1
|
Huang X, Wen Z, Cai H, Yu D. The role of quercetin in modulating lipid metabolism and enhancing chemotherapy via the STAT3-CPT1B pathway in pancreatic cancer. Biochem Biophys Res Commun 2025; 772:152033. [PMID: 40412371 DOI: 10.1016/j.bbrc.2025.152033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Pancreatic cancer is a highly aggressive gastrointestinal tumor with limited treatment options, such as surgery and chemotherapy. Thus, further research into its pathogenesis and new treatments is necessary. METHODS Fluorescence-activated cell sorting was employed to sort pancreatic cancer stem cells (PCSCs). Sphere formation assays and Cell Counting Kit-8 (CCK-8) assays were conducted to assess stemness and proliferation capacity. Quantitative real-time PCR and Western blot analysis were employed to assess gene expression levels. Furthermore, immunofluorescence microscopy and chromatin immunoprecipitation assays were conducted to examine alterations in signaling pathways and gene expression. RESULTS Quercetin and gemcitabine may inhibit PANC-1 cells and PCSCs by affecting energy metabolism. Chromatin immunoprecipitation assays revealed an interaction between STAT3 and CPT1B in PCSCs. Quercetin and gemcitabine might affect energy metabolism by inhibiting STAT3 and CPT1B. Manipulating STAT3 expression (overexpression plasmids and siRNA knockdown) altered CPT1B mRNA and protein expression. Although acetyl-CoA reversed the quercetin- and gemcitabine-induced expression of N-cadherin, DECR1, and ALDH, it had minimal influence on CPT1B and STAT3 levels. CONCLUSION Quercetin inhibits the expression of CPT1B via the STAT3 signaling pathway, affecting lipid metabolism and exerting antitumor effects. Furthermore, the combined administration of quercetin and gemcitabine exhibits enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Xinshi Huang
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325003, PR China
| | - Zhengde Wen
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325003, PR China
| | - Huajie Cai
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325003, PR China
| | - Dinglai Yu
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325003, PR China.
| |
Collapse
|
2
|
Telang NT. Stem Cell Models for Breast and Colon Cancer: Experimental Approach for Drug Discovery. Int J Mol Sci 2022; 23:ijms23169223. [PMID: 36012489 PMCID: PMC9409032 DOI: 10.3390/ijms23169223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The progression of the early stages of female breast and colon cancer to metastatic disease represents a major cause of mortality in women. Multi-drug chemotherapy and/or pathway selective targeted therapy are notable for their off-target effects and are associated with spontaneous and/or acquired chemotherapy resistance and the emergence of premalignant chemo-resistant cancer-initiating stem cells. The stem cell populations are responsible for the evolution of therapy-resistant metastatic disease. These limitations emphasize an unmet need to develop reliable drug-resistant cancer stem cell models as novel experimental approaches for therapeutic alternatives in drug discovery platforms. Drug-resistant stem cell models for breast and colon cancer subtypes exhibit progressive growth in the presence of cytotoxic chemo-endocrine therapeutics. The resistant cells exhibit upregulated expressions of stem cell-selective cellular and molecular markers. Dietary phytochemicals, nutritional herbs and their constituent bioactive compounds have documented growth inhibitory efficacy for cancer stem cells. The mechanistic leads for the stem cell-targeted efficacy of naturally occurring agents validates the present experimental approaches for new drug discovery as therapeutic alternatives for therapy-resistant breast and colon cancer. The present review provides a systematic discussion of published evidence on (i) conventional/targeted therapy for breast and colon cancer, (ii) cellular and molecular characterization of stem cell models and (iii) validation of the stem cell models as an experimental approach for novel drug discovery of therapeutic alternatives for therapy-resistant cancers.
Collapse
Affiliation(s)
- Nitin T Telang
- Cancer Prevention Research Program, Palindrome Liaisons Consultants, Montvale, NJ 07645-1559, USA
| |
Collapse
|
3
|
Piper K, DePledge L, Karsy M, Cobbs C. Glioma Stem Cells as Immunotherapeutic Targets: Advancements and Challenges. Front Oncol 2021; 11:615704. [PMID: 33718170 PMCID: PMC7945033 DOI: 10.3389/fonc.2021.615704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most common and lethal primary brain malignancy. Despite major investments in research into glioblastoma biology and drug development, treatment remains limited and survival has not substantially improved beyond 1-2 years. Cancer stem cells (CSC) or glioma stem cells (GSC) refer to a population of tumor originating cells capable of self-renewal and differentiation. While controversial and challenging to study, evidence suggests that GCSs may result in glioblastoma tumor recurrence and resistance to treatment. Multiple treatment strategies have been suggested at targeting GCSs, including immunotherapy, posttranscriptional regulation, modulation of the tumor microenvironment, and epigenetic modulation. In this review, we discuss recent advances in glioblastoma treatment specifically focused on targeting of GCSs as well as their potential integration into current clinical pathways and trials.
Collapse
Affiliation(s)
- Keenan Piper
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,Sidney Kimmel Medical College, Philadelphia, PA, United States
| | - Lisa DePledge
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,University of Washington School of Medicine, Spokane, WA, United States
| | - Michael Karsy
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Charles Cobbs
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States
| |
Collapse
|
4
|
Karmakar S, Rauth S, Nallasamy P, Perumal N, Nimmakalaya RK, Leon F, Gupta R, Barkeer S, Venkata RC, Raman V, Rachagani S, Ponnusamy MP, Batra SK. RNA Polymerase II-Associated Factor 1 Regulates Stem Cell Features of Pancreatic Cancer Cells, Independently of the PAF1 Complex, via Interactions With PHF5A and DDX3. Gastroenterology 2020; 159:1898-1915.e6. [PMID: 32781084 PMCID: PMC7680365 DOI: 10.1053/j.gastro.2020.07.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS It is not clear how pancreatic cancer stem cells (CSCs) are regulated, resulting in ineffective treatments for pancreatic cancer. PAF1, a RNA polymerase II-associated factor 1 complex (PAF1C) component, maintains pluripotency of stem cells, by unclear mechanisms, and is a marker of CSCs. We investigated mechanisms by which PAF1 maintains CSCs and contributes to development of pancreatic tumors. METHODS Pancreatic cancer cell lines were engineered to knockdown PAF1 using inducible small hairpin RNAs. These cells were grown as orthotopic tumors in athymic nude mice and PAF1 knockdown was induced by administration of doxycycline in drinking water. Tumor growth and metastasis were monitored via IVIS imaging. CSCs were isolated from pancreatic cancer cell populations using flow cytometry and characterized by tumor sphere formation, tumor formation in nude mice, and expression of CSC markers. Isolated CSCs were depleted of PAF1 using the CRISPR/Cas9 system. PAF1-regulated genes in CSCs were identified via RNA-seq and PCR array analyses of cells with PAF1 knockdown. Proteins that interact with PAF1 in CSCs were identified by immunoprecipitations and mass spectrometry. We performed chromatin immunoprecipitation sequencing of CSCs to confirm the binding of the PAF1 sub-complex to target genes. RESULTS Pancreatic cancer cells depleted of PAF1 formed smaller and fewer tumor spheres in culture and orthotopic tumors and metastases in mice. Isolated CSCs depleted of PAF1 downregulated markers of self-renewal (NANOG, SOX9, and β-CATENIN), of CSCs (CD44v6, and ALDH1), and the metastasis-associated gene signature, compared to CSCs without knockdown of PAF1. The role of PAF1 in CSC maintenance was independent of its RNA polymerase II-associated factor 1 complex component identity. We identified DDX3 and PHF5A as proteins that interact with PAF1 in CSCs and demonstrated that the PAF1-PHF5A-DDX3 sub-complex bound to the promoter region of Nanog, whose product regulates genes that control stemness. Levels of the PAF1-DDX3 and PAF1-PHF5A were increased and co-localized in human pancreatic tumor specimens, human pancreatic tumor-derived organoids, and organoids derived from tumors of KPC mice, compared with controls. Binding of DDX3 and PAF1 to the Nanog promoter, and the self-renewal capacity of CSCs, were decreased in cells incubated with the DDX3 inhibitor RK-33. CSCs depleted of PAF1 downregulated genes that regulate stem cell features (Flot2, Taz, Epcam, Erbb2, Foxp1, Abcc5, Ddr1, Muc1, Pecam1, Notch3, Aldh1a3, Foxa2, Plat, and Lif). CONCLUSIONS In pancreatic CSCs, PAF1 interacts with DDX3 and PHF5A to regulate expression of NANOG and other genes that regulate stemness. Knockdown of PAF1 reduces the ability of orthotopic pancreatic tumors to develop and progress in mice and their numbers of CSCs. Strategies to target the PAF1-PHF5A-DDX3 complex might be developed to slow or inhibit progression of pancreatic cancer.
Collapse
Affiliation(s)
- Saswati Karmakar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Rama Krishna Nimmakalaya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Rohitesh Gupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Srikanth Barkeer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | | | - Venu Raman
- Departments of Radiology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A.,Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, U.S.A.,Correspondence: Surinder K. Batra, Ph.D., or Moorthy P. Ponnusamy, Ph.D. Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, U.S.A. Phone: 402-559-5455, Fax: 402-559-6650, or
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A.,Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, U.S.A.,Correspondence: Surinder K. Batra, Ph.D., or Moorthy P. Ponnusamy, Ph.D. Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, U.S.A. Phone: 402-559-5455, Fax: 402-559-6650, or
| |
Collapse
|
5
|
Tartaglione S, Pecorella I, Zarrillo SR, Granato T, Viggiani V, Manganaro L, Marchese C, Angeloni A, Anastasi E. Protein Induced by Vitamin K Absence II (PIVKA-II) as a potential serological biomarker in pancreatic cancer: a pilot study. Biochem Med (Zagreb) 2019; 29:020707. [PMID: 31223261 PMCID: PMC6559614 DOI: 10.11613/bm.2019.020707] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/28/2019] [Indexed: 12/25/2022] Open
Abstract
Introduction Protein induced by vitamin K absence II (PIVKA-II) is an abnormal prothrombin increased in gastrointestinal malignancy. We aimed to evaluate PIVKA-II in comparison to established pancreatic cancer (PC) biomarkers (CA 19-9, carcinoembryonic antigen (CEA) and CA 242) measured in PC patients and in patients with benign pancreatic diseases. Materials and methods We studied 26 PC patients (Group 1) and 20 patients with benign pancreatic diseases (Group 2). PIVKA-II and CEA were measured by chemiluminescent enzyme immunoassay method (CLEIA) on LUMIPULSE G1200 (Fujirebio-Europe, Gent, Belgium), CA 19-9 and CA 242 were measured by ELSA (CisBio Bioassays, Codolet, France) and EIA (Fujirebio Diagnostics AB, Göteborg, Sweden), respectively. Receiver operating characteristic (ROC) analysis was performed to assess biomarkers’ diagnostic characteristics in both groups. Results Median and interquartile range (IQR) in Group 1 and Group 2 were: 1749.0 (320.2 – 3921.0) vs. 31.0 (23.0 – 43.0) mAU/mL (P < 0.001) for PIVKA-II, 260.0 (158.7 – 272.0) vs. 45.2 (9.0 – 58.0) U/mL (P = 0.034) for CA 19-9, 104.0 (30.2 – 150.0) vs. 7.2 (4.8 – 26.0) U/mL (P < 0.050) for CA 242, 9.4 (5.3 – 37.5) vs. 4.5 (1.8 – 7.0) ng/mL (P = 0.021) for CEA. Areas under the ROC curve of PIVKA-II, CA 19-9, CA 242, CEA were 0.86 (95% CI: 0.71 – 1.00), 0.58 (95% CI: 0.38 – 0.78), 0.73 (95% CI: 0.54 – 0.92), 0.64 (95% CI: 0.44 – 0.85), respectively. Conclusions PIVKA-II is significantly higher in PC than in benign pancreatic diseases. PIVKA-II shows a rather good diagnostic performance compared to CA 19-9, CEA and CA242, thus its determination could help PC management.
Collapse
Affiliation(s)
- Sara Tartaglione
- Department of Molecular Medicine, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | - Irene Pecorella
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | - Serena Rita Zarrillo
- Department of Molecular Medicine, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | | | - Valentina Viggiani
- Department of Molecular Medicine, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | - Lucia Manganaro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | - Emanuela Anastasi
- Department of Molecular Medicine, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
6
|
Liu L, Zhi Q, Shen M, Gong FR, Zhou BP, Lian L, Shen B, Chen K, Duan W, Wu MY, Tao M, Li W. FH535, a β-catenin pathway inhibitor, represses pancreatic cancer xenograft growth and angiogenesis. Oncotarget 2018; 7:47145-47162. [PMID: 27323403 PMCID: PMC5216931 DOI: 10.18632/oncotarget.9975] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022] Open
Abstract
The WNT/β-catenin pathway plays an important role in pancreatic cancer carcinogenesis. We evaluated the correlation between aberrant β-catenin pathway activation and the prognosis pancreatic cancer, and the potential of applying the β-catenin pathway inhibitor FH535 to pancreatic cancer treatment. Meta-analysis and immunohistochemistry showed that abnormal β-catenin pathway activation was associated with unfavorable outcome. FH535 repressed pancreatic cancer xenograft growth in vivo. Gene Ontology (GO) analysis of microarray data indicated that target genes responding to FH535 participated in stemness maintenance. Real-time PCR and flow cytometry confirmed that FH535 downregulated CD24 and CD44, pancreatic cancer stem cell (CSC) markers, suggesting FH535 impairs pancreatic CSC stemness. GO analysis of β-catenin chromatin immunoprecipitation sequencing data identified angiogenesis-related gene regulation. Immunohistochemistry showed that higher microvessel density correlated with elevated nuclear β-catenin expression and unfavorable outcome. FH535 repressed the secretion of the proangiogenic cytokines vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-8, and tumor necrosis factor-α, and also inhibited angiogenesis in vitro and in vivo. Protein and mRNA microarrays revealed that FH535 downregulated the proangiogenic genes ANGPT2, VEGFR3, IFN-γ, PLAUR, THPO, TIMP1, and VEGF. FH535 not only represses pancreatic CSC stemness in vitro, but also remodels the tumor microenvironment by repressing angiogenesis, warranting further clinical investigation.
Collapse
Affiliation(s)
- Lu Liu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Shen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei-Ran Gong
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Binhua P Zhou
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Departments of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Lian Lian
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, China.,Department of Pathology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiming Duan
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng-Yao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, Suzhou, China.,Institute of Medical Biotechnology, Soochow University, Suzhou, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Center for Systems Biology, Soochow University, Suzhou, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, Suzhou, China
| |
Collapse
|
7
|
Jiang XH, Hu NZ, Wei MT. Value of 18F-fluorodeoxyglucose positron emission tomography and 18F-fluorodeoxyglucose positron emission tomography/computed tomography in diagnosis of pancreatic cancer: A systemic review and meta-analysis. Shijie Huaren Xiaohua Zazhi 2016; 24:136-146. [DOI: 10.11569/wcjd.v24.i1.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To evaluate the value of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) and 18F-FDG PET/computed tomography (CT) in the diagnosis of pancreatic cancer.
METHODS: Medline, EMBASE, Science Direct, Springer link, CBM, Cnki, Wan fang and VIP databases were searched by computer before April 1, 2015 to retrieve articles on the study of 18F-FDG PET and 18F-FDG PET/CT in diagnosing pancreatic cancer. Studies were selected according to the inclusion and exclusion criteria, and quality assessment was made using the QUADAS scale. Meta-Disc 1.4 software was used to analyze the heterogeneity of the included articles, and the SROC curve was plotted to calculate the pooled sensitivity and specificity. The publication bias was assessed with Stata 12.0 software.
RESULTS: A total of 51 English-language articles were included. The summary sensitivity and specificity of 18F-FDG PET in diagnosing pancreatic cancer were 87% (95%CI: 85%-89%) and 78% (95%CI: 74%-81%), respectively. The positive and negative likelihood ratios were 3.38 (95%CI: 2.64-4.33) and 0.18 (95%CI: 0.14-0.23), respectively. The diagnostic odds ratio (DOR) was 21.91 (95%CI: 14.15-33.93), and the area under the SROC curve was 0.8930. The summary sensitivity and specificity of 18F-FDG PET/CT in diagnosing pancreatic cancer were 91% (95%CI: 88%-93%) and 77% (95%CI: 72%-82%), respectively. The positive and negative likelihood ratios were 3.57 (95%CI: 2.96-4.31) and 0.14 (95%CI: 0.11-0.18), respectively. The DOR was 28.52 (95%CI: 19.63-41.42), and the area under the SROC curve was 0.9315.
CONCLUSION: 18F-FDG PET/CT and 18F-FDG PET have higher diagnostic value than CT in diagnosing pancreatic cancer. 18F-FDG PET/CT is superior to 18F-FDG PET in terms of sensitivity and both of them can be used as diagnostic tools for pancreatic cancer with negative traditional examinations.
Collapse
|
8
|
Allen KT, Chin-Sinex H, DeLuca T, Pomerening JR, Sherer J, Watkins JB, Foley J, Jesseph JM, Mendonca MS. Dichloroacetate alters Warburg metabolism, inhibits cell growth, and increases the X-ray sensitivity of human A549 and H1299 NSC lung cancer cells. Free Radic Biol Med 2015; 89:263-73. [PMID: 26393423 DOI: 10.1016/j.freeradbiomed.2015.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/02/2015] [Accepted: 08/06/2015] [Indexed: 12/22/2022]
Abstract
We investigated whether altering Warburg metabolism (aerobic glycolysis) by treatment with the metabolic agent dichloroacetate (DCA) could increase the X-ray-induced cell killing of the radiation-resistant human non-small-cell lung cancer (NSCLC) cell lines A549 and H1299. Treatment with 50mM DCA decreased lactate production and glucose consumption in both A549 and H1299, clear indications of attenuated aerobic glycolysis. In addition, we found that DCA treatment also slowed cell growth, increased population-doubling time, and altered cell cycle distribution. Furthermore, we report that treatment with 50mM DCA significantly increased single and fractionated X-ray-induced cell killing of A549 and H1299 cells. Assay of DNA double-strand break repair by neutral comet assays demonstrated that DCA inhibited both the fast and the slow kinetics of X-ray-induced DSB repair in both A549 and H1299 NSCL cancer cells. Taken together the data suggest a correlation between an attenuated aerobic glycolysis and enhanced cytotoxicity and radiation-induced cell killing in radiation-resistant NSCLC cells.
Collapse
Affiliation(s)
- Kah Tan Allen
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Helen Chin-Sinex
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Thomas DeLuca
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Jeremy Sherer
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John B Watkins
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - John Foley
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jerry M Jesseph
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Marc S Mendonca
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
9
|
WANG WENJIE, WU MENGYAO, SHEN MENG, ZHI QIAOMING, LIU ZEYI, GONG FEIRAN, TAO MIN, LI WEI. Cantharidin and norcantharidin impair stemness of pancreatic cancer cells by repressing the β-catenin pathway and strengthen the cytotoxicity of gemcitabine and erlotinib. Int J Oncol 2015; 47:1912-22. [DOI: 10.3892/ijo.2015.3156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/20/2015] [Indexed: 11/06/2022] Open
|
10
|
Zhang JZ, Xie SZ, Chen HY. Value of carbohydrate antigen 242 in diagnosis of pancreatic cancer: A systemic review and meta-analysis. Shijie Huaren Xiaohua Zazhi 2015; 23:2310-2317. [DOI: 10.11569/wcjd.v23.i14.2310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the value of carbohydrate antigen (CA) 242 in the diagnosis of pancreatic cancer (PC) to provide the best evidence to clinical decision-making.
METHODS: Medline, EMBASE, Science Direct, Springer link, CBM, CNKI, Wan fang and VIP database were searched by computer before December 31, 2014 to collect the articles assessing the diagnostic value of CA242 in pancreatic cancer. Quality assessment was performed using the QUADAS scale. Meta-Disc 1.4 software was used to analyze the heterogeneity of the included articles, plot the SROC curve, and calculate the pooled sensitivity and specificity.
RESULTS: A total of 13 English articles were included. The summary sensitivity of CA242 in diagnosing pancreatic cancer was 71% (95%CI: 69%-74%), the summary specificity was 87% (95%CI: 85%-88%), the diagnostic odds ratio (DOR) was 16.51 (95%CI: 10.38-26.37), the positive likelihood ratio was 5.26 (95%CI: 3.87-7.14), the negative likelihood ratio was 0.34 (95%CI: 0.28-0.42), and the area under the SROC curve was 0.8487.
CONCLUSION: Serum CA242 has higher value in diagnosing pancreatic cancer than CA19-9, and it can be used as an diagnostic marker for pancreatic cancer.
Collapse
|
11
|
Urtasun N, Vidal-Pla A, Pérez-Torras S, Mazo A. Human pancreatic cancer stem cells are sensitive to dual inhibition of IGF-IR and ErbB receptors. BMC Cancer 2015; 15:223. [PMID: 25886138 PMCID: PMC4403908 DOI: 10.1186/s12885-015-1249-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/24/2015] [Indexed: 01/22/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma is a particularly challenging malignancy characterized by poor responsiveness to conventional chemotherapy. Although this tumor frequently overexpresses or possesses constitutively activated variants of IGF-IR and EGFR/Her-2, clinical trials using inhibitors of these receptors have failed. ErbB receptors have been proposed as one mechanism involved in the resistance to IGF-IR inhibitors. Therefore, combined treatment with inhibitors of both IGF-IR and ErbB receptors would appear to be a good strategy for overcoming the emergence of resistance. Methods Sensitivity of cells to NVP-AEW541 and lapatinib in single or combination treatment was assessed by MTT or WST-8 assays in a panel of human pancreatic cancer cell lines and cancer stem cells. Tumorspheres enriched in cancer stem cells were obtained from cultures growing in non-adherent cell plates. The effects on cell signalling pathways were analyzed by Western blot. Results We found that combined treatment with the IGF-IR and EGFR/Her-2 inhibitors NVP-AEW541 and lapatinib, respectively, synergistically inhibited pancreatic cancer cell growth. Analysis at molecular level argued in favor of cross-talk between IGF-IR and ErbBs pathways at IRS-1 level and indicated that the synergistic effect is associated with the total abolishment of Akt, Erk and IRS-1 phosphorylation. Moreover, these inhibitors acted synergistically in tumorsphere cultures to eliminate cancer stem cells, in contrast to their resistance to gemcitabine. Conclusions Taken together, these data indicate that simultaneous blockade of IGF-IR and EGFR/Her-2 using NVP-AEW541 and lapatinib may overcome resistance in pancreatic cancer. Thus, the synergy observed with this combined treatment indicates that it may be possible to maximize patient benefit with the appropriate combination of currently known anticancer agents. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1249-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nerea Urtasun
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Barcelona, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.
| | - Anna Vidal-Pla
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Barcelona, Spain.
| | - Sandra Pérez-Torras
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Barcelona, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain. .,CIBERehd, Madrid, Spain.
| | - Adela Mazo
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Barcelona, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain. .,CIBERehd, Madrid, Spain.
| |
Collapse
|
12
|
Association between CLPTM1L-TERT rs401681 polymorphism and risk of pancreatic cancer: a meta-analysis. Clin Exp Med 2014; 15:477-82. [PMID: 25284078 DOI: 10.1007/s10238-014-0316-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/15/2014] [Indexed: 12/19/2022]
Abstract
Telomere biology plays a critical and complex role in the initiation and progression of cancer. Several recent studies have provided evidence that rs401681 polymorphisms in intronic region of cleft lip and palate trans-membrane 1-like (CLPTM1L) gene sequence are associated with pancreatic cancer (PC) development, but a comprehensive synopsis is not available. We performed a meta-analysis of 6 case-control studies that included 8,253 pancreatic cancer cases and 37,646 case-free controls. We assessed the strength of the association, using odds ratios (ORs) with 95 % confidence intervals (CIs). Overall, this meta-analysis showed that rs401681 allele T was associated with a significantly increased PC risk (OR = 1.17, 95 % CI = 1.12-1.22, P heterpgeneity = 0.596 and I (2) = 0). Similarly, in the subgroup analysis by ethnicity, a significantly increased risk was found among Asians (OR = 1.15, 95 % CI = 1.07-1.24, P heterpgeneity = 0.297 and I (2) = 8.0 %) and among Caucasian (OR = 1.13, 95 % CI = 1.02-1.26, P heterpgeneity = 0.385 and I (2) = 0). No publication bias was found in the present study. This meta-analysis suggests that T allele of CLPTM1L-telomerase reverse transcriptase rs401681 polymorphism is associated with an increased PC risk, especially among Chinese. Further large and well-designed studies are needed to confirm this association.
Collapse
|
13
|
Yamashita T, Kaneko S. Orchestration of hepatocellular carcinoma development by diverse liver cancer stem cells. J Gastroenterol 2014; 49:1105-10. [PMID: 24647548 DOI: 10.1007/s00535-014-0951-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/09/2014] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the world's most aggressive diseases and carries a poor prognosis for patients. Recent evidence suggests that HCC is organized by cancer stem cells (CSCs), which are a subset of cells with stem cell-like features. CSCs are considered a pivotal target for the eradication of cancer, and liver CSCs have been investigated using various stem cell markers. Several hepatic stem/progenitor markers have been shown to be useful for isolating putative CSCs from HCC, although the expression patterns and phenotypic diversity of CSCs purified by these markers remain obscure. Recently, we found that liver CSCs defined by different markers show unique features of tumorigenicity and metastasis, with phenotypes closely associated with committed liver lineages. Furthermore, our data suggest that these distinct CSCs collaborate to orchestrate the tumorigenicity and metastasis of HCC. In this review article, we summarize the recent advances in understanding the pathogenesis and heterogeneity of liver CSCs.
Collapse
Affiliation(s)
- Taro Yamashita
- Departments of General Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan,
| | | |
Collapse
|
14
|
Huang Z, Liu F. Diagnostic value of serum carbohydrate antigen 19-9 in pancreatic cancer: a meta-analysis. Tumour Biol 2014; 35:7459-65. [PMID: 24789274 DOI: 10.1007/s13277-014-1995-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 04/21/2014] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a highly malignant cancer with increasing incidence and mortality worldwide. Carbohydrate antigen 19-9 (CA19-9) has been widely reported to play a role in the diagnosis of pancreatic cancer patients. However, published data on this subject are inconclusive. There was no meta-analysis that has been previously performed to evaluate critically the diagnostic accuracy of CA19-9 for pancreatic cancer. Therefore, we performed a meta-analysis to evaluate the sensitivity and specificity of CA19-9 in the diagnosis of pancreatic cancer. We conducted a comprehensive search to identify studies in which the pooled sensitivity, specificity, diagnostic odds ratio (DOR), and summary receiver operating curves (SROC) could be determined. A total of 11 studies that included 2,316 individuals who fulfilled all of the inclusion criteria were considered for analysis. The summary estimates for serum CA19-9 in the diagnosis of pancreatic cancer in these studies were pooled sensitivity 0.80 (95 % confidence interval [CI] 0.77-0.82), specificity 0.80 (95 % CI 0.77-0.82), and DOR 14.79 (95 % CI 8.55-25.59), and the area under the curve was 0.87. Our meta-analysis showed that serum CA19-9 plays important role in the diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Gastroenterology, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China,
| | | |
Collapse
|
15
|
Hamada S, Masamune A, Shimosegawa T. Inflammation and pancreatic cancer: disease promoter and new therapeutic target. J Gastroenterol 2014; 49:605-17. [PMID: 24292163 DOI: 10.1007/s00535-013-0915-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 11/13/2013] [Indexed: 02/04/2023]
Abstract
Chronic inflammation has a certain impact on the carcinogenesis of the digestive organs. The characteristic tissue structure of pancreatic cancer, desmoplasia, results from inflammatory processes induced by cancer cells and stromal cells. Concerning the progression of pancreatic cancer, recent research has clarified the pivotal role of tumor-stromal interaction, which promotes the development of an invasive phenotype of cancer and provides survival advantages against chemotherapeutic agents or immune surveillance. Tumor stromal cells such as pancreatic stellate cells and immune cells establish a microenvironment that protects cancer cells through complex interactions. The microenvironment of pancreatic cancer acts as a niche for pancreatic cancer stem cells from which therapy-resistance and disease recurrence develop. Inhibition of the stromal functions or restoration of the immune reaction against cancer cells has therapeutic benefits that enhance the efficacy of conventional therapies. Some of the recent advances in this field are now under evaluation in clinical settings, but many problems must be overcome to establish a radical therapy for pancreatic cancer. This review summarizes current knowledge about the tumor-promoting stromal functions, immune system modulation and therapeutic strategies targeting tumor-stromal interactions in pancreatic cancer.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi Aobaku, Sendai, Miyagi, 980-8574, Japan,
| | | | | |
Collapse
|
16
|
Li X, Guo X, Li H, Lin H, Sun Y. Serum carbohydrate antigen 242 expression exerts crucial function in the diagnosis of pancreatic cancer. Tumour Biol 2014; 35:5281-6. [PMID: 24510349 DOI: 10.1007/s13277-014-1687-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/22/2014] [Indexed: 01/06/2023] Open
|
17
|
Matsuda Y, Yoshimura H, Ueda J, Naito Z, Korc M, Ishiwata T. Nestin delineates pancreatic cancer stem cells in metastatic foci of NOD/Shi-scid IL2Rγ(null) (NOG) mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:674-85. [PMID: 24412093 DOI: 10.1016/j.ajpath.2013.11.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 10/05/2013] [Accepted: 11/18/2013] [Indexed: 01/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with a high incidence of hepatic metastases, as well as occasional pulmonary metastases. To delineate the potential role of cancer stem cells (CSCs) in PDAC metastasis, human PDAC cells were injected into the spleen of mice. The characteristics and expression of markers associated with CSC and epithelial-mesenchymal transition (EMT) of metastatic cells that developed in the liver and lung were then compared with parental cells. The metastatic cells were polygonal, and larger than parental cells. Metastatic cells also exhibited decreased proliferation and increased adhesion to extracellular matrices, as well as enhanced migration and invasion in vitro and increased metastatic capacity in vivo. The CSC markers ALDH1A1, ABCG2, and nestin were expressed at high levels in metastatic cells and exhibited changes consistent with EMT (eg, decreased E-cadherin expression). Moreover, metastatic cells readily formed spheres in culture and exhibited an increased side population by flow analysis. Nestin and ABCG2 were also expressed at high levels in metastatic lesions from PDAC patients, and silencing nestin with shRNA in PDAC cells derived from lung metastases resulted in a marked decrease in the capacity of the cells to form spheres and to yield pulmonary or hepatic metastases. Thus, the metastatic potential of human PDAC cells correlates with CSCs and with EMT characteristics and is dependent on nestin expression.
Collapse
Affiliation(s)
- Yoko Matsuda
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan
| | - Hisashi Yoshimura
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan
| | - Junji Ueda
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan; Department of Surgery for Organ and Biological Regulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Zenya Naito
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan
| | - Murray Korc
- Departments of Medicine and Biochemistry and Molecular Biology, Indiana University School of Medicine and the Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Toshiyuki Ishiwata
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
18
|
Michaud NR, Wang Y, McEachern KA, Jordan JJ, Mazzola AM, Hernandez A, Jalla S, Chesebrough JW, Hynes MJ, Belmonte MA, Wang L, Kang JS, Jovanović J, Laing N, Jenkins DW, Hurt E, Liang M, Frantz C, Hollingsworth RE, Simeone DM, Blakey DC, Bedian V. Novel Neutralizing Hedgehog Antibody MEDI-5304 Exhibits Antitumor Activity by Inhibiting Paracrine Hedgehog Signaling. Mol Cancer Ther 2013; 13:386-98. [DOI: 10.1158/1535-7163.mct-13-0420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Association of OGG1 Ser326Cys polymorphism and pancreatic cancer susceptibility: evidence from a meta-analysis. Tumour Biol 2013; 35:2397-402. [PMID: 24186001 PMCID: PMC3967056 DOI: 10.1007/s13277-013-1317-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/14/2013] [Indexed: 12/16/2022] Open
Abstract
The 8-oxoguanine DNA glycosylase (OGG1) gene has been considered to be associated with cancer susceptibility. The OGG1 Ser326Cys polymorphism has been reported to be associated with pancreatic cancer (PC), but the published studies have yielded inconsistent results. For better understanding of the effect of OGG1 Ser326Cys polymorphism on PC susceptibility, a meta-analysis was performed. All eligible studies were identified through a search of PubMed, Excerpta Medica Database (Embase), Elsevier Science Direct, and Chinese Biomedical Literature Database before May 2013. The association between the OGG1 Ser326Cys polymorphism and PC risk was conducted by odds ratios (ORs) and 95 % confidence intervals (CIs). A total of five case–control studies with 1,690 cases and 3,650 controls were eventually collected. Overall, we found that OGG1 Ser326Cys polymorphism was not associated with PC susceptibility (Cys/Cys vs. Ser/Ser: OR = 0.95, 95 % CI = 0.80–1.14; Cys/Cys vs. Ser/Ser + Ser/Cys: OR = 0.95, 95 % CI = 0.78–1.14; Cys/Cys + Ser/Cys vs. Ser/Ser (OR = 1.00, 95 % CI = 0.89–1.12)). In the subgroup analysis based on ethnicity, source of control, sample size, and genotyping method, no significant association was found in any genetic models. This meta-analysis suggests that the OGG1 Ser326Cys polymorphism may not associated with PC susceptibility. Considering the limited sample size and ethnicity included in the meta-analysis, further larger scaled and well-designed studies are needed to confirm our results.
Collapse
|
20
|
Yeon SE, No DY, Lee SH, Nam SW, Oh IH, Lee J, Kuh HJ. Application of concave microwells to pancreatic tumor spheroids enabling anticancer drug evaluation in a clinically relevant drug resistance model. PLoS One 2013; 8:e73345. [PMID: 24039920 PMCID: PMC3769301 DOI: 10.1371/journal.pone.0073345] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/19/2013] [Indexed: 12/11/2022] Open
Abstract
Intrinsic drug resistance of pancreatic ductal adenocarcinoma (PDAC) warrants studies using models that are more clinically relevant for identifying novel resistance mechanisms as well as for drug development. Tumor spheroids (TS) mimic in vivo tumor conditions associated with multicellular resistance and represent a promising model for efficient drug screening, however, pancreatic cancer cells often fail to form spheroids using conventional methods such as liquid overlay. This study describes the induction of TS of human pancreatic cancer cells (Panc-1, Aspc-1, Capan-2) in concave polydimethylsiloxane (PDMS) microwell plates and evaluation of their usefulness as an anticancer efficacy test model. All three cell lines showed TS formation with varying degree of necrosis inside TS. Among these, Panc-1 spheroid with spherical morphology, a rather rough surface, and unique adhesion structures were successfully produced with no notable necrosis in concave microwell plates. Panc-1 TS contained growth factors or enzymes such as TGF-β1, CTGF, and MT1-MMP, and extracellular matrix proteins such as collagen type I, fibronectin, and laminin. Panc-1 cells grown as TS showed changes in stem cell populations and in expression levels of miRNAs that may play roles in chemoresistance. Visualization of drug penetration and detection of viability indicators, such as Ki-67 and MitoSOX, were optimized for TS for quantitative analysis. Water-soluble tetrazolium (MTS) and acid phosphatase (APH) assays were also successfully optimized. Overall, we demonstrated that concave PDMS microwell plates are a novel platform for preparation of TS of weakly aggregating cells and that Panc-1 spheroids may represent a novel three-dimensional model for anti-pancreatic cancer drug screening.
Collapse
Affiliation(s)
- Sang-Eun Yeon
- Lab of Onco-Pharmacology and Experimental Therapeutics, Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Da Yoon No
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Sang-Hoon Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Il-Hoan Oh
- Catholic High Performance Cell Therapy Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyo-Jeong Kuh
- Lab of Onco-Pharmacology and Experimental Therapeutics, Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
21
|
Current World Literature. Curr Opin Oncol 2013; 25:325-30. [DOI: 10.1097/cco.0b013e328360f591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
CA19-9 and CA242 as tumor markers for the diagnosis of pancreatic cancer: a meta-analysis. Clin Exp Med 2013; 14:225-33. [PMID: 23456571 DOI: 10.1007/s10238-013-0234-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/22/2013] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer has the worst prognosis of any gastrointestinal cancer, with the mortality approaching the incidence. Early detection is crucial for improving patient prognosis. We therefore performed a meta-analysis to evaluate and compare the sensitivity and specificity of CA19-9 and CA242 in pancreatic cancer. We searched PubMed, EMBASE, and the Cochrane Library for studies that evaluated the diagnostic validity of CA19-9 and CA242 between January 1966 and March 2011. Meta-analysis methods were used to pool sensitivity and specificity and to construct a summary receiver-operating characteristic (SROC) curve. A total of 11 studies that included 2,316 patients who fulfilled all of the inclusion criteria were considered for analysis. The pooled sensitivities for CA242 and CA19-9 were 0.719 (95 % confidence interval [CI] 0.690-0.746) and 0.803 (95 % CI 0.777-0.826), respectively. The pooled specificities of CA242 and CA19-9 were 0.868 (95 % CI 0.849-0.885) and 0.802 (95 % CI 0.780-0.823), respectively. The diagnostic odds ratio (DOR) estimate was significantly higher for CA242 (16.261) than for CA19-9 (15.637). Our meta-analysis showed that CA242 and CA19-9 could play different roles in the diagnosis of pancreatic cancer. Although the sensitivity of CA242 is lower than that of CA19-9, its specificity is greater.
Collapse
|
23
|
Palagani V, El Khatib M, Kossatz U, Bozko P, Müller MR, Manns MP, Krech T, Malek NP, Plentz RR. Epithelial mesenchymal transition and pancreatic tumor initiating CD44+/EpCAM+ cells are inhibited by γ-secretase inhibitor IX. PLoS One 2012; 7:e46514. [PMID: 23094026 PMCID: PMC3477166 DOI: 10.1371/journal.pone.0046514] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/04/2012] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high rate of metastasis. Recent studies have indicated that the Notch signalling pathway is important in PDAC initiation and maintenance, although the specific cell biological roles of the pathway remain to be established. Here we sought to examine this question in established pancreatic cancer cell lines using the γ-secretase inhibitor IX (GSI IX) to inactivate Notch. Based on the known roles of Notch in development and stem cell biology, we focused on effects on epithelial mesenchymal transition (EMT) and on pancreatic tumor initiating CD44+/EpCAM+ cells. We analyzed the effect of the GSI IX on growth and epithelial plasticity of human pancreatic cancer cell lines, and on the tumorigenicity of pancreatic tumor initiating CD44+/EpCAM+ cells. Notably, apoptosis was induced after GSI IX treatment and EMT markers were selectively targeted. Furthermore, under GSI IX treatment, decline in the growth of pancreatic tumor initiating CD44+/EpCAM+ cells was observed in vitro and in a xenograft mouse model. This study demonstrates a central role of Notch signalling pathway in pancreatic cancer pathogenesis and identifies an effective approach to inhibit selectively EMT and suppress tumorigenesis by eliminating pancreatic tumor initiating CD44+/EpCAM+ cells.
Collapse
Affiliation(s)
- Vindhya Palagani
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Mona El Khatib
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Uta Kossatz
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Martin R. Müller
- Department of Internal Medicine II, Medical University Hospital, Tuebingen, Germany
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Till Krech
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Nisar P. Malek
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Ruben R. Plentz
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| |
Collapse
|
24
|
Ansari D, Chen BC, Dong L, Zhou MT, Andersson R. Pancreatic cancer: translational research aspects and clinical implications. World J Gastroenterol 2012; 18:1417-1424. [PMID: 22509073 PMCID: PMC3319937 DOI: 10.3748/wjg.v18.i13.1417] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 12/29/2011] [Accepted: 01/18/2012] [Indexed: 02/06/2023] Open
Abstract
Despite improvements in surgical techniques and adjuvant chemotherapy, the overall mortality rates in pancreatic cancer have generally remained relatively unchanged and the 5-year survival rate is actually below 2%. This paper will address the importance of achieving an early diagnosis and identifying markers for prognosis and response to therapy such as genes, proteins, microRNAs or epigenetic modifications. However, there are still major hurdles when translating investigational biomarkers into routine clinical practice. Furthermore, novel ways of secondary screening in high-risk individuals, such as artificial neural networks and modern imaging, will be discussed. Drug resistance is ubiquitous in pancreatic cancer. Several mechanisms of drug resistance have already been revealed, including human equilibrative nucleoside transporter-1 status, multidrug resistance proteins, aberrant signaling pathways, microRNAs, stromal influence, epithelial-mesenchymal transition-type cells and recently the presence of cancer stem cells/cancer-initiating cells. These factors must be considered when developing more customized types of intervention ("personalized medicine"). In the future, multifunctional nanoparticles that combine a specific targeting agent, an imaging probe, a cell-penetrating agent, a biocompatible polymer and an anti-cancer drug may become valuable for the management of patients with pancreatic cancer.
Collapse
|
25
|
Harder J, Ihorst G, Heinemann V, Hofheinz R, Moehler M, Buechler P, Kloeppel G, Röcken C, Bitzer M, Boeck S, Endlicher E, Reinacher-Schick A, Schmoor C, Geissler M. Multicentre phase II trial of trastuzumab and capecitabine in patients with HER2 overexpressing metastatic pancreatic cancer. Br J Cancer 2012; 106:1033-8. [PMID: 22374460 PMCID: PMC3304403 DOI: 10.1038/bjc.2012.18] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: New therapeutic options for metastatic pancreatic cancer are urgently needed. In pancreatic cancer, overexpression of the epidermal growth factor receptor 2 (HER2) has been reported in up to 45%. This multicentre phase II study investigated the efficacy and toxicity of the HER2 antibody trastuzumab combined with capecitabine in the patients with pancreatic cancer and HER2 overexpression. Methods: Primary endpoint was progression-free survival (PFS) after 12 weeks. A total of 212 patients were screened for HER2 expression. Results: Immunohistochemical (IHC) HER2 expression was: 83 (40%) grade 0, 71 (34%) grade 1, 31 (15%) grade 2, 22 (11%) grade 3. A total of 17 patients with IHC +3 HER2 expression or gene amplification could be assessed for the treatment response. Grade 3/4 treatment toxicities were: each 7% leucopenia, diarrhoea, nausea and hand-foot syndrome. Progression-free survival after 12 weeks was 23.5%, median overall survival (OS) 6.9 months. Conclusion: This study demonstrates +3 HER2 expression or gene amplification in 11% of patients. Contrary to breast and gastric cancer, only 7 out of 11 (64%) patients with IHC +3 HER2 expression showed gene amplification. Although the therapy was well tolerated, PFS and OS did not perform favourably compared with standard chemotherapy. Together, we do not recommend further evaluation of anti-HER2 treatment in patients with metastatic pancreatic cancer.
Collapse
Affiliation(s)
- J Harder
- Medizinische Klinik II, Hegau- Bodensee Klinikum, Virchowstraße 10, D-78224 Singen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|