1
|
Uti DE, Atangwho IJ, Alum EU, Ntaobeten E, Obeten UN, Bawa I, Agada SA, Ukam CIO, Egbung GE. Antioxidants in cancer therapy mitigating lipid peroxidation without compromising treatment through nanotechnology. DISCOVER NANO 2025; 20:70. [PMID: 40272665 PMCID: PMC12021792 DOI: 10.1186/s11671-025-04248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/03/2025] [Indexed: 04/27/2025]
Abstract
BACKGROUND Cancer treatments often exploit oxidative stress to selectively kill tumour cells by disrupting their lipid peroxidation membranes and inhibiting antioxidant enzymes. However, lipid peroxidation plays a dual role in cancer progression, acting as both a tumour promoter and a suppressor. Balancing oxidative stress through antioxidant therapy remains a challenge, as excessive antioxidant activity may compromise the efficacy of chemotherapy and radiotherapy. AIM This review explores the role of antioxidants in mitigating lipid peroxidation in cancer therapy while maintaining treatment efficacy. It highlights recent advancements in nanotechnology-based targeted antioxidant delivery to optimize therapeutic outcomes. METHODS A comprehensive literature review was conducted using reputable databases, including PubMed, Scopus, Web of Science, and ScienceDirect. The search focused on publications from the past five years (2020-2025), supplemented by relevant studies from earlier years. Keywords such as "antioxidants," "lipid peroxidation," "nanotechnology in cancer therapy," and "oxidative stress" were utilized. Relevant articles were critically analysed, and graphical illustrations were created. RESULTS Emerging evidence suggests that nanoparticles, including liposomes, polymeric nanoparticles, metal-organic frameworks, and others, can effectively encapsulate and control the release of antioxidants in tumour cells while minimizing systemic toxicity. Stimuli-responsive carriers with tumour-specific targeting mechanisms further enhance antioxidant delivery. Studies indicate that these strategies help preserve normal cells, mitigate oxidative stress-related damage, and improve treatment efficacy. However, challenges such as bioavailability, stability, and potential interactions with standard therapies remain. CONCLUSION Integrating nanotechnology with antioxidant-based interventions presents a promising approach for optimizing cancer therapy. Future research should focus on refining lipid peroxidation modulation strategies, assessing oxidative stress profiles during treatment, and employing biomarkers to determine optimal antioxidant dosing. A balanced approach to antioxidant use may enhance therapeutic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
- Daniel Ejim Uti
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria.
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Esther Ugo Alum
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Emmanuella Ntaobeten
- Department of Cancer and Haematology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Uket Nta Obeten
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| | - Inalegwu Bawa
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | - Samuel A Agada
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | | | - Godwin Eneji Egbung
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
2
|
Torii Y, Naito K, Takagi J, Yasue A, Tsukada K, Fujii T, Nishizawa H. Examination of the relationship between serum zinc levels and peripheral neuropathy induced by paclitaxel/carboplatin combination therapy in gynecological cancer patients. FUJITA MEDICAL JOURNAL 2025; 11:11-19. [PMID: 39896227 PMCID: PMC11782941 DOI: 10.20407/fmj.2024-013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/22/2024] [Indexed: 02/04/2025]
Abstract
Objectives Chemotherapy-induced peripheral neuropathy (CIPN), a frequently occurring adverse event associated with paclitaxel/carboplatin (TC) combination therapy, causes limb pain and markedly reduces the patient's quality of life. Since zinc has been reported to be associated with neuropathic pain, we investigated the relationship between CIPN due to TC therapy and serum zinc levels. Methods The study included 13 patients with gynecological cancer whose serum zinc levels were measured before and during TC therapy. CIPN was classified into severity grades based on the Common Terminology Criteria for Adverse Events v5.0. A retrospective analysis was conducted on the relationship between the serum zinc level before TC therapy (PreZn), the minimum serum zinc level measured during TC therapy (MinZn), the MinZn/PreZn ratio, the number of TC treatment cycles, and the maximum grade of CIPN (MaxG) using Pearson's correlation coefficient. Moreover, an analysis was also conducted on clinical factors influencing MaxG, as well as fluctuations in serum zinc levels and CIPN grades for each cycle of TC therapy. Results A negative correlation was observed between the MinZn/PreZn ratio and MaxG (r=-0.557, p=0.048). The clinical factors influencing CIPN remained unclear, and the decrease in serum zinc levels and the aggravation of CIPN plateaued after the third cycle. Conclusions If a decrease in serum zinc levels during TC therapy is smaller than before therapy, it may imply the existence of a causal relationship that suppresses the aggravation of CIPN.
Collapse
Affiliation(s)
- Yutaka Torii
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
- Department of Gynecology, Fujita Health University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Kana Naito
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Junichi Takagi
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
- Department of Gynecology, Fujita Health University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Akira Yasue
- Department of Gynecology, Fujita Health University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Kazuhiko Tsukada
- Department of Gynecology, Fujita Health University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Takuma Fujii
- Department of Gynecology, Fujita Health University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Haruki Nishizawa
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
3
|
Yan S, Lu J, Chen B, Yuan L, Chen L, Ju L, Cai W, Wu J. The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment. Antioxidants (Basel) 2024; 13:897. [PMID: 39199143 PMCID: PMC11351715 DOI: 10.3390/antiox13080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring compound synthesized by mitochondria and widely distributed in both animal and plant tissues. It primarily influences cellular metabolism and oxidative stress networks through its antioxidant properties and is an important drug for treating metabolic diseases associated with oxidative damage. Nevertheless, research indicates that the mechanism by which ALA affects cancer cells is distinct from that observed in normal cells, exhibiting pro-oxidative properties. Therefore, this review aims to describe the main chemical and biological functions of ALA in the cancer environment, including its mechanisms and effects in tumor prevention and anticancer activity, as well as its role as an adjunctive drug in cancer therapy. We specifically focus on the interactions between ALA and various carcinogenic and anti-carcinogenic pathways and discuss ALA's pro-oxidative capabilities in the unique redox environment of cancer cells. Additionally, we elaborate on ALA's roles in nanomedicine, hypoxia-inducible factors, and cancer stem cell research, proposing hypotheses and potential explanations for currently unresolved issues.
Collapse
Affiliation(s)
- Shuai Yan
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Jiajie Lu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Bingqing Chen
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Liuxia Yuan
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Lin Chen
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Linglin Ju
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Weihua Cai
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| | - Jinzhu Wu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| |
Collapse
|
4
|
Eng C, Yoshino T, Ruíz-García E, Mostafa N, Cann CG, O'Brian B, Benny A, Perez RO, Cremolini C. Colorectal cancer. Lancet 2024; 404:294-310. [PMID: 38909621 DOI: 10.1016/s0140-6736(24)00360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 06/25/2024]
Abstract
Despite decreased incidence rates in average-age onset patients in high-income economies, colorectal cancer is the third most diagnosed cancer in the world, with increasing rates in emerging economies. Furthermore, early onset colorectal cancer (age ≤50 years) is of increasing concern globally. Over the past decade, research advances have increased biological knowledge, treatment options, and overall survival rates. The increase in life expectancy is attributed to an increase in effective systemic therapy, improved treatment selection, and expanded locoregional surgical options. Ongoing developments are focused on the role of sphincter preservation, precision oncology for molecular alterations, use of circulating tumour DNA, analysis of the gut microbiome, as well as the role of locoregional strategies for colorectal cancer liver metastases. This overview is to provide a general multidisciplinary perspective of clinical advances in colorectal cancer.
Collapse
Affiliation(s)
- Cathy Eng
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, Cancer Center Hospital East, Kashiwa, Japan
| | - Erika Ruíz-García
- Department of Gastrointestinal Tumors and Translational Medicine Laboratory, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | | - Christopher G Cann
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Brittany O'Brian
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Amala Benny
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Aldendail CF, Chen P, Dibble HS, Baute Penry V. A Comprehensive Review of Safety, Efficacy, and Indications for the Use of Alpha-Lipoic Acid and Acetyl-L-Carnitine in Neuropathic Pain. Integr Med (Encinitas) 2024; 23:32-39. [PMID: 39114278 PMCID: PMC11302972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The debilitating, chronic symptoms of neuropathic pain result in decreased quality of life, depressed mood, and anxiety in patients suffering from neuropathic pain. Despite hundreds of dollars in monthly treatment-related costs, more than half of the patients report inadequate pain relief. Traditional first-line agents are expensive and may have disruptive side effects. Given the disease burden of neuropathic pain, many patients turn to over-the-counter supplements. Here we review two supplements, alpha-lipoic acid (ALA), also known as thioctic acid, and acetyl-L-carnitine (ALC), and data of treatment outcomes from the available literature suggest comparable efficacy to currently available pharmaceuticals for the treatment of neuropathic pain. Meta-analysis of randomized controlled trials demonstrates that ALA can significantly improve neuropathic pain and nerve conduction velocity. ALA has been evaluated in the treatment of multiple sources of neuropathic pain, including chemotherapy-induced peripheral neuropathy, entrapment neuropathies, radicular nerve pain, and burning mouth syndrome. Common dose-dependent side effects include nausea, vomiting, and vertigo. Cost analysis from June 2022 indicates that a clinically effective dose (600 mg/day) of ALA costs patients $14.40 monthly. Two randomized control trials demonstrate that ALC exhibits neuroprotective effects, can regenerate nerves, and improve vibratory perception in the early stages of DPN. In terms of adverse reactions, no significant differences were observed between treatment and placebo groups, implying that ALC is generally well-tolerated. Cost analysis from June 2022 indicates that a clinically effective dose of ALC (2000 mg/day) costs patients $27.60 monthly. Comparable efficacy in clinical trials, minimal side effects, and lower monthly costs suggest that ALA and ALC should be considered among the accepted first-line treatment options for neuropathic pain.
Collapse
Affiliation(s)
| | - Pinyu Chen
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Hannah S. Dibble
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC
| | | |
Collapse
|
6
|
Tiwari A, Albin B, Qubbaj K, Adhikari P, Yang IH. Phytic Acid Maintains Peripheral Neuron Integrity and Enhances Survivability against Platinum-Induced Degeneration via Reducing Reactive Oxygen Species and Enhancing Mitochondrial Membrane Potential. ACS Chem Neurosci 2024; 15:1157-1168. [PMID: 38445956 PMCID: PMC10958516 DOI: 10.1021/acschemneuro.3c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Phytic acid (PA) has been reported to possess anti-inflammatory and antioxidant properties that are critical for neuroprotection in neuronal disorders. This raises the question of whether PA can effectively protect sensory neurons against chemotherapy-induced peripheral neuropathy (CIPN). Peripheral neuropathy is a dose-limiting side effect of chemotherapy treatment often characterized by severe and abnormal pain in hands and feet resulting from peripheral nerve degeneration. Currently, there are no effective treatments available that can prevent or cure peripheral neuropathies other than symptomatic management. Herein, we aim to demonstrate the neuroprotective effects of PA against the neurodegeneration induced by the chemotherapeutics cisplatin (CDDP) and oxaliplatin. Further aims of this study are to provide the proposed mechanism of PA-mediated neuroprotection. The neuronal protection and survivability against CDDP were characterized by axon length measurements and cell body counting of the dorsal root ganglia (DRG) neurons. A cellular phenotype study was conducted microscopically. Intracellular reactive oxygen species (ROS) was estimated by fluorogenic probe dichlorofluorescein. Likewise, mitochondrial membrane potential (MMP) was assessed by fluorescent MitoTracker Orange CMTMRos. Similarly, the mitochondria-localized superoxide anion radical in response to CDDP with and without PA was evaluated. The culture of primary DRG neurons with CDDP reduced axon length and overall neuronal survival. However, cotreatment with PA demonstrated that axons were completely protected and showed increased stability up to the 45-day test duration, which is comparable to samples treated with PA alone and control. Notably, PA treatment scavenged the mitochondria-specific superoxide radicals and overall intracellular ROS that were largely induced by CDDP and simultaneously restored MMP. These results are credited to the underlying neuroprotection of PA in a platinum-treated condition. The results also exhibited that PA had a synergistic anticancer effect with CDDP in ovarian cancer in vitro models. For the first time, PA's potency against CDDP-induced PN is demonstrated systematically. The overall findings of this study suggest the application of PA in CIPN prevention and therapeutic purposes.
Collapse
Affiliation(s)
- Arjun
Prasad Tiwari
- Center for Biomedical Engineering
and Science, Department of Mechanical Engineering and Engineering
Science, University of North Carolina at
Charlotte, Charlotte, North Carolina 28223, United States
| | - Bayne Albin
- Center for Biomedical Engineering
and Science, Department of Mechanical Engineering and Engineering
Science, University of North Carolina at
Charlotte, Charlotte, North Carolina 28223, United States
| | - Khayzaran Qubbaj
- Center for Biomedical Engineering
and Science, Department of Mechanical Engineering and Engineering
Science, University of North Carolina at
Charlotte, Charlotte, North Carolina 28223, United States
| | - Prashant Adhikari
- Center for Biomedical Engineering
and Science, Department of Mechanical Engineering and Engineering
Science, University of North Carolina at
Charlotte, Charlotte, North Carolina 28223, United States
| | - In Hong Yang
- Center for Biomedical Engineering
and Science, Department of Mechanical Engineering and Engineering
Science, University of North Carolina at
Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
7
|
Maia JRLCB, Machado LKA, Fernandes GG, Vitorino LC, Antônio LS, Araújo SMB, Colodeti LC, Fontes-Dantas FL, Zeidler JD, Saraiva GN, Da Poian AT, Figueiredo CP, Passos GF, da Costa R. Mitotherapy prevents peripheral neuropathy induced by oxaliplatin in mice. Neuropharmacology 2024; 245:109828. [PMID: 38158014 DOI: 10.1016/j.neuropharm.2023.109828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Oxaliplatin (OXA) is an antineoplastic agent used for the treatment of cisplatin-resistant tumours, presenting lower incidence of nephrotoxicity and myelotoxicity than other platinum-based drugs. However, OXA treatment is highly associated with painful peripheral neuropathy, a well-known and relevant side effect caused by mitochondrial dysfunction. The transfer of functional exogenous mitochondria (mitotherapy) is a promising therapeutic strategy for mitochondrial diseases. We investigated the effect of mitotherapy on oxaliplatin-induced painful peripheral neuropathy (OIPN) in male mice. OIPN was induced by i.p. injections of oxaliplatin (3 mg/kg) over 5 consecutive days. Mechanical (von Frey test) and cold (acetone drop test) allodynia were evaluated between 7 and 17 days after the first OXA treatment. Mitochondria was isolated from donor mouse livers and mitochondrial oxidative phosphorylation was assessed with high resolution respirometry. After confirming that the isolated mitochondria were functional, the organelles were administered at the dose of 0.5 mg/kg of mitochondrial protein on days 1, 3 and 5. Treatment with OXA caused both mechanical and cold allodynia in mice that were significant 7 days after the initial injection of OXA and persisted for up to 17 days. Mitotherapy significantly prevented the development of both sensory alterations, and attenuated body weight loss induced by OXA. Mitotherapy also prevented spinal cord ERK1/2 activation, microgliosis and the increase in TLR4 mRNA levels. Mitotherapy prevented OIPN by inhibiting neuroinflammation and the consequent cellular overactivity in the spinal cord, presenting a potential therapeutic strategy for pain management in oncologic patients undergoing OXA treatment.
Collapse
Affiliation(s)
- João R L C B Maia
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Loreena K A Machado
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel G Fernandes
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Louise C Vitorino
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Letícia S Antônio
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suzana Maria B Araújo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lilian C Colodeti
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fabrícia L Fontes-Dantas
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julianna D Zeidler
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Georgia N Saraiva
- Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andrea T Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia P Figueiredo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Giselle F Passos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Robson da Costa
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Kargar HMP, Noshiri H. Protective effects of alpha-lipoic acid on anxiety-like behavior, memory and prevention of hippocampal oxidative stress in methamphetamine-treated rats. Psychopharmacology (Berl) 2024; 241:315-326. [PMID: 37882813 DOI: 10.1007/s00213-023-06487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
RATIONALE Alpha-lipoic acid is an essential cofactor for aerobic metabolism and acts as a potent antioxidant in the body. It has been shown that acute exposure to methamphetamine induces oxidative stress, which is responsible for severe cognitive deficits in animals. The hippocampus plays a crucial role in the processing of memory and anxiety-like behavior. OBJECTIVES In this study, preventive effect of the alpha-lipoic acid on memory impairment in methamphetamine-induced neurotoxicity was investigated. METHODS Wistar male rats (200-220 g) were allocated to five groups (seven rats in each group): (1) saline + saline, (2) saline + vehicle (sunflower oil as alpha-lipoic acid solvent), (3) methamphetamine + vehicle, (4) methamphetamine + alpha-lipoic acid 10 mg/kg, and (5) methamphetamine + alpha-lipoic acid 40 mg/kg. Rats received intraperitoneal methamphetamine repeatedly (2 × 20 mg/kg, 2 h interval). Alpha-lipoic acid was injected 30 min, 24 h, and 48 h after the last injection of methamphetamine. The passive avoidance test and open field were used for evaluation of memory retrieval and anxiety, respectively. After behavioral test, rats were anesthetized, their brains were extracted, and after preparing hippocampal homogenates, malondialdehyde (MDA) level, catalase, and superoxide dismutase (SOD) activities were evaluated. RESULTS Statistical analysis showed that injection of saline or sunflower oil had no significant effect on anxiety, memory, or oxidative stress markers. Methamphetamine induced memory impairment, increased anxiety-like behavior and MDA level, but it reduced catalase and SOD activity. Treatment with alpha-lipoic acid decreased MDA, increased catalase and SOD activity, and also prevented memory impairment and anxiety-like behavior. Our results showed that alpha-lipoic acid protected the hippocampus from oxidative stress by elevating SOD and CAT activities and reduced memory impairment following acute methamphetamine injection. These findings suggest that alpha-lipoic acid may have a protective effect against the adverse effects of methamphetamine exposure on the hippocampus. Therefore, the current data indicated that ALA can reduce oxidative stress predominantly by its antioxidant property.
Collapse
Affiliation(s)
- Hossein Mohammad Pour Kargar
- Department of Biology, Islamic Azad University, Damghan, Iran.
- Faculty of Pharmacy, Islamic Azad University, Damghan Branch, Damghan, Iran.
| | - Hamid Noshiri
- Department of Biology, Islamic Azad University, Damghan, Iran
| |
Collapse
|
9
|
Frediani JK, Lal AA, Kim E, Leslie SL, Boorman DW, Singh V. The role of diet and non-pharmacologic supplements in the treatment of chronic neuropathic pain: A systematic review. Pain Pract 2024; 24:186-210. [PMID: 37654090 DOI: 10.1111/papr.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/IMPORTANCE Dietary interventions, vitamins, and nutritional supplementation are playing an increasingly important role in the management of neuropathic pain. Current pharmacological treatments are poorly tolerated and ineffective in many cases. OBJECTIVE This systematic review aims to study the efficacy of dietary interventions, vitamins, and nutritional supplementation in the management of chronic neuropathic pain in adults. EVIDENCE REVIEW The review followed PRISMA guidelines and was registered with PROSPERO (#CRD42022300312). Ten databases and gray literature, including Embase.com, MEDLINE and Web of Science, were systematically searched using a combination of keywords and controlled vocabulary related to chronic neuropathic pain and oral non-pharmacological supplements. Studies on adult humans published between 2000 and 2021 were considered for inclusion. The Cochrane Handbook was used to assess risk of bias, and Grading of Recommendations Assessment, Development, and Evaluation was used to determine overall quality of evidence. FINDINGS Forty studies were included in the final review, and results were categorized according to pain type including pain related to chemotherapy-induced peripheral neuropathy (CIPN, 22 studies, including 3 prospective cohorts), diabetic peripheral neuropathy (DPN, 13 studies, including 2 prospective), complex regional pain syndrome (CRPS-I, 3 studies, including 1 prospective), and other (2 studies, both RCT). The CIPN studies used various interventions including goshajinkigan (4 studies), vitamin E (5), vitamin B12 (3), glutamine (3), N-acetyl-cysteine (2), acetyl-l-carnitine (2), guilongtonluofang (1), ninjin'yoeito (1), alpha-lipoic acid (1), l-carnosine (1), magnesium and calcium (1), crocin (1), and antioxidants (1), with some studies involving multiple interventions. All CIPN studies involved varying cancers and/or chemotherapies, advising caution for generalizability of results. Interventions for DPN included alpha-lipoic acid (5 studies), vitamin B12 (3), acetyl-l-carnitine (3), vitamin E (1), vitamin D (2), and a low-fat plant-based diet (1). Vitamin C was studied to treat CRPS-I (3 studies, including 1 prospective). Magnesium (1) and St. John's wort (1) were studied for other or mixed neuropathologies. CONCLUSIONS Based on the review, we cannot recommend any supplement use for the management of CIPN, although further research into N-acetyl-cysteine, l-carnosine, crocin, and magnesium is warranted. Acetyl-l-carnitine was found to be likely ineffective or harmful. Alpha-lipoic acid was not found effective. Studies with goshajinkigan, vitamin B12, vitamin E, and glutamine had conflicting results regarding efficacy, with one goshajinkigan study finding it harmful. Guilongtonluofang, ninjin'yoeito, and antioxidants showed various degrees of potential effectiveness. Regarding DPN, our review supports the use of alpha-lipoic acid, acetyl-l-carnitine, and vitamin D. The early use of vitamin C prophylaxis for the development of CRPS-I also seems promising. Further research is warranted to confirm these findings.
Collapse
Affiliation(s)
- Jennifer K Frediani
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Asim A Lal
- Department of Anesthesiology, Emory School of Medicine, Atlanta, Georgia, USA
| | - Esther Kim
- Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, USA
| | - Sharon L Leslie
- Woodruff Health Sciences Center Library, Emory University, Atlanta, Georgia, USA
| | - David W Boorman
- Department of Anesthesiology, Emory School of Medicine, Atlanta, Georgia, USA
| | - Vinita Singh
- Department of Anesthesiology, Emory School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Zhou L, Yang H, Wang J, Liu Y, Xu Y, Xu H, Feng Y, Ge W. The Therapeutic Potential of Antioxidants in Chemotherapy-Induced Peripheral Neuropathy: Evidence from Preclinical and Clinical Studies. Neurotherapeutics 2023; 20:339-358. [PMID: 36735180 PMCID: PMC10121987 DOI: 10.1007/s13311-023-01346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
As cancer therapies advance and patient survival improves, there has been growing concern about the long-term adverse effects that patients may experience following treatment, and concerns have been raised about such persistent, progressive, and often irreversible adverse effects. Chemotherapy is a potentially life-extending treatment, and chemotherapy-induced peripheral neuropathy (CIPN) is one of its most common long-term toxicities. At present, strategies for the prevention and treatment of CIPN are still an open problem faced by medicine, and there has been a large amount of previous evidence that oxidative damage is involved in the process of CIPN. In this review, we focus on the lines of defense involving antioxidants that exert the effect of inhibiting CIPN. We also provide an update on the targets and clinical prospects of different antioxidants (melatonin, N-acetylcysteine, vitamins, α-lipoic acid, mineral elements, phytochemicals, nutritional antioxidants, cytoprotectants and synthetic compounds) in the treatment of CIPN with the help of preclinical and clinical studies, emphasizing the great potential of antioxidants as adjuvant strategies to mitigate CIPN.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hui Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Jing Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yunxing Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yinqiu Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hang Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yong Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, #42 Baizi Ting Road, Nanjing, 210009, Jiangsu, China.
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
11
|
Spera MC, Cesta MC, Zippoli M, Varrassi G, Allegretti M. Emerging Approaches for the Management of Chemotherapy-Induced Peripheral Neuropathy (CIPN): Therapeutic Potential of the C5a/C5aR Axis. Pain Ther 2022; 11:1113-1136. [PMID: 36098939 PMCID: PMC9469051 DOI: 10.1007/s40122-022-00431-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common neurologic complication of chemotherapy, resulting in symptoms like pain, sensory loss, and numbness in the hands and feet that cause lots of uneasiness in patients with cancer. They often suffer from pain so severe that it interrupts the treatment, thus invalidating the entire chemotherapy-based healing process, and significantly reducing their quality of life. In this paper, we underline the role of the complement system in CIPN, highlighting the relevance of the C5a fragment and its receptor C5aR1, whose activation is thought to be involved in triggering a cascade of events that can lead to CIPN onset. Recent experimental data showed the ability of docetaxel and paclitaxel to specifically bind and activate C5aR1, thus shining light on one of the molecular mechanisms by which taxanes may activate a cascade of events leading to neuropathy. According to these new evidence, it was possible to suggest new mechanisms underlying the pathophysiology of CIPN. Hence, the C5a/C5aR1 axis may represent a new target for CIPN treatment, and the use of C5aR1 inhibitors can be proposed as a potential new therapeutic option to manage this high unmet medical need.
Collapse
Affiliation(s)
- Maria C Spera
- Dompé Farmaceutici SpA, Via Campo di Pile, snc, L'Aquila, Italy
| | - Maria C Cesta
- Dompé Farmaceutici SpA, Via Campo di Pile, snc, L'Aquila, Italy.
| | - Mara Zippoli
- Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, Naples, Italy
| | | | | |
Collapse
|
12
|
Werida RH, Elshafiey RA, Ghoneim A, Elzawawy S, Mostafa TM. Role of alpha-lipoic acid in counteracting paclitaxel- and doxorubicin-induced toxicities: a randomized controlled trial in breast cancer patients. Support Care Cancer 2022; 30:7281-7292. [PMID: 35596774 PMCID: PMC9385783 DOI: 10.1007/s00520-022-07124-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Paclitaxel and doxorubicin are associated with neurotoxicity and cardiotoxicity respectively. This study aimed at investigating the role of alpha-lipoic acid (ALA) in counteracting paclitaxel-induced neuropathy and doxorubicin-associated cardiotoxicity in women with breast cancer. PATIENTS AND METHODS This randomized double-blind placebo-controlled prospective study included 64 patients with breast cancer who were randomized into control group (n = 32) which received 4 cycles of doxorubicin plus cyclophosphamide (every 21 days) followed by weekly doses of paclitaxel for 12 weeks plus placebo tablets once daily and ALA group (n = 32) which received the same chemotherapeutic regimen plus ALA 600 once daily for 6 months. Patients were assessed by National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE version 4.0) for grading of neuropathy and by 12-item neurotoxicity questionnaire (Ntx-12). The assessment included also echocardiography and evaluation of serum levels of brain natriuretic peptide (BNP), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), and neurotensin (NT). Data were analyzed by paired and unpaired t-test, Mann-Whitney U test, and chi-square test. RESULTS As compared to placebo, ALA provoked significant improvement in NCI-CTCAE neuropathy grading and Ntx-12 score after the end of 9th and 12th weeks of paclitaxel intake (p = 0.039, p = 0.039, p = 0.03, p = 0.004, respectively). At the end of the chemotherapy cycles, ALA resulted in significant decline in serum levels of BNP, TNF-α, MDA, and neurotensin (p < 0.05) as compared to baseline data and placebo. CONCLUSION Alpha-lipoic acid may represent a promising adjuvant therapy to attenuate paclitaxel-associated neuropathy and doxorubicin-induced cardiotoxicity in women with breast cancer. TRIAL REGISTRATION ClinicalTrials.gov: NCT03908528.
Collapse
Affiliation(s)
- Rehab H Werida
- Clinical Pharmacy & Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Reham A Elshafiey
- Clinical Pharmacy & Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Asser Ghoneim
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Sherif Elzawawy
- Clinical Oncology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Tarek M Mostafa
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
13
|
Illias AM, Yu KJ, Hwang SH, Solis J, Zhang H, Velasquez JF, Cata JP, Dougherty PM. Dorsal root ganglion toll-like receptor 4 signaling contributes to oxaliplatin-induced peripheral neuropathy. Pain 2022; 163:923-935. [PMID: 34490849 DOI: 10.1097/j.pain.0000000000002454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Activation of toll-like receptor 4 (TLR4) in the dorsal root ganglion (DRG) and spinal cord contributes to the generation of paclitaxel-related chemotherapy-induced peripheral neuropathy (CIPN). Generalizability of TLR4 signaling in oxaliplatin-induced CIPN was tested here. Mechanical hypersensitivity developed in male SD rats by day 1 after oxaliplatin treatment, reached maximum intensity by day 14, and persisted through day 35. Western blot revealed an increase in TLR4 expression in the DRG of oxaliplatin at days 1 and 7 after oxaliplatin treatment. Cotreatment of rats with the TLR4 antagonist lipopolysaccharide derived from Rhodobacter sphaeroides ultrapure or with the nonspecific immunosuppressive minocycline with oxaliplatin resulted in significantly attenuated hyperalgesia on day 7 and 14 compared with rats that received oxaliplatin plus saline vehicle. Immunostaining of DRGs revealed an increase in the number of neurons expressing TLR4, its canonical downstream signal molecules myeloid differentiation primary response gene 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-β, at both day 7 and day 14 after oxaliplatin treatment. These increases were blocked by cotreatment with either lipopolysaccharide derived from Rhodobacter sphaeroides or minocycline. Double staining showed the localization of TLR4, MyD88, and TIR-domain-containing adapter-inducing interferon-β in subsets of DRG neurons. Finally, there was no significant difference in oxaliplatin-induced mechanical hypersensitivity between male and female rats when observed for 2 weeks. Furthermore, upregulation of TLR4 was detected in both sexes when tested 14 days after treatment with oxaliplatin. These findings suggest that the activation of TLR4 signaling in DRG neurons is a common mechanism in CIPN induced by multiple cancer chemotherapy agents.
Collapse
Affiliation(s)
- Amina M Illias
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Jie Yu
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Seon-Hee Hwang
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jacob Solis
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Hongmei Zhang
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jose F Velasquez
- Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Patrick M Dougherty
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
14
|
Peng S, Ying AF, Chan NJH, Sundar R, Soon YY, Bandla A. Prevention of Oxaliplatin-Induced Peripheral Neuropathy: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:731223. [PMID: 35186722 PMCID: PMC8853097 DOI: 10.3389/fonc.2022.731223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/10/2022] [Indexed: 01/06/2023] Open
Abstract
Background Oxaliplatin-induced peripheral neuropathy (OIPN) has significant clinical impact on the quality of life for cancer patients and is a dose limiting toxicity. Trials studying preventive measures have been inconclusive. A systematic review and meta-analysis were conducted to evaluate the existing pharmacological and non-pharmacological interventions to prevent chronic OIPN. Methods Literature databases PubMed-MEDLINE, Embase and Scopus, were searched from 1 Jan 2005 to 08 Aug 2020 and major conferences’ abstracts were reviewed for randomized controlled trials that examined the efficacy of any preventive measure for OIPN. The primary outcome measure was the incidence of chronic OIPN with a preventive intervention as compared to placebo or no intervention. The pooled risk ratio and its 95% confidence interval were calculated using a random effects model. A network meta-analysis was conducted to derive indirect evidence of any preventive effect of an intervention against placebo when original trials compared one intervention against another. Results Forty-four trials were analyzed describing 29 chemoprotective interventions, including combinations, and 1 non-pharmacological intervention. Ratings were assessed via a combination of outcomes with quality assessment using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) framework. Of the 30 interventions examined, there were six interventions supporting potential efficacy, 11 interventions with insufficient evidence and 13 interventions not recommended. Conclusion Currently, there is insufficient certainty to support any intervention as effective in preventing OIPN. Of note is that most of these studies have focused on pharmacological interventions; non-pharmacological interventions are underexplored. Further research on ways to limit OIPN is needed. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=225095, Prospero Registration Number: CRD42021225095.
Collapse
Affiliation(s)
- Siyu Peng
- Department of Medicine, National University Health System, Singapore, Singapore
| | - Ariel Fangting Ying
- Health Services and System Research, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | | | - Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Yang Soon
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Health System, Singapore, Singapore
| | - Aishwarya Bandla
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Szklener K, Szklener S, Michalski A, Żak K, Kuryło W, Rejdak K, Mańdziuk S. Dietary Supplements in Chemotherapy-Induced Peripheral Neuropathy: A New Hope? Nutrients 2022; 14:625. [PMID: 35276984 PMCID: PMC8838672 DOI: 10.3390/nu14030625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the main and most prevalent side effects of chemotherapy, significantly affecting the quality of life of patients and the course of chemotherapeutic treatment. Nevertheless, despite its prevalence, the management of the CIPN is considered particularly challenging, with this condition often being perceived as very difficult or even impossible to prevent with currently available agents. Therefore, it is imperative to find better options for patients diagnosed with this condition. While the search for the new agents must continue, another opportunity should be taken into consideration-repurposing of the already known medications. As proposed, acetyl-L-carnitine, vitamins (group B and E), extracts of medical plants, including goshajinkigan, curcumin and others, unsaturated fatty acids, as well as the diet composed of so-called "sirtuin-activating foods", could change the typical way of treatment of CIPN, improve the quality of life of patients and maintain the continuity of chemotherapy. This review summarizes currently available data regarding mentioned above agents and evaluates the rationale behind future research focused on their efficacy in CIPN.
Collapse
Affiliation(s)
- Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland;
| | - Sebastian Szklener
- Department of Neurology, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (S.S.); (K.R.)
| | - Adam Michalski
- Student Scientific Association, Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (A.M.); (K.Ż.); (W.K.)
| | - Klaudia Żak
- Student Scientific Association, Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (A.M.); (K.Ż.); (W.K.)
| | - Weronika Kuryło
- Student Scientific Association, Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (A.M.); (K.Ż.); (W.K.)
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (S.S.); (K.R.)
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland;
| |
Collapse
|
16
|
Goel Y, Fouda R, Gupta K. Endoplasmic Reticulum Stress in Chemotherapy-Induced Peripheral Neuropathy: Emerging Role of Phytochemicals. Antioxidants (Basel) 2022; 11:antiox11020265. [PMID: 35204148 PMCID: PMC8868275 DOI: 10.3390/antiox11020265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a significant dose-limiting long-term sequela in cancer patients undergoing treatment, often leading to discontinuation of treatment. No established therapy exists to prevent and/or ameliorate CIPN. Reactive oxygen species (ROS) and mitochondrial dysregulation have been proposed to underlie the pathobiology of CIPN. However, interventions to prevent and treat CIPN are largely ineffective. Additional factors and mechanism-based targets need to be identified to develop novel strategies to target CIPN. The role of oxidative stress appears to be central, but the contribution of endoplasmic reticulum (ER) stress remains under-examined in the pathobiology of CIPN. This review describes the significance of ER stress and its contribution to CIPN, the protective role of herbal agents in countering ER stress in nervous system-associated disorders, and their possible repurposing for preventing CIPN.
Collapse
Affiliation(s)
- Yugal Goel
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (R.F.)
| | - Raghda Fouda
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (R.F.)
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (R.F.)
- VA Medical Center, Southern California Institute for Research and Education, Long Beach, CA 90822, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence:
| |
Collapse
|
17
|
Evaluation of the analgesic effect of ɑ-lipoic acid in treating pain disorders: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2022; 177:106075. [PMID: 35026405 DOI: 10.1016/j.phrs.2022.106075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
Neuropathic pain is the most prevalent form of chronic pain caused by a disease of the nervous system, such as diabetic polyneuropathy. ɑ-Lipoic acid (ALA) is an antioxidant that has been widely studied for the treatment of pain symptoms in diverse conditions. Therefore, this study aimed to investigate the efficacy of ALA in the treatment of different types of pain through a systematic review and meta-analysis of randomized clinical trials. The study protocol was registered in the International Prospective Registry of Systematic Reviews (CRD42021261971). A search of the databases resulted in 1154 articles, 16 of which were included in the review (9 studies with diabetic polyneuropathy and 7 studies with other painful conditions). Most of the included studies had a low risk of bias. ALA showed efficacy for the treatment of headache, carpal tunnel syndrome and burning mouth syndrome. Meta-analysis was conducted only with the studies using diabetic polyneuropathy. Compared to placebo, ALA treatment decreased the total symptom score (TSS). The subgroup meta-analysis indicated a decrease of stabbing pain, burning, paraesthesia, and numbness in ALA-treated patients compared to placebo. In addition, both routes of administration, intravenous and oral, demonstrated the efficacy to reduce TSS. Therefore, ALA should be used to treat diabetic polyneuropathy pain symptoms. However, the standardization of treatment time and the dose may advance for the approval of ALA for clinical use in diabetic polyneuroneuropathy.
Collapse
|
18
|
Burgess J, Ferdousi M, Gosal D, Boon C, Matsumoto K, Marshall A, Mak T, Marshall A, Frank B, Malik RA, Alam U. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol Ther 2021; 9:385-450. [PMID: 34655433 PMCID: PMC8593126 DOI: 10.1007/s40487-021-00168-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This review provides an update on the current clinical, epidemiological and pathophysiological evidence alongside the diagnostic, prevention and treatment approach to chemotherapy-induced peripheral neuropathy (CIPN). FINDINGS The incidence of cancer and long-term survival after treatment is increasing. CIPN affects sensory, motor and autonomic nerves and is one of the most common adverse events caused by chemotherapeutic agents, which in severe cases leads to dose reduction or treatment cessation, with increased mortality. The primary classes of chemotherapeutic agents associated with CIPN are platinum-based drugs, taxanes, vinca alkaloids, bortezomib and thalidomide. Platinum agents are the most neurotoxic, with oxaliplatin causing the highest prevalence of CIPN. CIPN can progress from acute to chronic, may deteriorate even after treatment cessation (a phenomenon known as coasting) or only partially attenuate. Different chemotherapeutic agents share both similarities and key differences in pathophysiology and clinical presentation. The diagnosis of CIPN relies heavily on identifying symptoms, with limited objective diagnostic approaches targeting the class of affected nerve fibres. Studies have consistently failed to identify at-risk cohorts, and there are no proven strategies or interventions to prevent or limit the development of CIPN. Furthermore, multiple treatments developed to relieve symptoms and to modify the underlying disease in CIPN have failed. IMPLICATIONS The increasing prevalence of CIPN demands an objective approach to identify at-risk patients in order to prevent or limit progression and effectively alleviate the symptoms associated with CIPN. An evidence base for novel targets and both pharmacological and non-pharmacological treatments is beginning to emerge and has been recognised recently in publications by the American Society of Clinical Oncology and analgesic trial design expert groups such as ACTTION.
Collapse
Affiliation(s)
- Jamie Burgess
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - David Gosal
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Cheng Boon
- Department of Clinical Oncology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Kohei Matsumoto
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Anne Marshall
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Tony Mak
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrew Marshall
- Faculty of Health and Life Sciences, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- Faculty of Health and Life Sciences, The Pain Research Institute, University of Liverpool, Liverpool, L9 7AL, UK
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Bernhard Frank
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Rayaz A Malik
- Research Division, Qatar Foundation, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, M13 9PT, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| |
Collapse
|
19
|
Gu Z, Wei G, Zhu L, Zhu L, Hu J, Li Q, Cai G, Lu H, Liu M, Chen C, Ji Y, Li G, Huo J. Preventive Efficacy and Safety of Yiqi-Wenjing-Fang Granules on Oxaliplatin-Induced Peripheral Neuropathy: A Protocol for a Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5551568. [PMID: 34630609 PMCID: PMC8494586 DOI: 10.1155/2021/5551568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Background. Oxaliplatin-induced peripheral neuropathy (OIPN) is one of the most common side effects of oxaliplatin, which can cause reduction and cessation of oxaliplatin-based chemotherapy and significantly affect patients' quality of life. However, no drug has got recognition to prevent or treat OIPN. Yiqi-Wenjing-Fang (YWF) is a joint name of Chinese medicine prescriptions with similar effects of tonifying qi and warming meridians, represented by Huangqi Guizhi Wuwu decoction (HGWD) and Danggui Sini decoction (DSD), both from "Treatise on Cold Pathogenic and Miscellaneous Diseases." YWF granules, including HGWD granules and DSD granules, have been, respectively, demonstrated to be effective in preventing OIPN in previous small-sample observations. The purpose of this study is to enlarge the sample size for further evaluation of the preventive efficacy and safety of YWF granules on OIPN. Methods and Analysis. This study is a randomized, double-blind, placebo-controlled, and multicenter clinical trial. 360 postoperative patients with stage IIa-IIIc colorectal cancer will be randomly assigned into placebo-control group, intervention group I, and intervention group II, taking the mimetic granules of YWF as placebo, HGWD granules and DSD granules, respectively. All subjects will receive oxaliplatin-based chemotherapy regimen at the same time. EORTC QLQ-CIPN20 will be used to assess the degree of OIPN as the primary outcome measure. The grades of OIPN, quality of life, chemotherapeutic efficacy, and the number of completed chemotherapy cycles are selected as the secondary outcome measures. Discussion. Based on the condition of no recognized effective drugs in preventing OIPN, evidence-based medical study will be conducted for seeking a breakthrough in the field of Chinese herb medicine. This protocol could provide reliable and systemic research basis about the efficacy of YWF granules and the differentiation of two classical prescriptions of YWF on preventing OIPN objectively. Trial Registration. This study was registered at ClinicalTrials.gov on 26 December 2020 (ID: https://clinicaltrials.gov/ct2/show/NCT04690283).
Collapse
Affiliation(s)
- Zhancheng Gu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Guoli Wei
- Department of Oncology, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, Nanjing 210046, China
| | - Liangjun Zhu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Hu
- Department of Medical Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qi Li
- Department of Oncology, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Hong Lu
- Department of Chemotherapy, Changshu No. 1 People's Hospital, Chuzhou 239001, China
| | - Min Liu
- Department of Oncology, Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215002, China
| | - Chen Chen
- Department of Oncology, Yancheng Hospital of Traditional Chinese Medicine, Yancheng 224005, China
| | - Yi Ji
- Department of Oncology, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, Nanjing 210046, China
| | - Guochun Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Jiege Huo
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Department of Oncology, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, Nanjing 210046, China
| |
Collapse
|
20
|
Takeshita E, Ishibashi K, Koda K, Oda N, Yoshimatsu K, Sato Y, Oya M, Yamaguchi S, Nakajima H, Momma T, Maekawa H, Tsubaki M, Yamada T, Kobayashi M, Tanakaya K, Ishida H. The updated five-year overall survival and long-term oxaliplatin-related neurotoxicity assessment of the FACOS study. Surg Today 2021; 51:1309-1319. [PMID: 33586034 DOI: 10.1007/s00595-021-02230-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE We previously reported the first evidence of oncological benefits from a Japanese phase II trial of oxaliplatin-based adjuvant chemotherapy in patients with stage III colon cancer (the FACOS study). We herein report the long-term survival and persistent oxaliplatin-related peripheral sensory neuropathy (PSN) for patients enrolled in this trial. METHODS Patients were scheduled to receive the mFOLFOX6 or CAPOX regimen in the adjuvant setting. The five-year overall survival (OS) rate and persistent PSN were evaluated. RESULTS A total of 130 patients (mFOLFOX6, n = 73; CAPOX, n = 57) were eligible. The 5-year OS rate was 91.4%. No significant difference in the OS rate was observed between regimens (mFOLFOX6, 94.4%; CAPOX, 87.4%; P = 0.25). The incidence of PSN during adjuvant treatment was 55.4% in grade 1 (G1), 30.0% in G2, and 4.6% in G3. No patients showed G3 PSN at 12 months, but G1 or G2 residual PSN after 5 years was observed in 21.8% (G1, 20%; G2, 1.8%). CONCLUSIONS Updated results from the FACOS study support the benefits of oxaliplatin-based adjuvant chemotherapy in terms of the long-term survival among Japanese patients with stage III colon cancer. However, long-term persistent PSN occurs in about 20% of survivors, counterbalancing the favorable OS.
Collapse
Affiliation(s)
- Emiko Takeshita
- Department of Surgery, Saitama Medical Center, Dokkyo University, Kosihgaya, Japan
| | - Keiichiro Ishibashi
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Keiji Koda
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Noritaka Oda
- Colo-Proctological Institute, Matsuda Hospital, Hamamatsu, Japan
| | - Kazuhiko Yoshimatsu
- Department of Surgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Yu Sato
- Department of Surgery, Toho University Sakura Medical Center, Sakura, Japan
| | - Masatoshi Oya
- Department of Surgery, Saitama Medical Center, Dokkyo University, Kosihgaya, Japan
| | - Satoru Yamaguchi
- First Department of Surgery, Dokkyo Medical University, Mibu, Japan
| | - Hideo Nakajima
- Department of Oncology, Ageo Central General Hospital, Ageo, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Maekawa
- Department of Surgery, Juntendo University Shizuoka Hospital, Izunokuni, Japan
| | | | - Takeshi Yamada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Michiya Kobayashi
- Cancer Treatment Center, Kochi Medical School Hospital, Nankoku, Japan
| | - Kohji Tanakaya
- Department of Surgery, Iwakuni Clinical Center, Iwakuni, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan.
| |
Collapse
|
21
|
Double-blind, randomized, placebo-controlled crossover trial of alpha-lipoic acid for the treatment of fibromyalgia pain: the IMPALA trial. Pain 2021; 162:561-568. [PMID: 32773602 DOI: 10.1097/j.pain.0000000000002028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022]
Abstract
ABSTRACT Fibromyalgia is a common and challenging chronic pain disorder with few, if any, highly effective and well-tolerated treatments. Alpha-lipoic acid (ALA) is a nonsedating antioxidant with evidence of efficacy in the treatment of symptomatic diabetic neuropathy that has not been evaluated in the setting of fibromyalgia treatment. Thus, we conducted a single-centre, proof-of-concept, randomized, placebo-controlled, crossover trial of ALA for the treatment of fibromyalgia. Twenty-seven participants were recruited, and 24 participants completed both treatment periods of the trial. The median maximal tolerated dose of ALA in this trial was 1663 mg/day. Treatment-emergent adverse events with ALA were infrequent and not statistically different from placebo. For the primary outcome of pain intensity, and for several other validated secondary outcomes, there were no statistically significant differences between placebo and ALA. A post hoc exploratory subgroup analysis showed a significant interaction between gender and treatment with a significant favourable placebo-ALA difference in pain for men, but not for women. Overall, the results of this trial do not provide any evidence to suggest promise for ALA as an effective treatment for fibromyalgia, which is predominantly prevalent in women. This negative clinical trial represents an important step in a collective strategy to identify new, better tolerated and more effective treatments for fibromyalgia.
Collapse
|
22
|
Khasabova IA, Seybold VS, Simone DA. The role of PPARγ in chemotherapy-evoked pain. Neurosci Lett 2021; 753:135845. [PMID: 33774149 PMCID: PMC8089062 DOI: 10.1016/j.neulet.2021.135845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Although millions of people are diagnosed with cancer each year, survival has never been greater thanks to early diagnosis and treatments. Powerful chemotherapeutic agents are highly toxic to cancer cells, but because they typically do not target cancer cells selectively, they are often toxic to other cells and produce a variety of side effects. In particular, many common chemotherapies damage the peripheral nervous system and produce neuropathy that includes a progressive degeneration of peripheral nerve fibers. Chemotherapy-induced peripheral neuropathy (CIPN) can affect all nerve fibers, but sensory neuropathies are the most common, initially affecting the distal extremities. Symptoms include impaired tactile sensitivity, tingling, numbness, paraesthesia, dysesthesia, and pain. Since neuropathic pain is difficult to manage, and because degenerated nerve fibers may not grow back and regain normal function, considerable research has focused on understanding how chemotherapy causes painful CIPN so it can be prevented. Due to the fact that both therapeutic and side effects of chemotherapy are primarily associated with the accumulation of reactive oxygen species (ROS) and oxidative stress, this review focuses on the activation of endogenous antioxidant pathways, especially PPARγ, in order to prevent the development of CIPN and associated pain. The use of synthetic and natural PPARγ agonists to prevent CIPN is discussed.
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, 55455, United States
| | - Virginia S Seybold
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, 55455, United States
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, 55455, United States.
| |
Collapse
|
23
|
The Role of Nucleotide Excision Repair in Cisplatin-Induced Peripheral Neuropathy: Mechanism, Prevention, and Treatment. Int J Mol Sci 2021; 22:ijms22041975. [PMID: 33671279 PMCID: PMC7921932 DOI: 10.3390/ijms22041975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common dose-limiting effects of cancer treatment and results in dose reduction and discontinuation of life-saving chemotherapy. Its debilitating effects are often permanent and lead to lifelong impairment of quality of life in cancer patients. While the mechanisms underlying the toxicity are not yet fully defined, dorsal root ganglia sensory neurons play an integral role in symptom development. DNA-platinum adducts accumulate in these cells and inhibit normal cellular function. Nucleotide excision repair (NER) is integral to the repair of platinum adducts, and proteins involved in its mechanism serve as potential targets for future therapeutics. This review aims to highlight NER’s role in cisplatin-induced peripheral neuropathy, summarize current clinical approaches to the toxicity, and discuss future perspectives for the prevention and treatment of CIPN.
Collapse
|
24
|
Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021; 22:1393. [PMID: 33573316 PMCID: PMC7866815 DOI: 10.3390/ijms22031393&set/a 813269399+839900579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
|
25
|
Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021. [DOI: 10.3390/ijms22031393
expr 945913974 + 948698388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
|
26
|
Kawashiri T, Mine K, Kobayashi D, Inoue M, Ushio S, Uchida M, Egashira N, Shimazoe T. Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021; 22:ijms22031393. [PMID: 33573316 PMCID: PMC7866815 DOI: 10.3390/ijms22031393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
Affiliation(s)
- Takehiro Kawashiri
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
- Correspondence: ; Tel.: +81-92-642-6573
| | - Keisuke Mine
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Daisuke Kobayashi
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Mizuki Inoue
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Soichiro Ushio
- Department of Pharmacy, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Mayako Uchida
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan;
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan;
| | - Takao Shimazoe
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| |
Collapse
|
27
|
Stankovic JSK, Selakovic D, Mihailovic V, Rosic G. Antioxidant Supplementation in the Treatment of Neurotoxicity Induced by Platinum-Based Chemotherapeutics-A Review. Int J Mol Sci 2020; 21:E7753. [PMID: 33092125 PMCID: PMC7589133 DOI: 10.3390/ijms21207753] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer represents one of the most pernicious public health problems with a high mortality rate among patients worldwide. Chemotherapy is one of the major therapeutic approaches for the treatment of various malignancies. Platinum-based drugs (cisplatin, oxaliplatin, carboplatin, etc.) are highly effective chemotherapeutic drugs used for the treatment of several types of malignancies, but their application and dosage are limited by their toxic effects on various systems, including neurotoxicity. Simultaneously, researchers have tried to improve the survival rate and quality of life of cancer patients and decrease the toxicity of platinum-containing drugs by combining them with non-chemotherapy-based drugs, dietary supplements and/or antioxidants. Additionally, recent studies have shown that the root cause for the many side effects of platinum chemotherapeutics involves the production of reactive oxygen species (ROS) in naive cells. Therefore, suppression of ROS generation and their inactivation with antioxidants represents an appropriate approach for platinum drug-induced toxicities. The aim of this paper is to present an updated review of the protective effects of different antioxidant agents (vitamins, dietary antioxidants and supplements, medicaments, medicinal plants and their bioactive compounds) against the neurotoxicity induced by platinum-based chemotherapeutics. This review highlights the high potential of plant antioxidants as adjuvant strategies in chemotherapy with platinum drugs.
Collapse
Affiliation(s)
- Jelena S. Katanic Stankovic
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia;
| | - Dragica Selakovic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Vladimir Mihailovic
- Faculty of Science, Department of Chemistry, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| |
Collapse
|
28
|
Safety Evaluation of α-Lipoic Acid Supplementation: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Clinical Studies. Antioxidants (Basel) 2020; 9:antiox9101011. [PMID: 33086555 PMCID: PMC7603186 DOI: 10.3390/antiox9101011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Alpha-lipoic acid (ALA) is a natural short-chain fatty acid that has attracted great attention in recent years as an antioxidant molecule. However, some concerns have been recently raised regarding its safety profile. To address the issue, we aimed to assess ALA safety profile through a systematic review of the literature and a meta-analysis of the available randomized placebo-controlled clinical studies. The literature search included EMBASE, PubMed Medline, SCOPUS, Google Scholar, and ISI Web of Science by Clarivate databases up to 15th August 2020. Data were pooled from 71 clinical studies, comprising 155 treatment arms, which included 4749 subjects with 2558 subjects treated with ALA and 2294 assigned to placebo. A meta-analysis of extracted data suggested that supplementation with ALA was not associated with an increased risk of any treatment-emergent adverse event (all p > 0.05). ALA supplementation was safe, even in subsets of studies categorized according to smoking habit, cardiovascular disease, presence of diabetes, pregnancy status, neurological disorders, rheumatic affections, severe renal impairment, and status of children/adolescents at baseline.
Collapse
|
29
|
Jordan B, Margulies A, Cardoso F, Cavaletti G, Haugnes HS, Jahn P, Le Rhun E, Preusser M, Scotté F, Taphoorn MJB, Jordan K. Systemic anticancer therapy-induced peripheral and central neurotoxicity: ESMO-EONS-EANO Clinical Practice Guidelines for diagnosis, prevention, treatment and follow-up. Ann Oncol 2020; 31:1306-1319. [PMID: 32739407 DOI: 10.1016/j.annonc.2020.07.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- B Jordan
- Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - A Margulies
- European Oncology Nursing Society, Brussels, Belgium
| | - F Cardoso
- Breast Unit, Champalimaud Clinical Center/Champalimaud Foundation, Lisbon, Portugal
| | - G Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - H S Haugnes
- Department of Oncology, University Hospital of North Norway, Tromsoe, Norway; Institute of Medicine, UIT - The Arctic University, Tromsoe, Norway
| | - P Jahn
- University of Halle, Nursing Research Unit, Halle, Germany
| | - E Le Rhun
- University of Lille, Inserm, U-1192, Lille, France; CHU Lille, Neuro-oncology, General and Stereotaxic Neurosurgery Service, Lille, France; Breast Cancer Department, Oscar Lambret Center, Lille cedex, France; Department of Neurology and Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - M Preusser
- Clinical Division of Oncology, Comprehensive Cancer Center CNS Tumours Unit, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - F Scotté
- Gustave Roussy Cancer Campus, Interdisciplinary Cancer Course Department, Villejuif, France
| | - M J B Taphoorn
- Department of Neurology, Leiden University Medical Center and Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - K Jordan
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
Loprinzi CL, Lacchetti C, Bleeker J, Cavaletti G, Chauhan C, Hertz DL, Kelley MR, Lavino A, Lustberg MB, Paice JA, Schneider BP, Lavoie Smith EM, Smith ML, Smith TJ, Wagner-Johnston N, Hershman DL. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. J Clin Oncol 2020; 38:3325-3348. [PMID: 32663120 DOI: 10.1200/jco.20.01399] [Citation(s) in RCA: 544] [Impact Index Per Article: 108.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To update the ASCO guideline on the recommended prevention and treatment approaches in the management of chemotherapy-induced peripheral neuropathy (CIPN) in adult cancer survivors. METHODS An Expert Panel conducted targeted systematic literature reviews to identify new studies. RESULTS The search strategy identified 257 new references, which led to a full-text review of 87 manuscripts. A total of 3 systematic reviews, 2 with meta-analyses, and 28 primary trials for prevention of CIPN in addition to 14 primary trials related to treatment of established CIPN, are included in this update. RECOMMENDATIONS The identified data reconfirmed that no agents are recommended for the prevention of CIPN. The use of acetyl-l-carnitine for the prevention of CIPN in patients with cancer should be discouraged. Furthermore, clinicians should assess the appropriateness of dose delaying, dose reduction, substitutions, or stopping chemotherapy in patients who develop intolerable neuropathy and/or functional impairment. Duloxetine is the only agent that has appropriate evidence to support its use for patients with established painful CIPN. Nonetheless, the amount of benefit from duloxetine is limited.Additional information is available at www.asco.org/survivorship-guidelines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark R Kelley
- Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sałat K. Chemotherapy-induced peripheral neuropathy-part 2: focus on the prevention of oxaliplatin-induced neurotoxicity. Pharmacol Rep 2020; 72:508-527. [PMID: 32347537 PMCID: PMC7329798 DOI: 10.1007/s43440-020-00106-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is regarded as one of the most common dose-limiting adverse effects of several chemotherapeutic agents, such as platinum derivatives (oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib. CIPN affects more than 60% of patients receiving anticancer therapy and although it is a nonfatal condition, it significantly worsens patients' quality of life. The number of analgesic drugs used to relieve pain symptoms in CIPN is very limited and their efficacy in CIPN is significantly lower than that observed in other neuropathic pain types. Importantly, there are currently no recommended options for effective prevention of CIPN, and strong evidence for the utility and clinical efficacy of some previously tested preventive therapies is still limited. METHODS The present article is the second one in the two-part series of review articles focused on CIPN. It summarizes the most recent advances in the field of studies on CIPN caused by oxaliplatin, the third-generation platinum-based antitumor drug used to treat colorectal cancer. Pharmacological properties of oxaliplatin, genetic, molecular and clinical features of oxaliplatin-induced neuropathy are discussed. RESULTS Available therapies, as well as results from clinical trials assessing drug candidates for the prevention of oxaliplatin-induced neuropathy are summarized. CONCLUSION Emerging novel chemical structures-potential future preventative pharmacotherapies for CIPN caused by oxaliplatin are reported.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Kraków, Poland.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Chemotherapy-induced peripheral neuropathy (CIPN) is a common complication of cancer treatment, with conventional treatment limited in its ability for prevention or treatment of symptoms. This review addresses the research assessing the effectiveness and safety of complementary and integrative medicine (CIM) in preventing and treating CIPN-related symptoms. RECENT FINDINGS The CIM modalities acupuncture, classical massage, omega-3 fatty acids, and the Japanese Kampo medicine Goshanjishen may be of benefit in preventing or treating CIPN. Vitamin E (alpha-tocopherol), glutamine/glutamate, alpha-lipoic acid, and acetyl-L-carnitine (ALCAR) are not, with ALCAR increasing symptom severity and vitamin E the risk for developing prostate cancer. CIM therapies with a potential for preventing or treating CIPN-related symptoms should be further investigated. CIM is considered safe when provided within an integrative oncology setting, under the guidance and supervision of an integrative physician.
Collapse
Affiliation(s)
- Noah Samuels
- Center for Integrative Complementary Medicine, Shaare Zedek Medical Center, 12 Shmuel Bait St., PO Box 3235, 9103102, Jerusalem, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Eran Ben-Arye
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Integrative Oncology Program, The Oncology Service, Lin, Zebulun and Carmel Medical Centers, Clalit Health Services, Haifa and Western Galilee District, Haifa, Israel
| |
Collapse
|
33
|
Lazic A, Popović J, Paunesku T, Woloschak GE, Stevanović M. Insights into platinum-induced peripheral neuropathy-current perspective. Neural Regen Res 2020; 15:1623-1630. [PMID: 32209761 PMCID: PMC7437596 DOI: 10.4103/1673-5374.276321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is a global health problem that is often successfully addressed by therapy, with cancer survivors increasing in numbers and living longer world around. Although new cancer treatment options are continuously explored, platinum based chemotherapy agents remain in use due to their efficiency and availability. Unfortunately, all cancer therapies affect normal tissues as well as cancer, and more than 40 specific side effects of platinum based drugs documented so far decrease the quality of life of cancer survivors. Chemotherapy-induced peripheral neuropathy is a frequent side effects of platinum-based chemotherapy agents. This cluster of complications is often so debilitating that patients occasionally have to discontinue the therapy. Sensory neurons of dorsal root ganglia are at the core of chemotherapy-induced peripheral neuropathy symptoms. In these postmitotic cells, DNA damage caused by platinum chemotherapy interferes with normal functioning. Accumulation of DNA-platinum adducts correlates with neurotoxic severity and development of sensation of pain. While biochemistry of DNA-platinum adducts is the same in all cell types, molecular mechanisms affected by DNA-platinum adducts are different in cancer cells and non-dividing cells. This review aims to raise awareness about platinum associated chemotherapy-induced peripheral neuropathy as a medical problem that has remained unexplained for decades. We emphasize the complexity of this condition both from clinical and mechanistical point of view and focus on recent findings about chemotherapy-induced peripheral neuropathy in in vitro and in vivo model systems. Finally, we summarize current perspectives about clinical approaches for chemotherapy-induced peripheral neuropathy treatment.
Collapse
Affiliation(s)
- Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Popović
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Tatjana Paunesku
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Gayle E Woloschak
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering; Faculty of Biology; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
34
|
Santos NAGD, Ferreira RS, Santos ACD. Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem Toxicol 2019; 136:111079. [PMID: 31891754 DOI: 10.1016/j.fct.2019.111079] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Cisplatin has dramatically improved the survival rate of cancer patients, but it has also increased the prevalence of hearing and neurological deficits in this population. Cisplatin induces ototoxicity, peripheral (most prevalent) and central (rare) neurotoxicity. This review addresses the ototoxicity and the neurotoxicity associated with cisplatin-based chemotherapy, providing an integrated view of the potential protective agents that have been evaluated in vitro, in vivo and in clinical trials, their targets and mechanisms of protection and their effects on the antitumor activity of cisplatin. So far, the findings are insufficient to support the use of any oto- or neuroprotective agent before, during or after cisplatin chemotherapy. Despite their promising effects in vitro and in animal studies, many agents have not been evaluated in clinical trials. Additionally, the clinical trials have limitations concerning the sample size, controls, measurement, heterogeneous groups, several arms of treatment, short follow-up or no blinding. Besides that, for most agents, the effects on the antitumor activity of cisplatin have not been evaluated in tumor-bearing animals, which discourages clinical trials. Further well-designed randomized controlled clinical trials are necessary to definitely demonstrate the effectiveness of the oto- or neuroprotective agents proposed by animal and in vitro studies.
Collapse
Affiliation(s)
- Neife Aparecida Guinaim Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Scalco Ferreira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Cardozo Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
35
|
Maschio M, Zarabla A, Maialetti A, Marchesi F, Giannarelli D, Gumenyuk S, Pisani F, Renzi D, Galiè E, Mengarelli A. The Effect of Docosahexaenoic Acid and α-Lipoic Acid as Prevention of Bortezomib-Related Neurotoxicity in Patients With Multiple Myeloma. Integr Cancer Ther 2019; 18:1534735419888584. [PMID: 31868025 PMCID: PMC6928538 DOI: 10.1177/1534735419888584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background and Aims: In cancer patients, a common complication during chemotherapy is chemotherapy-induced peripheral neuropathy (CIPN). For this reason, we decided to conduct a phase II prospective study on 33 patients with multiple myeloma at first diagnosis, to evaluate whether a nutraceutical compound given for 6 months during bortezomib (BTZ) treatment succeeded in preventing the onset of neurotoxicity. Methods: Neurological evaluation, electroneurography, and functional and quality of life (QoL) scales were performed at baseline and after 6 months. We administered a tablet containing docosahexaenoic acid 400 mg, α-lipoic acid 600 mg, vitamin C 60 mg, and vitamin E 10 mg bid for 6 months. Results: Concerning the 25 patients who completed the study, at 6-month follow-up, 10 patients had no neurotoxicity (NCI-CTCAE [National Cancer Institute-Common Terminology Criteria for Adverse Events] = 0), while 13 progressed to NCI-CTCAE grade 1, 1 had NCI-CTCAE grade 1 with pain, and 1 experienced a NCI-CTCAE grade 2. Painful symptoms were reported only in 2 patients, and we observed stability on functional and QoL scales in all patients. None of the 25 patients stopped chemotherapy due to neurotoxicity. Conclusions: Our data seem to indicate that the co-administration of a neuroprotective agent during BTZ treatment can prevent the appearance/worsening of symptoms related to CIPN, avoiding the interruption of BTZ and maintaining valuable functional autonomy to allow normal daily activities. We believe that prevention remains the mainstay to preserve QoL in this particular patient population, and that future studies with a larger patient population are needed.
Collapse
Affiliation(s)
- Marta Maschio
- Center for Tumor-related epilepsy, UOSD Neurology, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Alessia Zarabla
- Center for Tumor-related epilepsy, UOSD Neurology, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Andrea Maialetti
- Center for Tumor-related epilepsy, UOSD Neurology, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Francesco Marchesi
- Hematology and Stem Cell Transplantation Unit, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Diana Giannarelli
- Biostatistic Unit, IRCCS Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Svitlana Gumenyuk
- Hematology and Stem Cell Transplantation Unit, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Francesco Pisani
- Hematology and Stem Cell Transplantation Unit, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Daniela Renzi
- Hematology and Stem Cell Transplantation Unit, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Edvina Galiè
- UOSD Neurology, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Andrea Mengarelli
- Hematology and Stem Cell Transplantation Unit, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| |
Collapse
|
36
|
Yousefi M, Kavianpour M, Hesami S, Rashidi Nooshabadi M, Khadem Haghighian H. Effect of alpha-lipoic acid at the combination with mefenamic acid in girls with primary dysmenorrhea: randomized, double-blind, placebo-controlled clinical trial. Gynecol Endocrinol 2019; 35:782-786. [PMID: 30957578 DOI: 10.1080/09513590.2019.1590544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Primary dysmenorrhea is a common gynecologic disorder and is one of the main causes for referral to the gynecology clinic. This study aimed to determine the effects of alpha-lipoic acid (ALA) and mefenamic acid and a combination compared with placebo on the girls with primary dysmenorrhea. This double-blind, placebo-controlled clinical trial done on population consisted of female students living in dormitories of Qazvin University of Medical Sciences who had moderate to severe dysmenorrhea using the Visual Analog Scale (VAS) questionnaire. Participants were randomly divided into four groups (n = 100): ALA, mefenamic acid, ALA + mefenamic acid and placebo groups. ALA and mefenamic acid were administrated in 600 mg and 250 mg, respectively. The severity of the pain was measured in the beginning and the end of the study. Statistical analysis was performed using SPSS software (SPSS Inc., Chicago, IL). Our final results suggested that, although mefenamic acid significantly decreased the menstrual pain, ALA supplementation, 600 mg, would be more efficient than mefenamic acid in 250 mg. Also, the combination of ALA and mefenamic acid significantly has been far. Considering the ALA supplementation effect on pain relief in patients with primary dysmenorrhea, this antioxidant can be recommended for the healing of symptoms of these patients.
Collapse
Affiliation(s)
- Mojgan Yousefi
- a Student Research Committee, School of Health, Qazvin University of Medical Sciences , Qazvin , Iran
- b Metabolic Diseases Research Center, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Maria Kavianpour
- c Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Sepideh Hesami
- a Student Research Committee, School of Health, Qazvin University of Medical Sciences , Qazvin , Iran
- b Metabolic Diseases Research Center, Qazvin University of Medical Sciences , Qazvin , Iran
| | | | - Hossein Khadem Haghighian
- a Student Research Committee, School of Health, Qazvin University of Medical Sciences , Qazvin , Iran
- b Metabolic Diseases Research Center, Qazvin University of Medical Sciences , Qazvin , Iran
| |
Collapse
|
37
|
Quintão NLM, Santin JR, Stoeberl LC, Corrêa TP, Melato J, Costa R. Pharmacological Treatment of Chemotherapy-Induced Neuropathic Pain: PPARγ Agonists as a Promising Tool. Front Neurosci 2019; 13:907. [PMID: 31555078 PMCID: PMC6722212 DOI: 10.3389/fnins.2019.00907] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP) is one of the most severe side effects of anticancer agents, such as platinum- and taxanes-derived drugs (oxaliplatin, cisplatin, carboplatin and paclitaxel). CINP may even be a factor of interruption of treatment and consequently increasing the risk of death. Besides that, it is important to take into consideration that the incidence of cancer is increasing worldwide, including colorectal, gastric, lung, cervical, ovary and breast cancers, all treated with the aforementioned drugs, justifying the concern of the medical community about the patient’s quality of life. Several physiopathological mechanisms have already been described for CINP, such as changes in axonal transport, mitochondrial damage, increased ion channel activity and inflammation in the central nervous system (CNS). Another less frequent event that may occur after chemotherapy, particularly under oxaliplatin treatment, is the central neurotoxicity leading to disorders such as mental confusion, catatonia, hyporeflexia, etc. To date, no pharmacological therapy has shown satisfactory effect in these cases. In this scenario, duloxetine is the only drug currently in clinical use. Peroxisome proliferator-activated receptors (PPARs) belong to the class of nuclear receptors and are present in several tissues, mainly participating in lipid and glucose metabolism and inflammatory response. There are three PPAR isoforms: α, β/δ and γ. PPARγ, the protagonist of this review, is expressed in adipose tissue, large intestine, spleen and neutrophils. This subtype also plays important role in energy balance, lipid biosynthesis and adipogenesis. The effects of PPARγ agonists, known for their positive activity on type II diabetes mellitus, have been explored and present promising effects in the control of neuropathic pain, including CINP, and also cancer. This review focuses largely on the mechanisms involved in chemotherapy-induced neuropathy and the effects of the activation of PPARγ to treat CINP. It is the aim of this review to help understanding and developing novel CINP therapeutic strategies integrating PPARγ signalling.
Collapse
Affiliation(s)
| | | | | | | | - Jéssica Melato
- School of Heath Science, Universidade do Vale do Itajaí, Itajaí, Brazil
| | - Robson Costa
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
38
|
Ilghami R, Barzegari A, Mashayekhi MR, Letourneur D, Crepin M, Pavon-Djavid G. The conundrum of dietary antioxidants in cancer chemotherapy. Nutr Rev 2019; 78:65-76. [DOI: 10.1093/nutrit/nuz027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Although chemotherapy succeeds in reducing tumor burden, the efficacy is limited due to acquired drug resistance and often irreparable side effects. Studies show that antioxidants may influence the response to chemotherapy and its side effects, although their use remains controversial. The evidence shows that some chemo-drugs induce oxidative stress and lead to normal tissue apoptosis and the entry of cancer cells to a dormant G0 state. Through the suppression of oxidative stress, antioxidants could protect normal cells and bring the tumor out of dormancy so as to expose it to chemotherapies. This review is focused on the redox biology of cancer/normal cells and association of reactive oxygen species with drug resistance, cancer dormancy, and side effects. To this end, evidence from cellular, animal, and clinical studies is provided to better understand the conundrum of dietary antioxidants in cancer chemotherapy.
Collapse
Affiliation(s)
- Roghayeh Ilghami
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Abolfazl Barzegari
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Mohammad Reza Mashayekhi
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Didier Letourneur
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Michel Crepin
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Graciela Pavon-Djavid
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| |
Collapse
|
39
|
Salehi B, Berkay Yılmaz Y, Antika G, Boyunegmez Tumer T, Fawzi Mahomoodally M, Lobine D, Akram M, Riaz M, Capanoglu E, Sharopov F, Martins N, Cho WC, Sharifi-Rad J. Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecules 2019; 9:356. [PMID: 31405030 PMCID: PMC6723188 DOI: 10.3390/biom9080356] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
α-lipoic acid (ALA, thioctic acid) is an organosulfur component produced from plants, animals, and humans. It has various properties, among them great antioxidant potential and is widely used as a racemic drug for diabetic polyneuropathy-associated pain and paresthesia. Naturally, ALA is located in mitochondria, where it is used as a cofactor for pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase complexes. Despite its various potentials, ALA therapeutic efficacy is relatively low due to its pharmacokinetic profile. Data suggests that ALA has a short half-life and bioavailability (about 30%) triggered by its hepatic degradation, reduced solubility as well as instability in the stomach. However, the use of various innovative formulations has greatly improved ALA bioavailability. The R enantiomer of ALA shows better pharmacokinetic parameters, including increased bioavailability as compared to its S enantiomer. Indeed, the use of amphiphilic matrices has capability to improve ALA bioavailability and intestinal absorption. Also, ALA's liquid formulations are associated with greater plasma concentration and bioavailability as compared to its solidified dosage form. Thus, improved formulations can increase both ALA absorption and bioavailability, leading to a raise in therapeutic efficacy. Interestingly, ALA bioavailability will be dependent on age, while no difference has been found for gender. The present review aims to provide an updated on studies from preclinical to clinical trials assessing ALA's usages in diabetic patients with neuropathy, obesity, central nervous system-related diseases and abnormalities in pregnancy.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Yakup Berkay Yılmaz
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Gizem Antika
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | | | - Devina Lobine
- Department of Health Sciences; Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad; Faisalabad 38000, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha 40100, Pakistan
| | - Esra Capanoglu
- Faculty of Chemical & Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Maslak 34469, Turkey
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| |
Collapse
|
40
|
Autissier E. Chemotherapy-Induced Peripheral Neuropathy: Association With Increased Risk of Falls and Injuries. Clin J Oncol Nurs 2019; 23:405-410. [PMID: 31322611 DOI: 10.1188/19.cjon.405-410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating and degenerative side effect of many commonly used chemotherapy agents. Symptoms manifest as sensory and motor neuropathies. CIPN may necessitate chemotherapy dose reduction or discontinuation. OBJECTIVES This review intends to summarize literature linking CIPN to an increased risk of falls and injuries and provides recommendations to help maintain patient safety and maximize physical function. METHODS A literature search was conducted using MEDLINE®, PubMed®, and ScienceDirect. FINDINGS Assessment of CIPN and CIPN-related falls and injuries is vital in preventing related complications, and proper education of oncology nursing staff on CIPN assessment and management is necessary.
Collapse
|
41
|
Trecarichi A, Flatters SJL. Mitochondrial dysfunction in the pathogenesis of chemotherapy-induced peripheral neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:83-126. [PMID: 31208528 DOI: 10.1016/bs.irn.2019.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several first-line chemotherapeutic agents, including taxanes, platinum agents and proteasome inhibitors, are associated with the dose-limiting side effect of chemotherapy-induced peripheral neuropathy (CIPN). CIPN predominantly manifests as sensory symptoms, which are likely due to drug accumulation within peripheral nervous tissues rather than the central nervous system. No treatment is currently available to prevent or reverse CIPN. The causal mechanisms underlying CIPN are not yet fully understood. Mitochondrial dysfunction has emerged as a major factor contributing to the development and maintenance of CIPN. This chapter will provide an overview of both clinical and preclinical data supporting this hypothesis. We will review the studies reporting the nature of mitochondrial dysfunction evoked by chemotherapy in terms of changes in mitochondrial morphology, bioenergetics and reactive oxygen species (ROS) generation. Furthermore, we will discuss the in vivo effects of pharmacological interventions that counteract chemotherapy-evoked mitochondrial dysfunction and ameliorate pain-like behavior.
Collapse
Affiliation(s)
- Annalisa Trecarichi
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sarah J L Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
42
|
Oveissi V, Ram M, Bahramsoltani R, Ebrahimi F, Rahimi R, Naseri R, Belwal T, Devkota HP, Abbasabadi Z, Farzaei MH. Medicinal plants and their isolated phytochemicals for the management of chemotherapy-induced neuropathy: therapeutic targets and clinical perspective. Daru 2019; 27:389-406. [PMID: 30852764 PMCID: PMC6593128 DOI: 10.1007/s40199-019-00255-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/26/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Chemotherapy, as one of the main approaches of cancer treatment, is accompanied with several adverse effects, including chemotherapy-induced peripheral neuropathy (CIPN). Since current methods to control the condition are not completely effective, new treatment options should be introduced. Medicinal plants can be suitable candidates to be assessed regarding their effects in CIPN. Current paper reviews the available preclinical and clinical studies on the efficacy of herbal medicines in CIPN. METHODS Electronic databases including PubMed, Scopus, and Cochrane library were searched with the keywords "neuropathy" in the title/abstract and "plant", "extract", or "herb" in the whole text. Data were collected from inception until April 2018. RESULTS Plants such as chamomile (Matricaria chamomilla L.), sage (Salvia officinalis L.), cinnamon (Cinnamomum cassia (L.) D. Don), and sweet flag (Acorus calamus L.) as well as phytochemicals like matrine, curcumin, and thioctic acid have demonstrated beneficial effects in animal models of CIPN via prevention of axonal degeneration, decrease in total calcium level, improvement of endogenous antioxidant defense mechanisms such as superoxide dismutase and reduced glutathione, and regulation of neural cell apoptosis, nuclear factor-ĸB, cyclooxygenase-2, and nitric oxide signaling. Also, five clinical trials have evaluated the effect of herbal products in patients with CIPN. CONCLUSIONS There are currently limited clinical evidence on medicinal plants for CIPN which shows the necessity of future mechanistic studies, as well as well-designed clinical trial for further confirmation of the safety and efficacy of herbal medicines in CIPN. Graphical abstract Schematic mechanisms of medicinal plants to prevent chemotherapy-induced neuropathy: NO: nitric oxide, TNF: tumor necrosis factor, PG: prostaglandin, NF-ĸB: nuclear factor kappa B, LPO: lipid peroxidation, ROS: reactive oxygen species, COX: cyclooxygenase, IL: interleukin, ERK: extracellular signal-related kinase, X: inhibition, ↓: induction.
Collapse
Affiliation(s)
- Vahideh Oveissi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahboobe Ram
- Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Ebrahimi
- Pharmacy Students' Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rozita Naseri
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tarun Belwal
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, 263643, India
| | - Hari Prasad Devkota
- School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools, Health life science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto, 862-0973, Japan
| | - Zahra Abbasabadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
43
|
Hu LY, Mi WL, Wu GC, Wang YQ, Mao-Ying QL. Prevention and Treatment for Chemotherapy-Induced Peripheral Neuropathy: Therapies Based on CIPN Mechanisms. Curr Neuropharmacol 2019; 17:184-196. [PMID: 28925884 PMCID: PMC6343206 DOI: 10.2174/1570159x15666170915143217] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 08/20/2017] [Accepted: 01/01/1970] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, enduring, and often irreversible adverse effect of many antineoplastic agents, among which sensory abnormities are common and the most suffering issues. The pathogenesis of CIPN has not been completely understood, and strategies for CIPN prevention and treatment are still open problems for medicine. OBJECTIVES The objective of this paper is to review the mechanism-based therapies against sensory abnormities in CIPN. METHODS This is a literature review to describe the uncovered mechanisms underlying CIPN and to provide a summary of mechanism-based therapies for CIPN based on the evidence from both animal and clinical studies. RESULTS An abundance of compounds has been developed to prevent or treat CIPN by blocking ion channels, targeting inflammatory cytokines and combating oxidative stress. Agents such as glutathione, mangafodipir and duloxetine are expected to be effective for CIPN intervention, while Ca/Mg infusion and venlafaxine, tricyclic antidepressants, and gabapentin display limited efficacy for preventing and alleviating CIPN. And the utilization of erythropoietin, menthol and amifostine needs to be cautious regarding to their side effects. CONCLUSIONS Multiple drugs have been used and studied for decades, their effect against CIPN are still controversial according to different antineoplastic agents due to the diverse manifestations among different antineoplastic agents and complex drug-drug interactions. In addition, novel therapies or drugs that have proven to be effective in animals require further investigation, and it will take time to confirm their efficacy and safety.
Collapse
Affiliation(s)
- Lang-Yue Hu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture Research, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Jordan B, Jahn F, Sauer S, Jordan K. Prevention and Management of Chemotherapy-Induced Polyneuropathy. Breast Care (Basel) 2019; 14:79-84. [PMID: 31798378 DOI: 10.1159/000499599] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a severe and common side effect caused by a variety of antineoplastic agents. Approximately 30-40% of patients treated with agents such as taxanes, vinca alkaloids, or platinum derivatives will develop CIPN. CIPN presents predominantly as a sensory axonal neuro(no)pathy with occasional motor and autonomic dysfunction exhibiting considerable variability of clinical symptoms ranging from mild tingling sensation to severe neuropathic pain. Typical symptoms include numbness ("minus symptom"), weakness, and abnormal gait as well as paresthesia and pain ("positive symptoms"). As CIPN symptoms potentially lead to long-term morbidity and can even aggravate after cessation of therapy, patients' quality of life can be tremendously affected. In view of improved breast cancer survival outcomes, the late effects of CIPN are an unmet need in these patients. Therefore, early detection and assessment of first symptoms is important to effectively prevent severe CIPN. Therapeutic options for patients with CIPN are still limited, and pharmacological treatment focuses primarily on reduction or relief of neuropathic pain. CIPN is usually acutely managed by dose reduction or discontinuation of causative chemotherapy, potentially compromising treatment outcome. Currently, there is no causative proven therapy for the prevention of CIPN.
Collapse
Affiliation(s)
- Berit Jordan
- Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Franziska Jahn
- Department of Hematology and Oncology, University of Halle-Wittenberg, Halle (Saale), Germany
| | - Sandra Sauer
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Karin Jordan
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
45
|
Ziyatdinova G, Antonova T, Vorobev V, Osin Y, Budnikov H. Selective voltammetric determination of α-lipoic acid on the electrode modified with SnO2 nanoparticles and cetyltriphenylphosphonium bromide. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-018-2341-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Lee D, Kanzawa-Lee G, Knoerl R, Wyatt G, Smith EML. Characterization of Internal Validity Threats to Phase III Clinical Trials for Chemotherapy-Induced Peripheral Neuropathy Management: A Systematic Review. Asia Pac J Oncol Nurs 2019; 6:318-332. [PMID: 31572750 PMCID: PMC6696803 DOI: 10.4103/apjon.apjon_14_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective: The recent American Society of Clinical Oncology (ASCO) Clinical Guidelines for chemotherapy-induced peripheral neuropathy (CIPN) management (48 Phase III trials reviewed) only recommend duloxetine. However, before concluding that a CIPN intervention is ineffective, scientists and clinicians should consider the risk of Type II error in Phase III studies. The purpose of this systematic review was to characterize internal threats to validity in Phase III CIPN management trials. Methods: The PubMed, CINAHL, EMBASE®, and Scopus databases were searched for Phase III clinical trials testing interventions for CIPN management between 1990 and 2018. The key search terms were neoplasms, cancer, neuropathy, and CIPN. Two independent researchers evaluated 24 studies, using a modified Joanna Briggs Institute Checklist for Randomized Control Trials developed by the authors specific for CIPN intervention trials. Results: Two studies exhibited minimal or no design flaws. 22/24 Phase III clinical trials for CIPN have two or greater design flaws due to sample heterogeneity, malapropos mechanism of action, malapropos intervention dose, malapropos timing of the outcome measurement, confounding variables, lack of a valid and reliable measurement, and suboptimal statistical validity. Conclusions: Numerous CIPN interventions have been declared ineffective based on the results of Phase III trials. However, internal validity threats to numerous studies may have resulted in Type II error and subsequent dismissal of a potentially effective intervention. Patients may benefit from rigorous retesting of several agents (e.g., alpha-lipoic acid, duloxetine, gabapentin, glutathione, goshajinkigan, lamotrigine, nortriptyline, venlafaxine, and Vitamin E) to expand and validate the evidence regarding ASCO's recommendations for CIPN management.
Collapse
Affiliation(s)
- Deborah Lee
- Michigan State University, School of Nursing, East Lansing, Ann Arbor, MI, USA
| | | | - Robert Knoerl
- Phyllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gwen Wyatt
- Michigan State University, School of Nursing, East Lansing, Ann Arbor, MI, USA
| | | |
Collapse
|
47
|
Cun-Jin S, Jian-Hao X, Xu L, Feng-Lun Z, Jie P, Ai-Ming S, Duan-Min H, Yun-Li Y, Tong L, Yu-Song Z. X-ray induces mechanical and heat allodynia in mouse via TRPA1 and TRPV1 activation. Mol Pain 2019; 15:1744806919849201. [PMID: 31012378 PMCID: PMC6509987 DOI: 10.1177/1744806919849201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy-related pain is a common adverse reaction with a high incidence among cancer patients undergoing radiotherapy and remarkably reduces the quality of life. However, the mechanisms of ionizing radiation-induced pain are largely unknown. In this study, mice were treated with 20 Gy X-ray to establish ionizing radiation-induced pain model. X-ray evoked a prolonged mechanical, heat, and cold allodynia in mice. Transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 were significantly upregulated in lumbar dorsal root ganglion. The mechanical and heat allodynia could be transiently reverted by intrathecal injection of transient receptor potential vanilloid 1 antagonist capsazepine and transient receptor potential ankyrin 1 antagonist HC-030031. Additionally, the phosphorylated extracellular regulated protein kinases (ERK) and Jun NH2-terminal Kinase (JNK) in pain neural pathway were induced by X-ray treatment. Our findings indicated that activation of transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 is essential for the development of X-ray-induced allodynia. Furthermore, our findings suggest that targeting on transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 may be promising prevention strategies for X-ray-induced allodynia in clinical practice.
Collapse
Affiliation(s)
- Su Cun-Jin
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xu Jian-Hao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu Xu
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Zhao Feng-Lun
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Pan Jie
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shi Ai-Ming
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hu Duan-Min
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Yun-Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu Tong
- Institute of Neuroscience, Soochow University, Suzhou, China
- College of Life Sciences, Yanan University, Yanan, China
| | - Zhang Yu-Song
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
48
|
Maschio M, Zarabla A, Maialetti A, Marchesi F, Giannarelli D, Gumenyuk S, Pisani F, Renzi D, Galiè E, Mengarelli A. Prevention of Bortezomib-Related Peripheral Neuropathy With Docosahexaenoic Acid and α-Lipoic Acid in Patients With Multiple Myeloma: Preliminary Data. Integr Cancer Ther 2018; 17:1115-1124. [PMID: 30295079 PMCID: PMC6247541 DOI: 10.1177/1534735418803758] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background and Aims: Peripheral neuropathy is a common complication of chemotherapy that can induce marked disability that negatively affects the quality of life in patients with multiple myeloma (MM). The aim of this study was to prevent the onset or the worsening of peripheral neuropathy in MM patients treated with bortezomib (BTZ), using a new nutritional neuroprotective compound. We report preliminary results of 18 out of 33 patients who completed the study. Methods: We administered a tablet of Neuronorm to patients, containing docosahexaenoic acid 400 mg, α-lipoic acid 600 mg, vitamin C 60 mg, and vitamin E 10 mg bid for the whole follow-up period. Neurological visit assessment, electroneurography, and evaluation scales were performed at baseline and after 6 months. Results: At 6 months, 8 patients had no chemotherapy-induced peripheral neuropathy, while 10 patients experienced chemotherapy-induced peripheral neuropathy of grade 1 according to the Common Terminology Criteria for Adverse Events, one of them with pain. Seventeen patients did not report painful symptoms; no limitation of functional autonomy and stability in quality of life domains explored was observed. Conclusions: Our results seem to indicate that early introduction of a neuroprotective agent in our patients with MM treated with BTZ could prevent the onset or the worsening of neuropathic pain, avoiding the interruption of the therapy with BTZ, and maintaining a good functional autonomy to allow normal daily activities. Despite the limitations due to the fact that this is a preliminary study, in a small population, with short follow-up, our data seem to indicate that the nutraceutical may have some potential to be considered for a future trial.
Collapse
Affiliation(s)
- Marta Maschio
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessia Zarabla
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Maialetti
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Marchesi
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Diana Giannarelli
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Svitlana Gumenyuk
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Pisani
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Renzi
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Edvina Galiè
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Mengarelli
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Chemotherapy-induced peripheral neuropathy (CIPN) is a common, frequently chronic condition characterized by pain and decreased function. Given the growing number of cancer survivors and an increasing recognition of opioid therapy limitations, there is a need for critical analysis of the literature in directing an informed and thoughtful approach for the management of painful CIPN. RECENT FINDINGS A PubMed search for 'chemotherapy-induced peripheral neuropathy AND pain' identifies 259 publications between 1 January 2016 and 31 March 2017. Based on review of this literature, we aim to present a clinically relevant update of painful CIPN. Notably, the use of duloxetine as a first-line agent in treatment of CIPN is confirmed. Moreover, clinical trials focus on nonpharmacologic strategies for managing painful CIPN. SUMMARY Despite the volume of recent publications, there are limited preventive or therapeutic strategies for CIPN supported by high-level evidence. Duloxetine remains the only pharmacologic agent with demonstrated benefit; its clinical use should be routinely considered. Moving forward, nonopioid analgesic therapies will likely play an increasing role in CIPN treatment, but further research is necessary to confirm their utility. Promising therapies include vitamin B12 supplementation, physical therapy, and various forms of neuromodulation.
Collapse
|
50
|
Emir DF, Ozturan IU, Yilmaz S. Alpha lipoic acid intoxicatıon: An adult. Am J Emerg Med 2018; 36:1125.e3-1125.e5. [PMID: 29559356 DOI: 10.1016/j.ajem.2018.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Alpha lipoic acid (ALA) is a potent antioxidant used to treat a variety of disorders. Although ALA is considered a very safe supplement and intoxication is very rare, acute high-dose ingestions can cause mortality. In this report, we discuss a very rare case of ALA intoxication to increase awareness of this issue. CASE REPORT A 22-year-old female was referred to our emergency department with ALA intoxication after ingesting a total of 18g of ALA with a suicidal intention. The patient was found in an altered mental state and confused. During the physical examination, the patient's Glasgow Coma Scale was 13 (E4M6V3); however, she was neither alert nor oriented. Vital signs revealed a mildly decreased blood pressure, tachycardia, and an increased respiratory rate. Cranial nerve examination was normal except a horizontal gaze nystagmus. Laboratory testing showed a decompensated metabolic acidosis. T wave inversions were seen in the electrocardiography (EKG). The patient was treated with supportive treatment and discharged within three days of intensive care unit (ICU) admission. CONCLUSION ALA is a very common supplement that is easily accessible worldwide. Although ALA intoxication is very rare, it is sometimes seen after accidental or suicidal acute ingestion. Neurologic effects, metabolic acidosis, and t wave inversions in the EKG are observed when this acute poisoning occurs. Supportive treatment should be the main therapy.
Collapse
Affiliation(s)
- Duygu Ferek Emir
- Kocaeli University, Faculty of Medicine, Dept. of Emergency Medicine, Kocaeli, Turkey
| | - Ibrahim Ulas Ozturan
- Kocaeli University, Faculty of Medicine, Dept. of Emergency Medicine, Kocaeli, Turkey.
| | - Serkan Yilmaz
- Kocaeli University, Faculty of Medicine, Dept. of Emergency Medicine, Kocaeli, Turkey
| |
Collapse
|