1
|
Lele AV, Moreton EO, Sundararajan J, Blacker SN. Perioperative care of patients with recent stroke undergoing nonemergent, nonneurological, noncardiac, nonvascular surgery: a systematic review and meta-analysis. Curr Opin Anaesthesiol 2024; 37:460-469. [PMID: 39011660 DOI: 10.1097/aco.0000000000001403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW To systematically review and perform a meta-analysis of published literature regarding postoperative stroke and mortality in patients with a history of stroke and to provide a framework for preoperative, intraoperative, and postoperative care in an elective setting. RECENT FINDINGS Patients with nonneurological, noncardiac, and nonvascular surgery within three months after stroke have a 153-fold risk, those within 6 months have a 50-fold risk, and those within 12 months have a 20-fold risk of postoperative stroke. There is a 12-fold risk of in-hospital mortality within three months and a three-to-four-fold risk of mortality for more than 12 months after stroke. The risk of stroke and mortality continues to persist years after stroke. Recurrent stroke is common in patients in whom anticoagulation/antiplatelet therapy is discontinued. Stroke and time elapsed after stroke should be included in the preoperative assessment questionnaire, and a stroke-specific risk assessment should be performed before surgical planning is pursued. SUMMARY In patients with a history of a recent stroke, anesthesiology, surgery, and neurology experts should create a shared mental model in which the patient/surrogate decision-maker is informed about the risks and benefits of the proposed surgical procedure; secondary-stroke-prevention medications are reviewed; plans are made for interruptions and resumption; and intraoperative care is individualized to reduce the likelihood of postoperative stroke or death.
Collapse
Affiliation(s)
- Abhijit V Lele
- Department of Anesthesiology and Pain Medicine, University of Washington, Harborview Medical Center, Seattle, Washington
| | | | | | - Samuel Neal Blacker
- Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Johnson BJ, Lipford ME, Barcus RA, Olson JD, Schaaf GW, Andrews RN, Kim J, Dugan GO, Deycmar S, Reed CA, Whitlow CT, Cline JM. Assessing cerebrovascular reactivity (CVR) in rhesus macaques (Macaca mulatta) using a hypercapnic challenge and pseudo-continuous arterial spin labeling (pCASL). Neuroimage 2024; 285:120491. [PMID: 38070839 PMCID: PMC10842457 DOI: 10.1016/j.neuroimage.2023.120491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024] Open
Abstract
Cerebrovascular reactivity (CVR) is a measure of cerebral small vessels' ability to respond to changes in metabolic demand and can be quantified using magnetic resonance imaging (MRI) coupled with a vasoactive stimulus. Reduced CVR occurs with neurodegeneration and is associated with cognitive decline. While commonly measured in humans, few studies have evaluated CVR in animal models. Herein, we describe methods to induce hypercapnia in rhesus macaques (Macaca mulatta) under gas anesthesia to measure cerebral blood flow (CBF) and CVR using pseudo-continuous arterial spin labeling (pCASL). Fifteen (13 M, 2 F) adult rhesus macaques underwent pCASL imaging that included a baseline segment (100% O2) followed by a hypercapnic challenge (isoflurane anesthesia with 5% CO2, 95% O2 mixed gas). Relative hypercapnia was defined as an end-tidal CO2 (ETCO2) ≥5 mmHg above baseline ETCO2. The mean ETCO2 during the baseline segment of the pCASL sequence was 34 mmHg (range: 23-48 mmHg). During this segment, mean whole-brain CBF was 51.48 ml/100g/min (range: 21.47-77.23 ml/100g/min). Significant increases (p<0.0001) in ETCO2 were seen upon inspiration of the mixed gas (5% CO2, 95% O2). The mean increase in ETCO2 was 8.5 mmHg and corresponded with a mean increase in CBF of 37.1% (p<0.0001). The mean CVR measured was 4.3%/mmHg. No anesthetic complications occurred as a result of the CO2 challenge. Our methods were effective at inducing a state of relative hypercapnia that corresponds with a detectable increase in whole brain CBF using pCASL MRI. Using these methods, a CO2 challenge can be performed in conjunction with pCASL imaging to evaluate CBF and CVR in rhesus macaques. The measured CVR in rhesus macaques is comparable to human CVR highlighting the translational utility of rhesus macaques in neuroscience research. These methods present a feasible means to measure CVR in comparative models of neurodegeneration and cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Brendan J Johnson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States.
| | - Megan E Lipford
- Department of Radiology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Biomedical Engineering, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Richard A Barcus
- Department of Radiology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - John D Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - George W Schaaf
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Rachel N Andrews
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Jeongchul Kim
- Department of Radiology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Greg O Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Simon Deycmar
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Colin A Reed
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Christopher T Whitlow
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Radiology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Biomedical Engineering, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Biostatistics and Data Science, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| |
Collapse
|
3
|
Banik S, Rath GP, Lamsal R, Bithal PK. Effect of dexmedetomidine on dynamic cerebral autoregulation and carbon dioxide reactivity during sevoflurane anesthesia in healthy patients. Korean J Anesthesiol 2020; 73:311-318. [PMID: 32209963 PMCID: PMC7403109 DOI: 10.4097/kja.19246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are conflicting opinions on the effect of dexmedetomidine on cerebral autoregulation. This study assessed its effect on dynamic cerebral autoregulation (dCA) using a transcranial Doppler (TCD). METHODS Thirty American Society of Anesthesiologists physical status I and II patients between 18 and 60 years, who underwent lumbar spine surgery, received infusions of dexmedetomidine (Group D) or normal saline (Group C), followed by anesthesia with propofol and fentanyl, and maintenance with oxygen, nitrous oxide and sevoflurane. After five minutes of normocapnic ventilation and stable bispectral index value (BIS) of 40-50, the right middle cerebral artery flow velocity (MCAFV) was recorded with TCD. The transient hyperemic response (THR) test was performed by compressing the right common carotid artery for 5-7 seconds. The lungs were hyperventilated to test carbon dioxide (CO2) reactivity. Hemodynamic parameters, arterial CO2 tension, pulse oximetry (SpO2), MCAFV and BIS were measured before and after hyperventilation. Dexmedetomidine infusion was discontinued ten minutes before skin-closure. Time to recovery and extubation, modified Aldrete score, and emergence agitation were recorded. RESULTS Demographic parameters, durations of surgery and anesthesia, THR ratio (Group D: 1.26 ± 0.11 vs. Group C: 1.23 ± 0.04; P = 0.357), relative CO2 reactivity (Group D: 1.19 ± 0.34 %/mmHg vs. Group C: 1.23 ± 0.25 %/mmHg; P = 0.547), blood pressure, SpO2, BIS, MCAFV, time to recovery, time to extubation and modified Aldrete scores were comparable. CONCLUSIONS Dexmedetomidine administration does not impair dCA and CO2 reactivity in patients undergoing spine surgery under sevoflurane anesthesia.
Collapse
Affiliation(s)
- Sujoy Banik
- Department of Anesthesia and Perioperative Medicine, London Health Sciences Center, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Girija Prasad Rath
- Department of Neuroanesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Ritesh Lamsal
- Department of Neuroanesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Parmod K Bithal
- Department of Anesthesia and OR Administration, King Fahd Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Sakata K, Kito K, Fukuoka N, Nagase K, Tanabe K, Iida H. Cerebrovascular reactivity to hypercapnia during sevoflurane or desflurane anesthesia in rats. Korean J Anesthesiol 2018; 72:260-264. [PMID: 30481950 PMCID: PMC6547227 DOI: 10.4097/kja.d.18.00244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
Background Hypercapnia causes dilation of cerebral vessels and increases cerebral blood flow, resulting in increased intracranial pressure. Sevoflurane is reported to preserve cerebrovascular carbon dioxide reactivity. However, the contribution of inhaled anesthetics to vasodilatory responses to hypercapnia has not been clarified. Moreover, the cerebrovascular response to desflurane under hypercapnia has not been reported. We examined the effects of sevoflurane and desflurane on vasodilatory responses to hypercapnia in rats. Methods A closed cranial window preparation was used to measure the changes in pial vessel diameters. To evaluate the cerebrovascular response to hypercapnia and/or inhaled anesthetics, the pial vessel diameters were measured in the following states: without inhaled anesthetics at normocapnia (control values) and hypercapnia, with inhaled end-tidal minimal alveolar concentration (MAC) of 0.5 or 1.0 of either sevoflurane or desflurane at normocapnia, and an MAC of 1.0 of sevoflurane or desflurane at hypercapnia. Results Under normocapnia, 1.0 MAC, but not 0.5 MAC, of sevoflurane or desflurane dilated the pial arterioles and venules. In addition, under both 1.0 MAC of sevoflurane and 1.0 MAC of desflurane, hypercapnia significantly dilated the pial arterioles and venules in comparison to their diameters without inhaled anesthetics. The degrees of vasodilation were similar for desflurane and sevoflurane under both normocapnia and hypercapnia. Conclusions Desflurane induces cerebrovascular responses similar to those of sevoflurane. Desflurane can be used as safely as sevoflurane in neurosurgical anesthesia.
Collapse
Affiliation(s)
- Koji Sakata
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Kito
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Naokazu Fukuoka
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyoshi Nagase
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
6
|
Time course of changes in cerebral blood flow velocity after tourniquet deflation in patients with diabetes mellitus or previous stroke under sevoflurane anesthesia. J Anesth 2011; 25:409-14. [PMID: 21472481 DOI: 10.1007/s00540-011-1131-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
We observed an increase in mean middle cerebral artery blood flow velocity (V(mca)) after tourniquet deflation during orthopedic surgery under sevoflurane anesthesia in patients with diabetes mellitus or previous stroke. Eight controls, seven insulin-treated diabetic patients, and eight previous stroke patients were studied. Arterial blood pressure, heart rate, V(mca), arterial blood gases, and plasma lactate levels were measured every minute for 10 min after tourniquet release in all patients. V(mca) was measured using a transcranial Doppler probe. V(mca) in all three groups increased after tourniquet deflation, the increase lasting for 4 or 5 min. However, the degree of increase in V(mca) in the diabetic patients was smaller than that in the other two groups after tourniquet deflation (at 2 min after tourniquet deflation: control 58.5 ± 3.3, previous stroke 58.4 ± 4.6, diabetes 51.7 ± 2.3; P < 0.05 compared with the other two groups). In conclusion, the degree of increase in V (mca) in diabetic patients is smaller than that in controls and patients with previous stroke.
Collapse
|