythropoietin levels ≤500 mU/mL. Increased vigilance for opportunistic infections and second primary malignancies is needed in ruxolitinib-treated myelofibrosis patients. Ruxolitinib treatment should be continued as long as there is clinical benefit (reduced splenomegaly or symptoms), and we recommend progressive dose tapering when stopping ruxolitinib. CONCLUSION Based on new data and clinical experience, the panel of experts discussed ruxolitinib treatment in Belgian myelofibrosis patients with a focus on dose optimization/monitoring, adverse events, and interruption/rechallenge management.
Collapse
Affiliation(s)
- Timothy Devos
- Department of Hematology, University Hospitals Leuven (UZ Leuven) and Department of Microbiology and Immunology, Laboratory of Molecular Immunology (Rega Institute), Catholic University Leuven (KU Leuven), Leuven, Belgium
| | - Dominik Selleslag
- Department of Hematology, Algemeen Ziekenhuis Sint-Jan, Bruges, Belgium
| | - Nikki Granacher
- Department of Hematology, Ziekenhuis Netwerk Antwerpen, Antwerp, Belgium
| | - Violaine Havelange
- Department of Hematology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | | |
Collapse
|
4
|
Rumi E, Baratè C, Benevolo G, Maffioli M, Ricco A, Sant'Antonio E. Myeloproliferative and lymphoproliferative disorders: State of the art. Hematol Oncol 2019; 38:121-128. [PMID: 31833567 DOI: 10.1002/hon.2701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022]
Abstract
Myeloproliferative neoplasms (MPNs), including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are clonal disorders complicated mainly by vascular events and transformation to myelofibrosis (for PV and ET) or leukemia. Although secondary malignancies, in particular, lymphoproliferative disorders (LPNs), are rare, they occur at a higher frequency than found in the general population, and there has been recent scientific discussion regarding a hypothetical relationship between treatment with JAK inhibitors in MPN and the risk of development of LPN. This has prompted increased interest regarding the coexistence of MPN and LPN. This review focuses on the role of JAK2 and the JAK/STAT pathway in MPN and LPN, whether there is a role for the genetic background in the occurrence of both MPN and LPN and whether there is a role for cytoreductive drugs in the occurrence of both MPN and LPN. Furthermore, whether an increased risk of lymphoma development is limited to patients who receive the JAK inhibitor ruxolitinib, is a more general phenomenon that occurs following JAK1/2 inhibition or is associated with preferential JAK1 or JAK2 targeting is discussed.
Collapse
Affiliation(s)
- Elisa Rumi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Claudia Baratè
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Giulia Benevolo
- Hematology, Città della Salute e della Scienza, Turin, Italy
| | | | - Alessandra Ricco
- Department of Emergency and Organ Transplantation (D.E.T.O), Hematology Section, University of Bari, Bari, Italy
| | - Emanuela Sant'Antonio
- UOC Ematologia Aziendale, Azienda Usl Toscana Nord Ovest, Pisa, Italy.,Medical Genetics, University of Siena, Siena, Italy
| |
Collapse
|