1
|
Parsons SK, Rodday AM, Pei Q, Keller FG, Wu Y, Henderson TO, Cella D, Kelly KM, Castellino SM. Performance of the FACT-GOG-Ntx to assess chemotherapy-induced peripheral neuropathy (CIPN) in pediatric high risk Hodgkin lymphoma: report from the Children's Oncology Group AHOD 1331 study. J Patient Rep Outcomes 2023; 7:113. [PMID: 37947987 PMCID: PMC10638179 DOI: 10.1186/s41687-023-00653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is an under-recognized complication of several chemotherapy agents used as part of curative-intent therapy for Hodgkin Lymphoma (HL). In the absence of validated self- or proxy-report measures for children and adolescents, CIPN reporting has relied on clinician rating, with grading scales often restricted to severe manifestations. In a proof-of-concept study, we assessed the feasibility and psychometric performance of the Functional Assessment of Cancer Therapy-Gynecologic Oncology Group-Neurotoxicity (FACT-GOG-Ntx), a unidimensional CIPN symptom scale widely used adults with CIPN, in pediatric HL at risk for CIPN. METHODS Youth (11+ years) and parents of all children (5-17.9 years) with newly diagnosed high-risk HL enrolled on Children's Oncology Group AHOD1331 (NCT02166463) were invited to complete the FACT-GOG-Ntx and a health-related quality of life (HRQL) measure at pre-treatment (Time 1), and during cycles 2 (Time 2) and 5 (Time 3) of chemotherapy during the first half of study accrual. Clinical grading of CIPN by providers was also assessed using the Balis Pediatric Neuropathy Scale. We evaluated Cronbach's alpha, construct validity, and agreement between raters. Change in FACT-GOG-Ntx scores over time was assessed using a repeated measures model. RESULTS 306 patients had at least one completed FACT-GOG-Ntx with time-specific completion rates of > 90% for both raters. Cronbach's alpha was > 0.7 for youth and parent-proxy report at all time points. Correlations between FACT-GOG-Ntx and HRQL scores were moderate (0.41-0.48) for youth and parent-proxy raters across all times. Youth and parent-proxy raters both reported worse FACT-GOG-Ntx scores at Time 3 for those who had clinically-reported CIPN compared to those who did not. Agreement between raters was moderate to high. Compared to baseline scores, those at Time 3 were significantly lower for youth (β = - 2.83, p < 0.001) and parent-proxy raters (β = - 1.99, p < 0.001). CONCLUSIONS High completion rates at all time points indicated feasibility of eliciting youth and parent report. Psychometric performance of the FACT-GOG-Ntx revealed acceptable reliability, evidence of validity, and strong inter-rater agreement, supporting the use of this self- or proxy-reported measure of CIPN in youth with high-risk HL exposed to tubulin inhibitors, as part of a Phase 3 clinical trial. CLINICAL TRIAL INFORMATION Clinical Trials Registry, NCT02166463. Registered 18 June 2014, https://clinicaltrials.gov/ct2/show/study/NCT02166463.
Collapse
Affiliation(s)
- Susan K Parsons
- Institute for Clinical Research and Health Policy Studies and Tufts Cancer Center, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| | - Angie Mae Rodday
- Institute for Clinical Research and Health Policy Studies and Tufts Cancer Center, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Qinglin Pei
- Department of Biostatistics, Children's Oncology Group, Statistics and Data Center, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA
| | - Frank G Keller
- Department of Pediatrics, Emory University School of Medicine; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, 1405 Clifton Rd, Atlanta, GA, 30322, USA
| | - Yue Wu
- Department of Biostatistics, Children's Oncology Group, Statistics and Data Center, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA
| | - Tara O Henderson
- Department of Pediatrics, University of Chicago Pritzker School of Medicine, Comer Children's Hospital, 5721 S Maryland Ave, Chicago, IL, 60637, USA
| | - David Cella
- Department of Medical Social Sciences, Institute for Public Health and Medicine, Center for Patient-Centered Outcomes, Northwestern University, 420 E. Superior St, Chicago, IL, 60611, USA
| | - Kara M Kelly
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 665 Elm St, Buffalo, NY, 14203, USA
| | - Sharon M Castellino
- Department of Pediatrics, Emory University School of Medicine; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, 1405 Clifton Rd, Atlanta, GA, 30322, USA
| |
Collapse
|
2
|
Zhang Y, Li C, Qin Y, Cepparulo P, Millman M, Chopp M, Kemper A, Szalad A, Lu X, Wang L, Zhang ZG. Small extracellular vesicles ameliorate peripheral neuropathy and enhance chemotherapy of oxaliplatin on ovarian cancer. J Extracell Vesicles 2021; 10:e12073. [PMID: 33728031 PMCID: PMC7931803 DOI: 10.1002/jev2.12073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 12/17/2022] Open
Abstract
There are no effective treatments for chemotherapy induced peripheral neuropathy (CIPN). Small extracellular vesicles (sEVs) facilitate intercellular communication and mediate nerve function and tumour progression. We found that the treatment of mice bearing ovarian tumour with sEVs derived from cerebral endothelial cells (CEC-sEVs) in combination with a chemo-drug, oxaliplatin, robustly reduced oxaliplatin-induced CIPN by decreasing oxaliplatin-damaged myelination and nerve fibres of the sciatic nerve and significantly amplified chemotherapy of oxaliplatin by reducing tumour size. The combination therapy substantially increased a set of sEV cargo-enriched miRNAs, but significantly reduced oxaliplatin-increased proteins in the sciatic nerve and tumour tissues. Bioinformatics analysis revealed the altered miRNAs and proteins formed two distinct networks that regulate neuropathy and tumour growth, respectively. Intravenously administered CEC-sEVs were internalized by axons of the sciatic nerve and cancer cells. Reduction of CEC-sEV cargo miRNAs abolished the effects of CEC-sEVs on oxaliplatin-inhibited axonal growth and on amplification of the anti-cancer effect in ovarian cancer cells, suggesting that alterations in the networks of miRNAs and proteins in recipient cells contribute to the therapeutic effect of CEC-sEVs on CIPN. Together, the present study demonstrates that CEC-sEVs suppressed CIPN and enhanced chemotherapy of oxaliplatin in the mouse bearing ovarian tumour.
Collapse
Affiliation(s)
- Yi Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Chao Li
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Yi Qin
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | | | | | - Michael Chopp
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
- Department of PhysicsOakland UniversityRochesterMichiganUSA
| | - Amy Kemper
- Department of PathologyHenry Ford Health SystemDetroitMichiganUSA
| | - Alexandra Szalad
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Xuerong Lu
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Lei Wang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Zheng Gang Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| |
Collapse
|
3
|
Mizrahi D, Park SB, Li T, Timmins HC, Trinh T, Au K, Battaglini E, Wyld D, Henderson RD, Grimison P, Ke H, Geelan-Small P, Marker J, Wall B, Goldstein D. Hemoglobin, Body Mass Index, and Age as Risk Factors for Paclitaxel- and Oxaliplatin-Induced Peripheral Neuropathy. JAMA Netw Open 2021; 4:e2036695. [PMID: 33587134 PMCID: PMC7885037 DOI: 10.1001/jamanetworkopen.2020.36695] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
IMPORTANCE Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating adverse effect of neurotoxic cancer treatments including taxanes and platinum agents. Limited knowledge exists of potential prechemotherapy factors associated with CIPN development. OBJECTIVE To identify the association of pretreatment blood-based and clinical factors with CIPN persistence in patients who received paclitaxel or oxaliplatin. DESIGN, SETTING, AND PARTICIPANTS This cohort study assessed pretreatment blood-based clinical factors and demographic characteristics of 333 patients treated with paclitaxel and oxaliplatin chemotherapy at urban multicenter cancer clinics and academic institutions in Australia between September 2015 and February 2020. Comprehensive neuropathy assessments were undertaken 3 to 12 months posttreatment. Posttreatment CIPN severity was compared with blood-based factors within 30 days prior to commencing chemotherapy. Data were analyzed between March and December 2020. EXPOSURES Paclitaxel or oxaliplatin chemotherapy. MAIN OUTCOMES AND MEASURES CIPN was measured using composite neurological grading scales, nerve conduction studies, and assessments of fine motor skills (grooved pegboard test), sensory function (grating orientation test and 2-point discrimination), and patient-reported outcomes. Independent samples t tests and Mann-Whitney U tests with post hoc Bonferroni correction were used to compare CIPN between patients according to blood-based factor normative ranges. Linear regression was used to identify blood-based and clinical associations with CIPN development. RESULTS The study included 333 participants (266 [79.9%] women; median [interquartile range] age, 58 [18] years) who were consecutively recruited and referred (228 treated with paclitaxel, 105 treated with oxaliplatin; 138 [41.4%] with breast cancer, 83 [24.9%] with colorectal cancer). Most participants had grade 1 CIPN or higher (238 [71.5%] participants). Participants with low hemoglobin pretreatment had worse CIPN posttreatment (median [IQR] composite neurological grading scale score, 5 [2-8] vs 4 [1-6]; P = .002; grooved pegboard mean [SD] time, 84.2 [28.7] vs 72.9 [21.1] seconds; P = .002; grating orientation task, 4.8 [2.8] vs 3.9 [1.8] mm; P = .03; 2-point discrimination, 45% vs 28%; P = .01), with no other impairments outside normative ranges associated with CIPN. In the multivariable model, several factors were associated with worse CIPN (F4,315 = 18.6; P < .001; r2 = .19) including for lower hemoglobin (β = -0.47; 95% CI, -0.73 to -0.21; P < .001), higher body mass index (β = 0.08; 95% CI, 0.02 to 0.12; P = .007), older age (β = 0.08; 95% CI, 0.06 to 0.11; P < .001), and female sex (β = -1.08; 95% CI, -1.76 to -0.16; P = .01). CONCLUSIONS AND RELEVANCE The results of this cohort study suggest that participants with low pretreatment hemoglobin, higher body mass index, older age, and female sex were more likely to develop paclitaxel- or oxaliplatin-induced CIPN posttreatment. Future research should investigate prospectively whether these risk factors are associated with a higher incidence of CIPN development.
Collapse
Affiliation(s)
- David Mizrahi
- Prince of Wales Clinical School, UNSW Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Susanna B. Park
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Tiffany Li
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | | | - Terry Trinh
- Prince of Wales Clinical School, UNSW Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Kimberley Au
- Prince of Wales Clinical School, UNSW Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Eva Battaglini
- Prince of Wales Clinical School, UNSW Medicine, University of New South Wales Sydney, Sydney, Australia
| | - David Wyld
- Royal Brisbane and Women’s Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Robert D. Henderson
- Royal Brisbane and Women’s Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Peter Grimison
- Chris O’Brien Lifehouse, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Helen Ke
- Chris O’Brien Lifehouse, Sydney, Australia
| | - Peter Geelan-Small
- Mark Wainwright Analytical Centre, University of New South Wales, Kensington, Australia
| | - Julie Marker
- The Australasian Gastro-Intestinal Trials Group Consumer Advisory Panel, Sydney, Australia
| | - Brian Wall
- The Australasian Gastro-Intestinal Trials Group Consumer Advisory Panel, Sydney, Australia
| | - David Goldstein
- Prince of Wales Clinical School, UNSW Medicine, University of New South Wales Sydney, Sydney, Australia
- Department of Medical Oncology, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
4
|
Hu LY, Mi WL, Wu GC, Wang YQ, Mao-Ying QL. Prevention and Treatment for Chemotherapy-Induced Peripheral Neuropathy: Therapies Based on CIPN Mechanisms. Curr Neuropharmacol 2019; 17:184-196. [PMID: 28925884 PMCID: PMC6343206 DOI: 10.2174/1570159x15666170915143217] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 08/20/2017] [Accepted: 01/01/1970] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, enduring, and often irreversible adverse effect of many antineoplastic agents, among which sensory abnormities are common and the most suffering issues. The pathogenesis of CIPN has not been completely understood, and strategies for CIPN prevention and treatment are still open problems for medicine. OBJECTIVES The objective of this paper is to review the mechanism-based therapies against sensory abnormities in CIPN. METHODS This is a literature review to describe the uncovered mechanisms underlying CIPN and to provide a summary of mechanism-based therapies for CIPN based on the evidence from both animal and clinical studies. RESULTS An abundance of compounds has been developed to prevent or treat CIPN by blocking ion channels, targeting inflammatory cytokines and combating oxidative stress. Agents such as glutathione, mangafodipir and duloxetine are expected to be effective for CIPN intervention, while Ca/Mg infusion and venlafaxine, tricyclic antidepressants, and gabapentin display limited efficacy for preventing and alleviating CIPN. And the utilization of erythropoietin, menthol and amifostine needs to be cautious regarding to their side effects. CONCLUSIONS Multiple drugs have been used and studied for decades, their effect against CIPN are still controversial according to different antineoplastic agents due to the diverse manifestations among different antineoplastic agents and complex drug-drug interactions. In addition, novel therapies or drugs that have proven to be effective in animals require further investigation, and it will take time to confirm their efficacy and safety.
Collapse
Affiliation(s)
- Lang-Yue Hu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| |
Collapse
|
5
|
De Iuliis F, Taglieri L, Salerno G, Lanza R, Scarpa S. Taxane induced neuropathy in patients affected by breast cancer: Literature review. Crit Rev Oncol Hematol 2015; 96:34-45. [PMID: 26004917 DOI: 10.1016/j.critrevonc.2015.04.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/10/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022] Open
Abstract
Taxane induced neuropathy (TIN) is the most limiting side effect of taxane based chemotherapy, relative to the majority of breast cancer patients undergoing therapy with both docetaxel and paclitaxel. The symptoms begin symmetrically from the toes, because the tips of the longest nerves are affected for first. The patients report sensory symptoms such as paresthesia, dysesthesia, numbness, electric shock-like sensation, motor impairment and neuropathic pain. There is a great inter-individual variability among breast cancer women treated with taxanes, in fact 20-30% of them don't develop neurotoxicity. Actually, there is no standard therapy for TIN, although many medications, antioxidants and natural substances have been tested in vitro and in vivo. We will summarize all most recent literature data on TIN prevention and treatment, in order to reach an improvement in TIN management. Further studies are needed to evaluate new therapies that restore neuronal function and improve life quality of patients.
Collapse
Affiliation(s)
- Francesca De Iuliis
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Ludovica Taglieri
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Gerardo Salerno
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Rosina Lanza
- Ginecology and Obstetrics Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Susanna Scarpa
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
6
|
Debeljak N, Solár P, Sytkowski AJ. Erythropoietin and cancer: the unintended consequences of anemia correction. Front Immunol 2014; 5:563. [PMID: 25426117 PMCID: PMC4227521 DOI: 10.3389/fimmu.2014.00563] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/22/2014] [Indexed: 01/12/2023] Open
Abstract
Until 1990, erythropoietin (EPO) was considered to have a single biological purpose and action, the stimulation of red blood cell growth and differentiation. Slowly, scientific and medical opinion evolved, beginning with the discovery of an effect on endothelial cell growth in vitro and the identification of EPO receptors (EPORs) on neuronal cells. We now know that EPO is a pleiotropic growth factor that exhibits an anti-apoptotic action on numerous cells and tissues, including malignant ones. In this article, we present a short discussion of EPO, receptors involved in EPO signal transduction, and their action on non-hematopoietic cells. This is followed by a more detailed presentation of both pre-clinical and clinical data that demonstrate EPO’s action on cancer cells, as well as tumor angiogenesis and lymphangiogenesis. Clinical trials with reported adverse effects of chronic erythropoiesis-stimulating agents (ESAs) treatment as well as clinical studies exploring the prognostic significance of EPO and EPOR expression in cancer patients are reviewed. Finally, we address the use of EPO and other ESAs in cancer patients.
Collapse
Affiliation(s)
- Nataša Debeljak
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana , Ljubljana , Slovenia
| | - Peter Solár
- Department of Cell and Molecular Biology, Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Šafárik University , Košice , Slovakia
| | - Arthur J Sytkowski
- Oncology Therapeutic Area, Quintiles Transnational , Arlington, MA , USA
| |
Collapse
|
7
|
Toxic and drug-induced peripheral neuropathies: updates on causes, mechanisms and management. Curr Opin Neurol 2014; 26:481-8. [PMID: 23995278 DOI: 10.1097/wco.0b013e328364eb07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review discusses publications highlighting current research on toxic, chemotherapy-induced peripheral neuropathies (CIPNs), and drug-induced peripheral neuropathies (DIPNs). RECENT FINDINGS The emphasis in clinical studies is on the early detection and grading of peripheral neuropathies, whereas recent studies in animal models have given insights into molecular mechanisms, with the discovery of novel neuronal, axonal, and Schwann cell targets. Some substances trigger inflammatory changes in the peripheral nerves. Pharmacogenetic techniques are underway to identify genes that may help to predict individuals at higher risk of developing DIPNs. Several papers have been published on chemoprotectants; however, to date, this approach has not been shown effective in clinical trials. SUMMARY Both length and nonlength-dependent neuropathies are encountered, including small-fiber involvement. The introduction of new diagnostic techniques, such as excitability studies, skin laser Doppler flowmetry, and pharmacogenetics, holds promise for early detection and to elucidate underlying mechanisms. New approaches to improve functions and quality of life in CIPN patients are discussed. Apart from developing less neurotoxic anticancer therapies, there is still hope to identify chemoprotective agents (erythropoietin and substances involved in the endocannabinoid system are promising) able to prevent or correct painful CIPNs.
Collapse
|