1
|
Wang Y, Feng W, Li S, Liu C, Jia L, Wang P, Li L, Du H, Yu W. Oxycodone attenuates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidation and pyroptosis via Nrf2/HO-1 signalling pathway. Clin Exp Pharmacol Physiol 2024; 51:e13910. [PMID: 39073215 DOI: 10.1111/1440-1681.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
Myocardial injury and cardiovascular dysfunction are the most common complications of sepsis, and effective therapeutic candidate is still lacking. This study aims to investigate the protective effect of oxycodone in myocardial injury of lipopolysaccharide-induced sepsis and its related signalling pathways. Wild-type and nuclear factor erythroid 2-related factor 2 (Nrf2)-knockout mice, as well as H9c2 cardiomyocytes cultures treated with lipopolysaccharide (LPS) were used as models of septic myocardial injury. H9c2 cardiomyocytes culture showed that oxycodone protected cells from pyroptosis induced by LPS. Mice model confirmed that oxycodone pretreatment significantly attenuated myocardial pathological damage and improved cardiac function demonstrated by increased ejection fraction (EF) and fractional shortening (FS), as well as decreased cardiac troponin I (cTnI) and creatine kinase isoenzymes MB (CK-MB). Oxycodone also reduced the levels of inflammatory factors and oxidative stress damage induced by LPS, which involves pyroptosis-related proteins including: Nod-like receptor protein 3 (NLRP3), Caspase 1, Apoptosis-associated speck-like protein contain a CARD (ASC), and Gasdermin D (GSDMD). These changes were mediated by Nrf2 and heme oxygenase-1 (HO-1) because Nrf2-knockout mice or Nrf2 knockdown in H9c2 cells significantly reversed the beneficial effect of oxycodone on oxidative stress, inflammatory responses and NLRP3-mediated pyroptosis. Our findings yielded that oxycodone therapy reduces LPS-induced myocardial injury by suppressing NLRP3-mediated pyroptosis via the Nrf2/HO-1 signalling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Yanting Wang
- The First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Wei Feng
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaona Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cuicui Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Pei Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Linlin Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyin Du
- Tianjin Municipal Health Commission, Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
The apelin/APJ signaling system and cytoprotection: Role of its cross-talk with kappa opioid receptor. Eur J Pharmacol 2022; 936:175353. [DOI: 10.1016/j.ejphar.2022.175353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
|
3
|
Efficacy of Alkaloids in Alleviating Myocardial Ischemia-Reperfusion Injury in Rats: A Meta-Analysis of Animal Studies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6661526. [PMID: 33791371 PMCID: PMC7997772 DOI: 10.1155/2021/6661526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/09/2021] [Indexed: 12/09/2022]
Abstract
Background Animal models are well established for studying the effects of alkaloids in preventing myocardial ischemia-reperfusion injury. However, few studies have investigated the therapeutic effects of alkaloids in humans. This meta-analysis and systematic review assessed the efficacy of alkaloids in attenuating infarct size in rats with myocardial ischemia-reperfusion injury. Methods An integrated literature search including the PubMed, Embase, and Cochrane Library databases was performed to identify studies that evaluated the therapeutic effects of alkaloids on myocardial ischemia-reperfusion injury in rats. The main outcome was infarct size, and SYRCLE's risk of bias tool was used to assess the quality of the studies. Results 22 studies were brought into the meta-analysis. Compared with the effects of vehicle, alkaloids significantly reduced infarct size (standardized mean difference (SMD) = -0.45; 95% confidence interval (CI) = -0.64 to - 0.26). In subgroup analyses, isoquinoline alkaloids (SMD = -0.43; 95%CI = -0.70 to - 0.16) significantly reduced infarct size versus the control. Conclusion Isoquinoline alkaloids can potentially alleviate myocardial ischemia-reperfusion injury. This meta-analysis and systematic review supply a reference for research programs aiming to develop alkaloid-based clinical drugs. This trial is registered with CRD42019135489.
Collapse
|
4
|
Riley ED, Vittinghoff E, Wu AHB, Coffin PO, Hsue PY, Kazi DS, Wade A, Braun C, Lynch KL. Impact of polysubstance use on high-sensitivity cardiac troponin I over time in homeless and unstably housed women. Drug Alcohol Depend 2020; 217:108252. [PMID: 32919207 PMCID: PMC7873814 DOI: 10.1016/j.drugalcdep.2020.108252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The use of controlled substances like cocaine increases the risk of cardiovascular disease (CVD) and myocardial infarction (MI). However, outside of alcohol and tobacco, substance use is not included in CVD risk assessment tools. We identified the effects of using multiple substances (nicotine/cotinine, cannabis, alcohol, cocaine, methamphetamine, heroin and other opioids) on cardiac injury measured by high-sensitivity troponin (hsTnI) in homeless and unstably housed women. METHODS We recruited 245 homeless and unstably housed women from shelters, free meal programs and street encampments. Participants completed six monthly study visits. Adjusting for traditional CVD risk factors, we examined longitudinal associations between substance use and hsTnI. RESULTS Median participant age was 53 years and 74 % were ethnic minority women. At baseline, 76 % of participants had hypertension, 31 % were HIV-positive, 8% had a history of a prior MI and 12 % of prior stroke. The most commonly used substances were cotinine/nicotine (80 %), cannabis (68 %) and cocaine (66 %). HsTnI exceeding the 99th percentile (14.7 ng/L) - a level high enough to signal possible MI - was observed in 14 participants during >1 study visit (6%). In adjusted analysis, cocaethylene and fentanyl were significantly associated with higher hsTnI levels. CONCLUSIONS Fentanyl use and the co-use of cocaine and alcohol are associated with myocardial injury, suggesting that the use of these substances may act as long-term cardiac insults. Whether risk counseling on these specific substances and/or including their use in CVD risk stratification would improve CVD outcomes in populations where substance use is high merits further investigation.
Collapse
Affiliation(s)
- Elise D Riley
- University of California, San Francisco, School of Medicine, Department of Medicine, Division of HIV, Infectious Diseases and Global Medicine, San Francisco, CA, USA.
| | - Eric Vittinghoff
- University of California, San Francisco, School of Medicine, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| | - Alan H B Wu
- University of California, San Francisco, School of Medicine, Department of Laboratory Medicine, San Francisco, CA, USA
| | - Phillip O Coffin
- University of California, San Francisco, School of Medicine, Department of Medicine, Division of HIV, Infectious Diseases and Global Medicine, San Francisco, CA, USA; San Francisco Department of Public Health, San Francisco, CA, USA
| | - Priscilla Y Hsue
- University of California, San Francisco, School of Medicine, Department of Medicine, Division of Cardiology, San Francisco, CA, USA
| | - Dhruv S Kazi
- Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Amanda Wade
- University of California, San Francisco, School of Medicine, Department of Medicine, Division of HIV, Infectious Diseases and Global Medicine, San Francisco, CA, USA
| | - Carl Braun
- University of California, San Francisco, School of Medicine, Department of Medicine, Division of HIV, Infectious Diseases and Global Medicine, San Francisco, CA, USA
| | - Kara L Lynch
- University of California, San Francisco, School of Medicine, Department of Laboratory Medicine, San Francisco, CA, USA
| |
Collapse
|
5
|
Gubitosa JC, Terwillliger T, Ukazu A, Gordon E. Naltrexone-Associated Non-ST-Elevated Myocardial Infarction. Cureus 2020; 12:e11198. [PMID: 33269129 PMCID: PMC7703987 DOI: 10.7759/cureus.11198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Medications for opioid use disorder (MOUD) and opioid agonist therapy (OAT) are the mainstays of treatment in opioid use disorder. Significant caution is encouraged upon initiation to reduce the precipitation of opioid withdrawal. Cardiac events in the setting of opioid withdrawal are rare and incompletely understood. A 46-year-old woman with a history of opioid-use disorder, hypertension, hyperlipidemia, diabetes, tobacco-use disorder, and rheumatoid arthritis presented with nausea, vomiting, and lightheadedness after taking naltrexone following buprenorphine. She was found to be hypertensive and tachycardic in the emergency department, with a troponin of 0.38 ng/mL (reference: 0.00-0.30 ng/mL) and an electrocardiogram (ECG) without ST or T-wave changes. She was admitted for a non-ST-elevation myocardial infarction (NSTEMI) and hypertensive emergency in the setting of opioid withdrawal. Her blood pressure was controlled, and she received full-dose aspirin and high intensity atorvastatin. Afterwards she was started on a modified OAT regimen of buprenorphine 8 mg daily. Her cardiac enzymes down-trended and her condition became stable after which she was discharged home. Cardiac events are an uncommon yet lethal occurrence in opioid withdrawal. The likely etiology of NSTEMI in our patient was demand ischemia induced by opioid withdrawal, augmented by her various other cardiac risk factors. Practitioners should be aware of these possible adverse events, especially in those with preexisting cardiac disease. Meticulous efforts should be made to instruct patients as to the proper dosing schedule when initiating opioid therapy, and when initiating MOUD/OAT in order to prevent poor outcomes.
Collapse
|
6
|
Cataldi M, Cignarelli A, Giallauria F, Muscogiuri G, Barrea L, Savastano S, Colao A. Cardiovascular effects of antiobesity drugs: are the new medicines all the same? INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2020; 10:14-26. [PMID: 32714509 DOI: 10.1038/s41367-020-0015-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Waiting for a definite answer from well-designed randomized prospective clinical trials, the impact of the new antiobesity drugs -liraglutide, bupropion/naltrexone, phentermine/topiramate and lorcaserin- on cardiovascular outcomes remains uncertain. What has been learned from previous experience with older medicines is that antiobesity drugs may influence cardiovascular health not only causing weight reduction but also through direct actions on the cardiovascular system. Therefore, in the present review, we examine what is known, mainly from preclinical investigations, about the cardiovascular pharmacology of the new antiobesity medicines with the aim of highlighting potential mechanistic differences. We will show that the two active substances of the bupropion/naltrexone combination both exert beneficial and unwanted cardiovascular effects. Indeed, bupropion exerts anti-inflammatory effects but at the same time it does increase heart rate and blood pressure by potentiating catecholaminergic neurotransmission, whereas naltrexone reduces TLR4-dependent inflammation and has potential protective effects in stroke but also impairs cardiac adaption to ischemia and the beneficial opioid protective effects mediated in the endothelium. On the contrary, with the only exception of a small increase in heat rate, liraglutide only exerts favorable cardiovascular effects by protecting myocardium and brain from ischemic damage, improving heart contractility, lowering blood pressure and reducing atherogenesis. As far as the phentermine/topiramate combination is concerned, no direct cardiovascular beneficial effect is expected for phentermine (as this drug is an amphetamine derivative), whereas topiramate may exert cardioprotective and neuroprotective effects in ischemia and anti-inflammatory and antiatherogenic actions. Finally, lorcaserin, a selective 5HT2C receptor agonist, does not seem to exert significant direct effects on the cardiovascular system though at very high concentrations this drug may also interact with other serotonin receptor subtypes and exert unwanted cardiovascular effects. In conclusion, the final effect of the new antiobesity drugs on cardiovascular outcomes will be a balance between possible (but still unproved) beneficial effects of weight loss and "mixed" weight-independent drug-specific effects. Therefore comparative studies will be required to establish which one of the new medicines is more appropriate in patients with specific cardiovascular diseases.
Collapse
Affiliation(s)
- Mauro Cataldi
- Department of Neuroscience, Reproductive Sciences and Dentistry, Division of Pharmacology, Federico II University of Naples, Naples, Italy
| | - Angelo Cignarelli
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Internal Medicine (Metabolic and Cardiac Rehabilitation Unit), Federico II University of Naples, Naples, Italy
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Barrea
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Silvia Savastano
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | | |
Collapse
|
7
|
Naryzhnaya N, Khaliulin I, Lishmanov Y, Suleiman M, Tsibulnikov S, Kolar F, Maslov L. Participation of opioid receptors in the cytoprotective effect of chronic normobaric hypoxia. Physiol Res 2019; 68:245-253. [DOI: 10.33549/physiolres.933938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We studied the role of the delta, micro, and kappa opioid receptor (OR) subtypes in the cardioprotective effect of chronic continuous normobaric hypoxia (CNH) in the model of acuteanoxia-reoxygenation of isolated cardiomyocytes. Adaptation of rats to CNH was performed by their exposure to atmosphere containing 12% of O(2) for 21 days. Anoxia-reoxygenation of cardiomyocytes isolated from normoxiccontrol rats caused the death of 51 % of cells and lactate dehydrogenase (LDH) release. Adaptation of rats to CNH resulted in the anoxia/reoxygenation-induced cardiomyocyte death of only 38 %, and reduced the LDH release by 25 %. Pre-incubation of the cells with either the non-selective OR (opioid receptor) blocker naloxone (300 nM/l), the delta OR antagonist TIPP(psi) (30 nM/l), the selective delta(2) OR antagonist naltriben (1 nM/l) or the micro OR antagonist CTAP (100 nM/l) for 25 minutes before anoxia abolished the reduction of cell death and LDH release afforded by CNH. The antagonist of delta(1) OR BNTX (1 nM/l) or the kappa OR antagonist nor-binaltorphimine (3 nM/l) did not influence the cytoprotective effects of CNH. Taken together, the cytoprotective effect of CNH is associated with the activation of the delta(2) and micro OR localized on cardiomyocytes.
Collapse
Affiliation(s)
- N.V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhang S, Zhou Y, Zhao L, Tian X, Jia M, Gu X, Feng N, An R, Yang L, Zheng G, Li J, Guo H, Fan R, Pei J. κ-opioid receptor activation protects against myocardial ischemia-reperfusion injury via AMPK/Akt/eNOS signaling activation. Eur J Pharmacol 2018; 833:100-108. [PMID: 29856969 DOI: 10.1016/j.ejphar.2018.05.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/20/2022]
Abstract
This study aims to investigate the effect of κ-opioid receptor activation on myocardial ischemia and reperfusion(I/R) injury and elucidate the underlying mechanisms. Myocardial I/R rat model and simulated I/R cardiomyocytes model were established. In vivo study showed that U50,488 H improved cardiac function, reduced myocardial infarct size and serum cTnT significantly. The effect of U50,488 H was abolished by nor-BNI(a κ-opioid receptor antagonist), Compound C(an AMPK inhibitor), Akt inhibitor and L-NAME(an eNOS inhibitor). AICAR, an AMPK activator, mimicked the effect of U50,488 H. U50,488 H up-regulated p-AMPK, p-Akt, and p-eNOS, which were abolished by nor-BNI. AICAR increased p-Akt and p-eNOS, which was abolished by Compound C. In vitro study showed that U50,488 H increased p-AMPK, p-Akt, and p-eNOS via κ-OR activation. The effect of U50,488 H on p-AMPK was abolished by compound C, but not Akt inhibitor and L-NAME. The effect of U50,488 H on p-Akt was abolished by compound C and Akt inhibitor, but not L-NAME. AICAR increased p-Akt and p-eNOS, which was abolished by Akt inhibitor, but not L-NAME. U50,488 H and AICAR also increased the viability of cardiomyocytes subjected to simulated I/R, the effects of U50,488 H and AICAR were blocked by nor-BNI, Compound C, Akt inhibitor, and L-NAME, respectively. In conclusion, κ-OR activation confers cardioprotection via AMPK/Akt/eNOS signaling.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/therapeutic use
- AMP-Activated Protein Kinases/antagonists & inhibitors
- AMP-Activated Protein Kinases/metabolism
- Aminoimidazole Carboxamide/analogs & derivatives
- Aminoimidazole Carboxamide/pharmacology
- Aminoimidazole Carboxamide/therapeutic use
- Animals
- Cell Line
- Cell Survival/drug effects
- Male
- Myocardial Reperfusion Injury/drug therapy
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- NG-Nitroarginine Methyl Ester/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Nitric Oxide Synthase Type III/antagonists & inhibitors
- Nitric Oxide Synthase Type III/metabolism
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Ribonucleotides/pharmacology
- Ribonucleotides/therapeutic use
- Signal Transduction
- Troponin T/blood
Collapse
Affiliation(s)
- Shumiao Zhang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yaguang Zhou
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Lei Zhao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710033, Shaanxi Province, China
| | - Xin Tian
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China; Department of Cardiology, Traditional Chinese Medicine Hospital of Shaanxi Province, Xi'an 710003, Shaanxi Province, China
| | - Min Jia
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiaoming Gu
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Na Feng
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Rui An
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710033, Shaanxi Province, China
| | - Lu Yang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Guoxu Zheng
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Juan Li
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Haitao Guo
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Rong Fan
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.
| | - Jianming Pei
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.
| |
Collapse
|
9
|
Chen G, Thakkar M, Robinson C, Doré S. Limb Remote Ischemic Conditioning: Mechanisms, Anesthetics, and the Potential for Expanding Therapeutic Options. Front Neurol 2018; 9:40. [PMID: 29467715 PMCID: PMC5808199 DOI: 10.3389/fneur.2018.00040] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022] Open
Abstract
Novel and innovative approaches are essential in developing new treatments and improving clinical outcomes in patients with ischemic stroke. Remote ischemic conditioning (RIC) is a series of mechanical interruptions in blood flow of a distal organ, following end organ reperfusion, shown to significantly reduce infarct size through inhibition of oxidation and inflammation. Ischemia/reperfusion (I/R) is what ultimately leads to the irreversible brain damage and clinical picture seen in stroke patients. There have been several reports and reviews about the potential of RIC in acute ischemic stroke; however, the focus here is a comprehensive look at the differences in the three types of RIC (remote pre-, per-, and postconditioning). There are some limited uses of preconditioning in acute ischemic stroke due to the unpredictability of the ischemic event; however, it does provide the identification of biomarkers for clinical studies. Remote limb per- and postconditioning offer a more promising treatment during patient care as they can be harnessed during or after the initial ischemic insult. Though further research is needed, it is imperative to discuss the importance of preclinical data in understanding the methods and mechanisms involved in RIC. This understanding will facilitate translation to a clinically feasible paradigm for use in the hospital setting.
Collapse
Affiliation(s)
- Gangling Chen
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Mrugesh Thakkar
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Christopher Robinson
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, University of Florida, Gainesville, FL, United States.,Department of Psychiatry, University of Florida, Gainesville, FL, United States.,Department of Pharmaceutics, University of Florida, Gainesville, FL, United States.,Department of Psychology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Side effects of pain and analgesia in animal experimentation. Lab Anim (NY) 2017; 46:123-128. [DOI: 10.1038/laban.1216] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/30/2016] [Indexed: 02/03/2023]
|
11
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
12
|
Zhao ZH, Hao W, Meng QT, Du XB, Lei SQ, Xia ZY. Long non-coding RNA MALAT1 functions as a mediator in cardioprotective effects of fentanyl in myocardial ischemia-reperfusion injury. Cell Biol Int 2017; 41:62-70. [PMID: 27862640 DOI: 10.1002/cbin.10701] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/05/2016] [Indexed: 12/18/2022]
Abstract
Long non-coding (lncRNA) MALAT1 can be increased by hypoxia or ischemic limbs. Also, downregulation of MALAT1 contributes to reduction of cardiomyocyte apoptosis. However, the functional involvement of MALAT1 in myocardial ischemia-reperfusion (I/R) injury has not been defined. This study investigated the functional involvement of lncRNA-MALAT1 in cardioprotective effects of fentanyl. HL-1, a cardiac muscle cell line from the AT-1 mouse atrial cardiomyocyte tumor lineage was pre-treated with fentanyl and generated cell model of hypoxia-reoxygenation (H/R). Relative expression of MALAT1, miR-145, and Bnip3 mRNA in cells was determined by quantitative real-time PCR. Cardiomyocyte H/R injury was indicated by lactate dehydrogenase (LDH) release and cell apoptosis. The results showed that fentanyl abrogates expression of responsive gene for H/R and induces downregulation of MALAT1 and Bnip3 and upregulation of miR-145. We found that miR-145/Bnip3 pathway was negatively regulated by MALAT1 in H/R-HL-1 cell with or without fentanyl treatment. Moreover, both MALAT1 overexpression and miR-145 knockdown reverse cardioprotective effects of fentanyl, as indicated by increase in LDH release and cell apoptosis. The reversal effect of MALAT1 for fentanyl is confirmed in cardiac ischemia/reperfusion (I/R) mice. In summary, lncRNA-MALAT1 is sensitive to H/R injury and abrogates cardioprotective effects of Fentanyl by negatively regulating miR-145/Bnip3 pathway.
Collapse
Affiliation(s)
- Zhi-Hui Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Zhang Road, Wu chang District No. 99 Jie fang Road 238, 430060, Wuhan, China
| | - Wei Hao
- Department of Anesthesiology, Inner Mongolia Autonomous Region People's Hospital, Zhao Wu Da Road, No.20, Sai Han District, 010017, Huhhot, Inner Mongolia Autonomous Region, China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Zhang Road, Wu chang District No. 99 Jie fang Road 238, 430060, Wuhan, China
| | - Xiao-Bing Du
- Department of Anesthesiology, Inner Mongolia Autonomous Region People's Hospital, Zhao Wu Da Road, No.20, Sai Han District, 010017, Huhhot, Inner Mongolia Autonomous Region, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Zhang Road, Wu chang District No. 99 Jie fang Road 238, 430060, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Zhang Road, Wu chang District No. 99 Jie fang Road 238, 430060, Wuhan, China
| |
Collapse
|
13
|
Seewald M, Coles JA, Sigg DC, Iaizzo PA. Featured Article: Pharmacological postconditioning with delta opioid attenuates myocardial reperfusion injury in isolated porcine hearts. Exp Biol Med (Maywood) 2016; 242:986-995. [PMID: 28440739 DOI: 10.1177/1535370216684041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ischemic preconditioning has been utilized to protect the heart from ischemia prior to ischemia onset, whereas postconditioning is employed to minimize the consequences of ischemia at the onset of reperfusion. The underlying mechanisms and pathways of ischemic pre- and postconditioning continue to be investigated as therapeutic targets. We evaluated the administration of a delta opioid agonist or cariporide on various parameters associated with myocardial reperfusion injury upon reperfusion of isolated porcine hearts. The hearts were reperfused in vitro with a Krebs buffer containing either: (1) 1 µM Deltorphin D (delta opioid specific agonist, n = 6); (2) 3 µM cariporide (sodium-hydrogen exchange inhibitor, n = 4); or (3) no treatment (control, n = 6). Subsequently, postischemic hemodynamic performance, arrhythmia burden, relative tissue perfusion, and development of necrosis were assessed over a 2 h reperfusion period. Postconditioning with Deltorphin D significantly improved diastolic relaxation (Tau, P < 0.05 versus controls) and decreased the incidence of ventricular arrhythmias during early reperfusion. Additionally, these treated hearts demonstrated increased tissue perfusion after 2 h ( P < 0.05 versus controls), suggesting improved microvascular function. Delta opioid agonists elicited the potential to attenuate reperfusion injury, suggesting a postconditioning effect of these agents. We hypothesize that the induced benefits of delta opioids, in part, are associated with decreased calcium influx on reperfusion, independent of sodium-hydrogen exchange inhibition. Such agents may have a potential role in minimizing reperfusion injury associated with coronary stenting, bypass surgery, myocardial infarction, cardiac transplantation, or with the utilization of heart preservation systems. Impact statement In this study, we found that postconditioning with Deltorphin D significantly improved diastolic relaxation and decreased the incidence of ventricular arrhythmias during early reperfusion. Furthermore, these treated hearts demonstrated increased tissue perfusion after 2 h, suggesting improved microvascular function. Delta opioid agonists attenuated reperfusion injury, suggestive of a postconditioning effect. Such agents may have a potential role in minimizing reperfusion injury associated with coronary stenting, bypass surgery, myocardial infarction, cardiac transplantation, or with the utilization of heart preservation systems.
Collapse
Affiliation(s)
- Maria Seewald
- 1 Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - James A Coles
- 1 Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.,2 Medtronic, Cardiac Rhythm and Heart Failure, Minneapolis, MN 55112, USA
| | - Daniel C Sigg
- 1 Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.,3 FocusStart LLC, Minneapolis, MN 55413, USA
| | - Paul A Iaizzo
- 1 Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.,4 Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|