1
|
Jangi S, Zhao N, Hsia K, Park YS, Michaud DS, Yoon H. Specific Bacterial Co-abundance Groups Are Associated With Inflammatory Status in Patients With Ulcerative Colitis. J Crohns Colitis 2025; 19:jjae125. [PMID: 39126385 PMCID: PMC11725523 DOI: 10.1093/ecco-jcc/jjae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND AIMS While there is increasing interest in microbiome-directed therapies for patients with ulcerative colitis (UC), the identification of microbial targets remains elusive, underlining the need for novel approaches. METHODS Utilizing metagenomic data from the Study of a Prospective Adult Research Cohort with Inflammatory Bowel Disease (SPARC IBD), available via the IBD Plexus Program of the Crohn's & Colitis Foundation, we used a tree-based dichotomous approach to assemble distinct clusters of species-level bacterial co-abundance groups (CAGs). We evaluated the abundance of bacterial CAGs and fungal taxa during remission (n = 166) and activity (n = 46). We examined if the bacterial CAGs identified in our cohorts were conserved in 2 healthy cohorts and a Korean UC cohort. RESULTS CAG3 and CAG8, dominated by bacteria from the family Lachnospiraceae, were associated with remission. Low abundance of CAG8 and elevated abundance of Candida genus were predictive of active UC. Constituents from CAG8 were influential hub species of the remission-associated microbial UC network, including Ruminococcus gnavus, Erysipelatoclostridium ramosum, Blautia, and Dorea species. These hub species interactions were preserved in 2 healthy cohorts and were partially recapitulated in a Korean UC cohort. CAG8 abundance correlated with the secondary bile acid production pathway. Bacterial CAGs did not correlate with Candida; however, Bifidobacterium adolescentis and Alistipes putredinis were negatively associated with Candida. CONCLUSIONS Lachnospiraceae-dominated bacterial CAGs were associated with remission in UC, with key bacterial interactions within the CAG also observed in 2 healthy cohorts and a Korean UC cohort. Bacterial CAG-based analyses may aid in designing candidate consortia for microbiome-based therapeutics.
Collapse
Affiliation(s)
- Sushrut Jangi
- Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Naisi Zhao
- Tufts University School of Medicine, Public Health and Community Medicine, Boston, MA, USA
| | - Katie Hsia
- Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dominique S Michaud
- Tufts University School of Medicine, Public Health and Community Medicine, Boston, MA, USA
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Liu C, Wu Y, Wang Y, Yang F, Ren L, Wu H, Yu Y. Integrating 16 S rRNA gene sequencing and metabolomics analysis to reveal the mechanism of Angelica sinensis oil in alleviating ulcerative colitis in mice. J Pharm Biomed Anal 2024; 249:116367. [PMID: 39029356 DOI: 10.1016/j.jpba.2024.116367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Angelica sinensis (Oliv.) Diels (AS) is a commonly used herbal medicine and culinary spice known for its gastrointestinal protective properties. Angelica sinensis oil (AO) is the main bioactive component of AS. However, the therapeutic effects and mechanisms of AO on the gastrointestinal tract remain unclear. In this study, we aim to investigated the potential of AO in restoring gut microbiota disorder and metabolic disruptions associated with ulcerative colitis (UC). A systematic chemical characterization of AO was conducted using GC×GC-Q TOF-MS. A UC mouse model was established by freely drinking DSS to assess the efficacy of AO. Utilizing 16 S rRNA sequencing in combination with untargeted metabolomics analysis of serum, we identified alterations in gut microbiota, differential metabolites, and pathways influenced by AO in UC treatment, thereby elucidating the therapeutic mechanism of AO in UC management. Pharmacodynamic results indicated that AO effectively inhibited the content of inflammation mediators, such as Interleukin-1β, Interleukin-6 and tumor necrosis factor-α, and proserved colon tissue integrity in UC mice. Furthermore, AO significantly downregulated the abundance of pathogenic bacteria (Bacteroidetes, Proteobacteria, and Desulfobacteriaceae) while increasing the abundance of beneficial bacteria (Firmicutes, Blautia, Akkermansia, and Lachnospiraceae). Metabolomics analysis highlighted significant disruptions in endogenous metabolism in UC mice, with a notable restoration of SphK1 and S1P levels following AO administration. Besides, we discovered that AO regulated the balance of sphingolipid metabolism and protected the intestinal barrier, potentially through the SphK1/MAPK signaling pathway. Overall, this study indicated that AO effectively ameliorates the clinical manifestations of UC by synergistically regulating gut microbe and metabolite homeostasis. AO emerges as a potential functional and therapeutic ingredient for UC treatment.
Collapse
Affiliation(s)
- Chang Liu
- Guangdong Provincial Engineering Research Center for Quality and Safety of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong 510070, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Yequn Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Fang Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Lingzhi Ren
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Huiqin Wu
- Guangdong Provincial Engineering Research Center for Quality and Safety of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong 510070, China.
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
3
|
Zhao P, Hou Y, Yan T, Kang J, Tian Y, Li J, Zeng C, Geng F, Liao Q. Synthesis and biological evaluation of chrysin derivatives containing α-lipoic acid for the treatment of inflammatory bowel disease. Front Chem 2024; 12:1406051. [PMID: 38860236 PMCID: PMC11163049 DOI: 10.3389/fchem.2024.1406051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
This study introduces newly discovered chrysin derivatives that show potential as candidate molecules for treating inflammatory bowel disease (IBD). Compound 4b, among the synthesized compounds, displayed significant inhibitory effects on monocyte adhesion to colon epithelium induced by TNF-α, with an IC50 value of 4.71 μM. Further mechanistic studies demonstrated that 4b inhibits the production of reactive oxygen species (ROS) and downregulates the expression of ICAM-1 and MCP-1, key molecules involved in monocyte-epithelial adhesion, as well as the transcriptional activity of NF-κB. In vivo experiments have shown that compound 4b exhibits a dose-dependent inhibition of 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats, thereby validating its effectiveness as a colitis inhibitor in animal models. These results indicate that 4b shows considerable promise as a therapeutic agent for managing IBD.
Collapse
Affiliation(s)
- Pengyu Zhao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yusen Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Yan
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Jie Kang
- Yunnan Shengke Pharmaceutical Co., Ltd., Kunming, China
| | - Ye Tian
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Xingyi, China
| | - Jiaxin Li
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Chenjuan Zeng
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Xingyi, China
| | - Funeng Geng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Qi Liao
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| |
Collapse
|
4
|
Choi DG, Baek JH, Han DM, Khan SA, Jeon CO. Comparative pangenome analysis of Enterococcus faecium and Enterococcus lactis provides new insights into the adaptive evolution by horizontal gene acquisitions. BMC Genomics 2024; 25:28. [PMID: 38172677 PMCID: PMC10765913 DOI: 10.1186/s12864-023-09945-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Enterococcus faecium and E. lactis are phylogenetically closely related lactic acid bacteria that are ubiquitous in nature and are known to be beneficial or pathogenic. Despite their considerable industrial and clinical importance, comprehensive studies on their evolutionary relationships and genomic, metabolic, and pathogenic traits are still lacking. Therefore, we conducted comparative pangenome analyses using all available dereplicated genomes of these species. RESULTS E. faecium was divided into two subclades: subclade I, comprising strains derived from humans, animals, and food, and the more recent phylogenetic subclade II, consisting exclusively of human-derived strains. In contrast, E. lactis strains, isolated from diverse sources including foods, humans, animals, and the environment, did not display distinct clustering based on their isolation sources. Despite having similar metabolic features, noticeable genomic differences were observed between E. faecium subclades I and II, as well as E. lactis. Notably, E. faecium subclade II strains exhibited significantly larger genome sizes and higher gene counts compared to both E. faecium subclade I and E. lactis strains. Furthermore, they carried a higher abundance of antibiotic resistance, virulence, bacteriocin, and mobile element genes. Phylogenetic analysis of antibiotic resistance and virulence genes suggests that E. faecium subclade II strains likely acquired these genes through horizontal gene transfer, facilitating their effective adaptation in response to antibiotic use in humans. CONCLUSIONS Our study offers valuable insights into the adaptive evolution of E. faecium strains, enabling their survival as pathogens in the human environment through horizontal gene acquisitions.
Collapse
Affiliation(s)
- Dae Gyu Choi
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Dong Min Han
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Shehzad Abid Khan
- Atta‑ur‑Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000, Islamabad, Pakistan
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Wang L, Zhang T, Huo J, Wang Y, Lu Y, Zhu X. Rapid and specific detection of Enterococcus faecium with an isothermal amplification and lateral flow strip combined method. Arch Microbiol 2023; 206:28. [PMID: 38112880 DOI: 10.1007/s00203-023-03758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
Enterococcus faecium is responsible for a highly contagious, drug-resistant nosocomial infection that often causes serious illness. In this study, a rapid and sensitive RPA-LFS (recombinase polymerase amplification-lateral flow strip) method for the detection of E. faecium was established based on specific primers and probes designed using the ddl gene. To verify the specificity and sensitivity of the method, 26 specific strains and 100-106 CFU/μL E. faecium were selected for detection. The results show that the proposed method can specifically detect E. faecium, and the minimum detection limit is 100 CFU/μL. To compare the clinical application of the method with qPCR, 181 clinical samples were collected for testing. RPA-LFS and qPCR had the same practical applicability, and 61 parts of E. faecium were detected in 183 clinical samples. The methods developed in this study not only have the advantages of rapid sensitivity and specificity but also meet the needs of remote areas with scarce medical resources.
Collapse
Affiliation(s)
- Lei Wang
- Central Laboratory of Hospital, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital, Lianyungang, China
| | - Ting Zhang
- Central Laboratory of Hospital, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital, Lianyungang, China
| | - Juan Huo
- Central Laboratory of Hospital, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital, Lianyungang, China
| | - Yan Wang
- Department of Oncology, Lianyungang Second People's Hospital (Lianyungang Hospital Affiliated to Jiangsu University), Lianyungang, China
- Department of Laboratory Medicine, Lianyungang Second People's Hospital (Lianyungang Hospital Affiliated to Jiangsu University), Lianyungang, China
| | - Yingzhi Lu
- Department of Oncology, Lianyungang Second People's Hospital (Lianyungang Hospital Affiliated to Jiangsu University), Lianyungang, China
- Department of Laboratory Medicine, Lianyungang Second People's Hospital (Lianyungang Hospital Affiliated to Jiangsu University), Lianyungang, China
| | - Xinming Zhu
- Department of Laboratory Medicine, Lianyungang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Lianyungang, China.
| |
Collapse
|