1
|
Hamberg L, Vanhatalo J, Velmala S, Taylor AFS, MacKay J, Caron S, Asiegbu FO, Sievänen R, Raumonen P, Hytönen T, Pennanen T. The community of root fungi is associated with the growth rate of Norway spruce (Picea abies). Environ Microbiol 2024; 26:e16662. [PMID: 38840258 DOI: 10.1111/1462-2920.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
Our study delved into the relationship between root-associated fungi, gene expression and plant morphology in Norway spruce cuttings derived from both slow-and fast-growing trees. We found no clear link between the gene expression patterns of adventitious roots and the growth phenotype, suggesting no fundamental differences in the receptiveness to fungal symbionts between the phenotypes. Interestingly, saplings from slow-growing parental trees exhibited a higher richness of ectomycorrhizal species and larger roots. Some ectomycorrhizal species, typically found on mature spruces, were more prevalent on saplings from slow-growing spruces. The ericoid mycorrhizal fungus, Hyaloscypha hepaticola, showed a stronger association with saplings from fast-growing spruces. Moreover, saplings from slow-growing spruces had a greater number of Ascomycete taxa and free-living saprotrophic fungi. Aboveground sapling stems displayed some phenotypic variation; saplings from fast-growing phenotypes had longer branches but fewer whorls in their stems compared to those from the slow-growing group. In conclusion, the observed root-associated fungi and phenotypic characteristics in young Norway spruces may play a role in their long-term growth rate. This suggests that the early interactions between spruces and fungi could potentially influence their growth trajectory.
Collapse
Affiliation(s)
- Leena Hamberg
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jarno Vanhatalo
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | | | - John MacKay
- Department of Biology, University of Oxford, Oxford, UK
| | - Sébastien Caron
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, Canada
| | - Fred O Asiegbu
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Risto Sievänen
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Pasi Raumonen
- Computing Sciences, Tampere University, Tampere, Finland
| | - Tuija Hytönen
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Taina Pennanen
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
2
|
Martin FM, van der Heijden MGA. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. THE NEW PHYTOLOGIST 2024; 242:1486-1506. [PMID: 38297461 DOI: 10.1111/nph.19541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Collapse
Affiliation(s)
- Francis M Martin
- Université de Lorraine, INRAE, UMR IAM, Champenoux, 54280, France
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Marcel G A van der Heijden
- Department of Agroecology & Environment, Plant-Soil Interactions, Agroscope, Zürich, 8046, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8057, Switzerland
| |
Collapse
|
3
|
Sevanto S, Gehring CA, Ryan MG, Patterson A, Losko AS, Vogel SC, Carter KR, Dickman LT, Espy MA, Kuske CR. Benefits of symbiotic ectomycorrhizal fungi to plant water relations depend on plant genotype in pinyon pine. Sci Rep 2023; 13:14424. [PMID: 37660169 PMCID: PMC10475095 DOI: 10.1038/s41598-023-41191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
Rhizosphere microbes, such as root-associated fungi, can improve plant access to soil resources, affecting plant health, productivity, and stress tolerance. While mycorrhizal associations are ubiquitous, plant-microbe interactions can be species specific. Here we show that the specificity of the effects of microbial symbionts on plant function can go beyond species level: colonization of roots by ectomycorrhizal fungi (EMF) of the genus Geopora has opposite effects on water uptake, and stomatal control of desiccation in drought tolerant and intolerant genotypes of pinyon pine (Pinus edulis Engelm.). These results demonstrate, for the first time, that microorganisms can have significant and opposite effects on important plant functional traits like stomatal control of desiccation that are associated with differential mortality and growth in nature. They also highlight that appropriate pairing of plant genotypes and microbial associates will be important for mitigating climate change impacts on vegetation.
Collapse
Affiliation(s)
- Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA.
| | - Catherine A Gehring
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Max G Ryan
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA
- Integral Ecology Group, Duncan, BC, V9L 6H1, Canada
| | - Adair Patterson
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Adrian S Losko
- Material Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Forschungs-Neutronenquelle Heinz Maier-Leibnitz, 85748, Garching, Germany
| | - Sven C Vogel
- Material Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Kelsey R Carter
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA
| | - L Turin Dickman
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA
| | - Michelle A Espy
- Engineering Technology and Design Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Cheryl R Kuske
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
4
|
Kranabetter JM, Robbins S, Hawkins BJ. Host population effects on ectomycorrhizal fungi vary between low and high phosphorus soils of temperate rainforests. MYCORRHIZA 2023; 33:199-209. [PMID: 36947254 DOI: 10.1007/s00572-023-01109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/13/2023] [Indexed: 06/08/2023]
Abstract
Geographic distinctions in the affinity of tree populations for select ectomycorrhizal fungi (EMF) may occur where strong edaphic pressures act on fungal communities and their hosts. We examine this premise for Pseudotsuga menziesii var. menziesii of southwest British Columbia, using ten native seedlots collected from a range of mean annual precipitation (MAP), as a proxy for podzolization extent and phosphorus (P) deficiencies, and evaluated in contrasting low P and high P soils. After two growing seasons, seedling biomass in the high P soil dwarfed that of the low P soil, and better growth rates under high P were detected for populations from very dry and very wet origins. EMF communities on the high P soil displayed more symmetry among host populations than the low P soil (average community dissimilarity of 0.20% vs. 0.39%, respectively). Seedling foliar P% differed slightly but significantly in relation to MAP of origin. EMF species richness varied significantly among host populations but independently of climatic parameters. There were significant shifts in EMF species abundance related to seedlot MAP, particularly on the low P soil where nonlinear relationships were found for Wilcoxina mikolae, Hyaloscypha finlandica, and Rhizopogon villosulus. Despite efforts to enhance colonization by native fungi, the predominance of ruderal EMF species hindered a realistic evaluation of local adaptation among host-fungi populations. Nevertheless, the shifting affinity in taxa abundance and wider community disparity on low P soil reflected the potential for a consequential host genetic effect related to geographical patterns in P availability across temperate rainforests.
Collapse
Affiliation(s)
- J M Kranabetter
- British Columbia Ministry of Forests, P.O. Box 9536, Stn Prov Govt, Victoria, B.C., Canada, V8W 9C4.
| | - S Robbins
- Centre for Forest Biology, University of Victoria, P.O. Box 3020, STN CSC, Victoria, B.C., Canada, V8W 3N5
| | - B J Hawkins
- Centre for Forest Biology, University of Victoria, P.O. Box 3020, STN CSC, Victoria, B.C., Canada, V8W 3N5
| |
Collapse
|
5
|
Hoeber S, Baum C, Weih M, Manzoni S, Fransson P. Site-Dependent Relationships Between Fungal Community Composition, Plant Genotypic Diversity and Environmental Drivers in a Salix Biomass System. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:671270. [PMID: 37744105 PMCID: PMC10512226 DOI: 10.3389/ffunb.2021.671270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 09/26/2023]
Abstract
Soil fungi are strongly affected by plant species or genotypes since plants modify their surrounding environment, but the effects of plant genotype diversity on fungal diversity and function have not been extensively studied. The interactive responses of fungal community composition to plant genotypic diversity and environmental drivers were investigated in Salix biomass systems, posing questions about: (1) How fungal diversity varies as a function of plant genotype diversity; (2) If plant genotype identity is a strong driver of fungal community composition also in plant mixtures; (3) How the fungal communities change through time (seasonally and interannually)?; and (4) Will the proportion of ECM fungi increase over the rotation? Soil samples were collected over 4 years, starting preplanting from two Salix field trials, including four genotypes with contrasting phenology and functional traits, and genotypes were grown in all possible combinations (four genotypes in Uppsala, Sweden, two in Rostock, Germany). Fungal communities were identified, using Pacific Biosciences sequencing of fungal ITS2 amplicons. We found some site-dependent relationships between fungal community composition and genotype or diversity level, and site accounted for the largest part of the variation in fungal community composition. Rostock had a more homogenous community structure, with significant effects of genotype, diversity level, and the presence of one genotype ("Loden") on fungal community composition. Soil properties and plant and litter traits contributed to explaining the variation in fungal species composition. The within-season variation in composition was of a similar magnitude to the year-to-year variation. The proportion of ECM fungi increased over time irrespective of plant genotype diversity, and, in Uppsala, the 4-mixture showed a weaker response than other combinations. Species richness was generally higher in Uppsala compared with that in Rostock and increased over time, but did not increase with plant genotype diversity. This significant site-specificity underlines the need for consideration of diverse sites to draw general conclusions of temporal variations and functioning of fungal communities. A significant increase in ECM colonization of soil under the pioneer tree Salix on agricultural soils was evident and points to changed litter decomposition and soil carbon dynamics during Salix growth.
Collapse
Affiliation(s)
- Stefanie Hoeber
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christel Baum
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Martin Weih
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefano Manzoni
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Petra Fransson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
Ectomycorrhizal fungal communities differ among parental and hybrid Populus cross types within a natural riparian habitat. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Downie J, Taylor AFS, Iason G, Moore B, Silvertown J, Cavers S, Ennos R. Location, but not defensive genotype, determines ectomycorrhizal community composition in Scots pine ( Pinus sylvestris L.) seedlings. Ecol Evol 2021; 11:4826-4842. [PMID: 33976851 PMCID: PMC8093658 DOI: 10.1002/ece3.7384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 11/28/2022] Open
Abstract
For successful colonization of host roots, ectomycorrhizal (EM) fungi must overcome host defense systems, and defensive phenotypes have previously been shown to affect the community composition of EM fungi associated with hosts. Secondary metabolites, such as terpenes, form a core part of these defense systems, but it is not yet understood whether variation in these constitutive defenses can result in variation in the colonization of hosts by specific fungal species.We planted seedlings from twelve maternal families of Scots pine (Pinus sylvestris) of known terpene genotype reciprocally in the field in each of six sites. After 3 months, we characterized the mycorrhizal fungal community of each seedling using a combination of morphological categorization and molecular barcoding, and assessed the terpene chemodiversity for a subset of the seedlings. We examined whether parental genotype or terpene chemodiversity affected the diversity or composition of a seedling's mycorrhizal community.While we found that terpene chemodiversity was highly heritable, we found no evidence that parental defensive genotype or a seedling's terpene chemodiversity affected associations with EM fungi. Instead, we found that the location of seedlings, both within and among sites, was the only determinant of the diversity and makeup of EM communities.These results show that while EM community composition varies within Scotland at both large and small scales, variation in constitutive defensive compounds does not determine the EM communities of closely cohabiting pine seedlings. Patchy distributions of EM fungi at small scales may render any genetic variation in associations with different species unrealizable in field conditions. The case for selection on traits mediating associations with specific fungal species may thus be overstated, at least in seedlings.
Collapse
Affiliation(s)
- Jim Downie
- Ashworth LaboratoriesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
- Centre for Ecology and HydrologyPenicuikUK
- School of Natural SciencesBangor UniversityWalesUK
| | - Andy F. S. Taylor
- The James Hutton InstituteAberdeenUK
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | | | - Ben Moore
- The James Hutton InstituteAberdeenUK
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | - Jonathan Silvertown
- Ashworth LaboratoriesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | | | - Richard Ennos
- Ashworth LaboratoriesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
8
|
Ghahremani M, MacLean AM. Home sweet home: how mutualistic microbes modify root development to promote symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2275-2287. [PMID: 33369646 DOI: 10.1093/jxb/eraa607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Post-embryonic organogenesis has uniquely equipped plants to become developmentally responsive to their environment, affording opportunities to remodel organism growth and architecture to an extent not possible in other higher order eukaryotes. It is this developmental plasticity that makes the field of plant-microbe interactions an exceptionally fascinating venue in which to study symbiosis. This review article describes the various ways in which mutualistic microbes alter the growth, development, and architecture of the roots of their plant hosts. We first summarize general knowledge of root development, and then examine how association of plants with beneficial microbes affects these processes. Working our way inwards from the epidermis to the pericycle, this review dissects the cell biology and molecular mechanisms underlying plant-microbe interactions in a tissue-specific manner. We examine the ways in which microbes gain entry into the root, and modify this specialized organ for symbiont accommodation, with a particular emphasis on the colonization of root cortical cells. We present significant advances in our understanding of root-microbe interactions, and conclude our discussion by identifying questions pertinent to root endosymbiosis that at present remain unresolved.
Collapse
Affiliation(s)
- Mina Ghahremani
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada
| | - Allyson M MacLean
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada
| |
Collapse
|
9
|
Downie J, Silvertown J, Cavers S, Ennos R. Heritable genetic variation but no local adaptation in a pine-ectomycorrhizal interaction. MYCORRHIZA 2020; 30:185-195. [PMID: 32078050 PMCID: PMC7228896 DOI: 10.1007/s00572-020-00941-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/12/2020] [Indexed: 06/08/2023]
Abstract
Local adaptation of plants to mycorrhizal fungi helps determine the outcome of mycorrhizal interactions. However, there is comparatively little work exploring the potential for evolution in interactions with ectomycorrhizal fungi, and fewer studies have explored the heritability of mycorrhizal responsiveness, which is required for local adaptation to occur. We set up a reciprocal inoculation experiment using seedlings and soil from four populations of Scots pine (Pinus sylvestris) from Scotland, measuring seedling response to mycorrhizal inoculation after 4 months. We estimated heritability for the response traits and tested for genotype × environment interactions. While we found that ectomycorrhizal responsiveness was highly heritable, we found no evidence that pine populations were locally adapted to fungal communities. Instead, we found a complex suite of interactions between pine population and soil inoculum. Our results suggest that, while Scots pine has the potential to evolve in response to mycorrhizal fungi, evolution in Scotland has not resulted in local adaptation. Long generation times and potential for rapid shifts in fungal communities in response to environmental change may preclude the opportunity for such adaptation in this species, and selection for other factors such as resistance to fungal pathogens may explain the pattern of interactions found.
Collapse
Affiliation(s)
- Jim Downie
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, Scotland.
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, Scotland.
| | - Jonathan Silvertown
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, Scotland
| | - Stephen Cavers
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, Scotland
| | - Richard Ennos
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
10
|
De Vita P, Avio L, Sbrana C, Laidò G, Marone D, Mastrangelo AM, Cattivelli L, Giovannetti M. Genetic markers associated to arbuscular mycorrhizal colonization in durum wheat. Sci Rep 2018; 8:10612. [PMID: 30006562 PMCID: PMC6045686 DOI: 10.1038/s41598-018-29020-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/04/2018] [Indexed: 11/09/2022] Open
Abstract
In this work we investigated the variability and the genetic basis of susceptibility to arbuscular mycorrhizal (AM) colonization of wheat roots. The mycorrhizal status of wild, domesticated and cultivated tetraploid wheat accessions, inoculated with the AM species Funneliformis mosseae, was evaluated. In addition, to detect genetic markers in linkage with chromosome regions involved in AM root colonization, a genome wide association analysis was carried out on 108 durum wheat varieties and two AM fungal species (F. mosseae and Rhizoglomus irregulare). Our findings showed that a century of breeding on durum wheat and the introgression of Reduced height (Rht) genes associated with increased grain yields did not select against AM symbiosis in durum wheat. Seven putative Quantitative Trait Loci (QTLs) linked with durum wheat mycorrhizal susceptibility in both experiments, located on chromosomes 1A, 2B, 5A, 6A, 7A and 7B, were detected. The individual QTL effects (r2) ranged from 7 to 16%, suggesting a genetic basis for this trait. Marker functional analysis identified predicted proteins with potential roles in host-parasite interactions, degradation of cellular proteins, homeostasis regulation, plant growth and disease/defence. The results of this work emphasize the potential for further enhancement of root colonization exploiting the genetic variability present in wheat.
Collapse
Affiliation(s)
- Pasquale De Vita
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25 + 200, 71121, Foggia, Italy.
| | - Luciano Avio
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | | | - Giovanni Laidò
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25 + 200, 71121, Foggia, Italy
| | - Daniela Marone
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25 + 200, 71121, Foggia, Italy
| | - Anna M Mastrangelo
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25 + 200, 71121, Foggia, Italy
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, Via Stezzano 24, 24126, Bergamo, Italy
| | - Luigi Cattivelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Genomica e Bioinformatica, Via San Protaso 302, 29017, Fiorenzuola d'Arda, (PC), Italy
| | - Manuela Giovannetti
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
11
|
Lehnert H, Serfling A, Enders M, Friedt W, Ordon F. Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2017; 215:779-791. [PMID: 28517039 DOI: 10.1111/nph.14595] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/30/2017] [Indexed: 05/23/2023]
Abstract
Bread wheat (Triticum aestivum) is a major staple food and therefore of prime importance for feeding the Earth's growing population. Mycorrhiza is known to improve plant growth, but although extensive knowledge concerning the interaction between mycorrhizal fungi and plants is available, genotypic differences concerning the ability of wheat to form mycorrhizal symbiosis and quantitative trait loci (QTLs) involved in mycorrhization are largely unknown. Therefore, a diverse set of 94 bread wheat genotypes was evaluated with regard to root colonization by arbuscular mycorrhizal fungi. In order to identify genomic regions involved in mycorrhization, these genotypes were analyzed using the wheat 90k iSelect chip, resulting in 17 823 polymorphic mapped markers, which were used in a genome-wide association study. Significant genotypic differences (P < 0.0001) were detected in the ability to form symbiosis and 30 significant markers associated with root colonization, representing six QTL regions, were detected on chromosomes 3A, 4A and 7A, and candidate genes located in these QTL regions were proposed. The results reported here provide key insights into the genetics of root colonization by mycorrhizal fungi in wheat.
Collapse
Affiliation(s)
- Heike Lehnert
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Albrecht Serfling
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Matthias Enders
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Wolfgang Friedt
- Plant Breeding Department, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany
| | - Frank Ordon
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| |
Collapse
|
12
|
Lamit L, Holeski L, Flores-Rentería L, Whitham T, Gehring C. Tree genotype influences ectomycorrhizal fungal community structure: Ecological and evolutionary implications. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Foulon J, Zappelini C, Durand A, Valot B, Girardclos O, Blaudez D, Chalot M. Environmental metabarcoding reveals contrasting microbial communities at two poplar phytomanagement sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:1230-40. [PMID: 27474992 DOI: 10.1016/j.scitotenv.2016.07.151] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 05/06/2023]
Abstract
The aim of the present study is to deepen the current understanding of the microbial communities at two poplar phytomanagement sites to reveal the environmental factors that drive the abundance, diversity and composition of microbial communities. A soil analysis revealed that the two soils displayed contrasting physico-chemical characteristics, with significant lower pH and higher Cd, Zn and Mn CaCl2-extractable fractions at Leforest site, compared with Pierrelaye site. The fungal and bacterial community profiles in the poplar roots and soils were assessed through Illumina MiSeq sequencing. Diversity indices and β-diversity measures illustrated that the root microbial communities were well separated from the soil microbial communities at both sites. A detailed study of the fungal composition showed that Ascomycota dominated the overall fungal communities on poplar soil, the root samples at Pierrelaye, and the unplanted soil at the experimental sites. Conversely, Basidiomycota accounted for a much higher percentage of the fungal community in poplar root samples from the Leforest site. The root bacterial communities were dominated by Alphaproteobacteria and Actinobacteria, and the soil samples were dominated by Alphaproteobacteria and Acidobacteria. The occurrence and dominance of the ectomycorrhizal community at Leforest but not at Pierrelaye is the major feature of our data set. Overall, ectomycorrhizal root symbionts appeared to be highly constrained by soil characteristics at the phytomanagement sites. Our data support the view that mycorrhizal inoculation is needed in highly stressed and nutrient-poor environments.
Collapse
Affiliation(s)
- Julie Foulon
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Cyril Zappelini
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Alexis Durand
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Benoit Valot
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Olivier Girardclos
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Damien Blaudez
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506 Vandoeuvre-lès-Nancy, France; Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Michel Chalot
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France; Université de Lorraine, Faculté des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-les-Nancy, France.
| |
Collapse
|
14
|
Fatoumata F, Di eacute gane D, Dioumacor F, Ibrahima N, Cheikh N, Aboubacry K, Amadou MB. Effect of arbuscular mycorrhizal fungal inoculation on growth, and nutrient uptake of the two grass species, Leptochloa fusca (L.) Stapf and Sporobolus robustus Kunth, under greenhouse conditions. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajb2015.14840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Vaario LM, Lu J, Koistinen A, Tervahauta A, Aronen T. Variation among matsutake ectomycorrhizae in four clones of Pinus sylvestris. MYCORRHIZA 2015; 25:195-204. [PMID: 25179801 DOI: 10.1007/s00572-014-0601-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/20/2014] [Indexed: 06/03/2023]
Abstract
Tricholoma matsutake is an ectomycorrhizal fungus that forms commercially important mushrooms in coniferous forests. In this study, we explored the ability of T. matsutake to form mycorrhizae with Pinus sylvestris by inoculating emblings produced through somatic embryogenesis (SE) in an aseptic culture system. Two months after inoculation, clones with less phenolic compounds in the tissue culture phase formed mycorrhizae with T. matsutake, while clones containing more phenols did not. Effects of inoculation on embling growth varied among clones; two of the four tested showed a significant increase in biomass and two had a significant increase in root density. In addition, results suggest that clones forming well-developed mycorrhizae absorbed more Al, Fe, Na, P, and Zn after 8 weeks of inoculation. This study illustrates the value of SE materials in experimental work concerning T. matsutake as well as the role played by phenolic compounds in host plant response to infection by mycorrhizal fungi.
Collapse
Affiliation(s)
- Lu-Min Vaario
- Finnish Forest Research Institute, PL 18, FI-01301, Vantaa, Finland,
| | | | | | | | | |
Collapse
|
16
|
Former Land Use and Host Genotype Influence the Mycorrhizal Colonization of Poplar Roots. FORESTS 2014. [DOI: 10.3390/f5122980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Labbé JL, Weston DJ, Dunkirk N, Pelletier DA, Tuskan GA. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus. FRONTIERS IN PLANT SCIENCE 2014; 5:579. [PMID: 25386184 PMCID: PMC4208408 DOI: 10.3389/fpls.2014.00579] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/08/2014] [Indexed: 05/24/2023]
Abstract
Mycorrhiza helper bacteria (MHB) are known to increase host root colonization by mycorrhizal fungi but the molecular mechanisms and potential tripartite interactions are poorly understood. Through an effort to study Populus microbiome, we isolated 21 Pseudomonas strains from native Populus deltoides roots. These bacterial isolates were characterized and screened for MHB effectiveness on the Populus-Laccaria system. Two additional Pseudomonas strains (i.e., Pf-5 and BBc6R8) from existing collections were included for comparative purposes. We analyzed the effect of co-cultivation of these 23 individual Pseudomonas strains on Laccaria bicolor "S238N" growth rate, mycelial architecture and transcriptional changes. Nineteen of the 23 Pseudomonas strains tested had positive effects on L. bicolor S238N growth, as well as on mycelial architecture, with strains GM41 and GM18 having the most significant effect. Four of seven L. bicolor reporter genes, Tra1, Tectonin2, Gcn5, and Cipc1, thought to be regulated during the interaction with MHB strain BBc6R8, were induced or repressed, while interacting with Pseudomonas strains GM17, GM33, GM41, GM48, Pf-5, and BBc6R8. Strain GM41 promoted the highest roots colonization across three Populus species but most notably in P. deltoides, which is otherwise poorly colonized by L. bicolor. Here we report novel MHB strains isolated from native Populus that improve L. bicolor root colonization on Populus. This tripartite relationship could be exploited for Populus species/genotypes nursery production as a means of improving establishment and survival in marginal lands.
Collapse
Affiliation(s)
- Jessy L. Labbé
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | | | | | | | | |
Collapse
|
18
|
Velmala SM, Rajala T, Haapanen M, Taylor AFS, Pennanen T. Genetic host-tree effects on the ectomycorrhizal community and root characteristics of Norway spruce. MYCORRHIZA 2013; 23:21-33. [PMID: 22644394 DOI: 10.1007/s00572-012-0446-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/10/2012] [Indexed: 06/01/2023]
Abstract
A greenhouse experiment was used to study the effects of host genotype on short root formation and ectomycorrhizal (ECM) fungal community structure in Norway spruce (Picea abies (L.) Karst.). Rooted cuttings representing 55 clones were inoculated with a mix of vegetative hyphae of five ECM fungal species (Laccaria sp., Amphinema byssoides, Piloderma sp., Cadophora finlandia, Paxillus involutus). After one growing season, the ECM fungal community structure was determined by amplifying the fungal internal transcribed spacer (ITS) of ribosomal DNA directly from ECM root tips. Restriction profiles of obtained amplicons were then compared to those of the inoculated strains. Spruce clones differed in their ECM fungal community composition; we found a statistically significant clone-specific effect on ECM fungal diversity and dominating fungal species. Nevertheless, the broad sense heritabilities of the levels of Laccaria sp., Piloderma sp. and A. byssoides colonisations as well as the ECM fungal community structure were low (H(2) = 0.04-0.11), owing to the high within-clone variation. As nitrogen concentration of needles correlated negatively with ECM fungal richness, our results imply that in the experimental conditions nutrient acquisition of young trees may benefit from colonisation with only one or two ECM fungal species. The heritability of short root density was moderate (H(2) = 0.41) and highest among all the measured shoot and root growth characteristics of Norway spruce cuttings. We suggest that the genetic component determining root growth and short root formation is significant for the performance of young trees in natural environments as these traits drive the formation of the below-ground symbiotic interactions.
Collapse
Affiliation(s)
- S M Velmala
- Finnish Forest Research Institute-Metla, Jokiniemenkuja 1, Box 18, FI-01301 Vantaa, Finland.
| | | | | | | | | |
Collapse
|
19
|
Johnson D, Martin F, Cairney JWG, Anderson IC. The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. THE NEW PHYTOLOGIST 2012; 194:614-628. [PMID: 22489902 DOI: 10.1111/j.1469-8137.2012.04087.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A key component of biodiversity is the number and abundance of individuals (i.e. genotypes), and yet such intraspecific diversity is rarely considered when investigating the effects of biodiversity of mycorrhizal plants and fungi on ecosystem processes. Within a species, individuals vary considerably in important reproductive and functional attributes, including carbon fixation, mycelial growth and nutrient utilization, but this is driven by both genetic and environmental (including climatic) factors. The interactions between individual plants and mycorrhizal fungi can have important consequences for the maintenance of biodiversity and regulation of resource transfers in ecosystems. There is also emerging evidence that assemblages of genotypes may affect ecosystem processes to a similar extent as assemblages of species. The application of whole-genome sequencing and population genomics to mycorrhizal plants and fungi will be crucial to determine the extent to which individual variation in key functional attributes is genetically based. We argue the need to unravel the importance of the diversity (especially assemblages of different evenness and richness) of individuals of both mycorrhizal plants and fungi, and the need to take a 'community genetics' approach to better understand the functional significance of the biodiversity of mycorrhizal symbioses.
Collapse
Affiliation(s)
- David Johnson
- Institute of Biological and Environmental Sciences, Cruickshank Building, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Francis Martin
- INRA, UMR 1136 INRA/University Henri Poincaré, Interactions Arbres/Micro-organismes, Centre de Nancy, 54280 Champenoux, France
| | - John W G Cairney
- Hawkesbury Institute for the Environment, University of Western Sydney, NSW, Australia
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, University of Western Sydney, NSW, Australia
| |
Collapse
|
20
|
Abstract
Over the past two decades, research in forest tree genomics has lagged behind that of model and agricultural systems. However, genomic research in forest trees is poised to enter into an important and productive phase owing to the advent of next-generation sequencing technologies, the enormous genetic diversity in forest trees and the need to mitigate the effects of climate change. Research on long-lived woody perennials is extending our molecular knowledge of complex life histories and adaptations to the environment - enriching a field that has traditionally drawn biological inference from a few short-lived herbaceous species.
Collapse
Affiliation(s)
- David B Neale
- Department of Plant Sciences, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
21
|
Courty PE, Labbé J, Kohler A, Marçais B, Bastien C, Churin JL, Garbaye J, Le Tacon F. Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:249-60. [PMID: 20881013 PMCID: PMC2993916 DOI: 10.1093/jxb/erq274] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/24/2010] [Accepted: 08/03/2010] [Indexed: 05/10/2023]
Abstract
The impact of ectomycorrhiza formation on the secretion of exoenzymes by the host plant and the symbiont is unknown. Thirty-eight F(1) individuals from an interspecific Populus deltoides (Bartr.)×Populus trichocarpa (Torr. & A. Gray) controlled cross were inoculated with the ectomycorrhizal fungus Laccaria bicolor. The colonization of poplar roots by L. bicolor dramatically modified their ability to secrete enzymes involved in organic matter breakdown or organic phosphorus mobilization, such as N-acetylglucosaminidase, β-glucuronidase, cellobiohydrolase, β-glucosidase, β-xylosidase, laccase, and acid phosphatase. The expression of genes coding for laccase, N-acetylglucosaminidase, and acid phosphatase was studied in mycorrhizal and non-mycorrhizal root tips. Depending on the genes, their expression was regulated upon symbiosis development. Moreover, it appears that poplar laccases or phosphatases contribute poorly to ectomycorrhiza metabolic activity. Enzymes secreted by poplar roots were added to or substituted by enzymes secreted by L. bicolor. The enzymatic activities expressed in mycorrhizal roots differed significantly between the two parents, while it did not differ in non-mycorrhizal roots. Significant differences were found between poplar genotypes for all enzymatic activities measured on ectomycorrhizas except for laccases activity. In contrast, no significant differences were found between poplar genotypes for enzymatic activities of non-mycorrhizal root tips except for acid phosphatase activity. The level of enzymes secreted by the ectomycorrhizal root tips is under the genetic control of the host. Moreover, poplar heterosis was expressed through the enzymatic activities of the fungal partner.
Collapse
Affiliation(s)
- P E Courty
- UMR 1136 INRA-Nancy Université, Interactions Arbres/Microorganismes, INRA-Nancy, 54280 Champenoux, France.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Leski T, Aucina A, Skridaila A, Pietras M, Riepsas E, Rudawska M. Ectomycorrhizal community structure of different genotypes of Scots pine under forest nursery conditions. MYCORRHIZA 2010; 20:473-481. [PMID: 20155377 DOI: 10.1007/s00572-010-0298-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/20/2010] [Indexed: 05/28/2023]
Abstract
In this paper, we report the effect of Scots pine genotypes on ectomycorrhizal (ECM) community and growth, survival, and foliar nutrient composition of 2-year-old seedlings grown in forest bare-root nursery conditions in Lithuania. The Scots pine seeds originated from five stands from Latvia (P1), Lithuania (P2 and P3), Belarus (P4), and Poland (P5). Based on molecular identification, seven ECM fungal taxa were identified: Suillus luteus and Suillus variegatus (within the Suilloid type), Wilcoxina mikolae, Tuber sp., Thelephora terrestris, Cenococcum geophilum, and Russuloid type. The fungal species richness varied between five and seven morphotypes, depending on seed origin. The average species richness and relative abundance of most ECM morphotypes differed significantly depending on pine origin. The most essential finding of our study is the shift in dominance from an ascomycetous fungus like W. mikolae in P2 and P4 seedlings to basidiomycetous Suilloid species like S. luteus and S. variegatus in P1 and P5 seedlings. Significant differences between Scots pine origin were also found in seedling height, root dry weight, survival, and concentration of C, K, Ca, and Mg in the needles. The Spearman rank correlation coefficient revealed that survival and nutritional status of pine seedlings were positively correlated with abundance of Suilloid mycorrhizas and negatively linked with W. mikolae abundance. However, stepwise multiple regression analysis showed that only survival and magnesium content in pine needles were significantly correlated with abundance of ECM fungi, and Suilloid mycorrhizas were a main significant predictor. Our results may have implications for understanding the physiological and genetic relationship between the host tree and fungi and should be considered in management decisions in forestry and ECM fungus inoculation programs.
Collapse
Affiliation(s)
- Tomasz Leski
- Institute of Dendrology, Polish Academy of Sciences, 5 Parkowa Str., 62-035 Kórnik, Poland
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Coevolution can be a potent force in maintaining and generating biological diversity. Although coevolution is likely to have played a key role in the early development of mycorrhizal interactions, it is unclear how important coevolutionary processes are for ongoing trait evolution in those interactions. Empirical studies have shown that candidate coevolving traits, such as mycorrhizal colonization intensity, exhibit substantial heritable genetic variation within plant and fungal species and are influenced by plant genotype x fungal genotype interactions, suggesting the potential for ongoing coevolutionary selection. Selective source analysis (SSA) could be employed to build on these results, testing explicitly for ongoing coevolutionary selection and analyzing the influence of community context on local coevolutionary selection. Recent empirical studies suggest the potential for coevolution to drive adaptive differentiation among populations of plants and fungi, but further studies, especially using SSA in the context of field reciprocal transplant experiments, are needed to determine the importance of coevolutionary selection compared with nonreciprocal selection on species traits.
Collapse
Affiliation(s)
- Jason D Hoeksema
- Department of Biology, University of Mississippi, PO Box 1848, University, MS 38677, USA
| |
Collapse
|
24
|
Karliński L, Rudawska M, Kieliszewska-Rokicka B, Leski T. Relationship between genotype and soil environment during colonization of poplar roots by mycorrhizal and endophytic fungi. MYCORRHIZA 2010; 20:315-24. [PMID: 19921284 DOI: 10.1007/s00572-009-0284-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/29/2009] [Indexed: 05/06/2023]
Abstract
Poplars are among the few tree genera that can develop both ectomycorrhizal (ECM) and arbuscular (AM) associations; however, variable ratios of ECM/AM in dual mycorrhizal colonizations were observed in the roots of a variety of poplar species and hybrids. The objective of our study was to analyze the effect of internal and external factors on growth and dual AM and ECM colonization of poplar roots in three 12-15-year-old common gardens in Poland. We also analyzed the abundance of nonmycorrhizal fungal endophytes in the poplar roots. The Populus clones comprised black poplars (Populus deltoides and P. deltoides x Populus nigra), balsam poplars (Populus maximowiczii x Populus trichocarpa), and a hybrid of black and balsam poplars (P. deltoides x P. trichocarpa). Of the three sites that we studied, one was located in the vicinity of a copper smelter, where soil was contaminated with copper and lead. Poplar root tip abundance, mycorrhizal colonization, and soil fungi biomass were lower at this heavily polluted site. The total mycorrhizal colonization and the ratio of ECM and AM colonization differed among the study sites and according to soil depth. The influence of Populus genotype was significantly pronounced only within the individual study sites. The contribution of nonmycorrhizal fungal endophytes differed among the poplar clones and was higher at the polluted site than at the sites free of pollution. Our results indicate that poplar fine root abundance and AM and ECM symbiosis are influenced by environmental conditions. Further studies of different site conditions are required to characterize the utility of poplars for purposes such as the phytoremediation of polluted sites.
Collapse
Affiliation(s)
- Leszek Karliński
- Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | | | | | | |
Collapse
|
25
|
Sthultz CM, Whitham TG, Kennedy K, Deckert R, Gehring CA. Genetically based susceptibility to herbivory influences the ectomycorrhizal fungal communities of a foundation tree species. THE NEW PHYTOLOGIST 2009; 184:657-667. [PMID: 19761493 DOI: 10.1111/j.1469-8137.2009.03016.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Although recent research indicates that herbivores interact with plant-associated microbes in complex ways, few studies have examined these interactions using a community approach. For example, the impact of herbivory on the community structure of ectomycorrhizal fungi (EMF) is not well known. The influence of host plant genetics on EMF community composition is also poorly understood. We used a study system in which susceptibility to herbivory has a genetic basis and a 20-yr insect removal experiment to examine the influence of chronic herbivory and plant genetics on the EMF community structure of Pinus edulis. We compared EMF communities of herbivore resistant trees, herbivore susceptible trees and herbivore susceptible trees from which herbivores were experimentally removed at two dates 10 yr apart. In both years sampled, resistant and susceptible trees differed significantly in EMF community composition. After 10 yr and 20 yr of herbivore removal, the EMF communities of removal trees were similar to those of susceptible trees, but different from resistant trees. The EMF community composition was more strongly influenced by innate genetic differences in plant traits associated with resistance and susceptibility to herbivory than by indirect effects of herbivory on host plant relationships with ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Christopher M Sthultz
- Northern Arizona University, Department of Biological Sciences and Merriam Powell Center for Environmental Research, Flagstaff, AZ 86011, USA
- (Current address) Centre D'Ecologie Functionnelle et Evolutive, 34293 Montpellier, France
| | - Thomas G Whitham
- Northern Arizona University, Department of Biological Sciences and Merriam Powell Center for Environmental Research, Flagstaff, AZ 86011, USA
| | - Karla Kennedy
- Northern Arizona University, Department of Biological Sciences and Merriam Powell Center for Environmental Research, Flagstaff, AZ 86011, USA
| | - Ron Deckert
- Northern Arizona University, Department of Biological Sciences and Merriam Powell Center for Environmental Research, Flagstaff, AZ 86011, USA
| | - Catherine A Gehring
- Northern Arizona University, Department of Biological Sciences and Merriam Powell Center for Environmental Research, Flagstaff, AZ 86011, USA
| |
Collapse
|
26
|
Kelleher CT, Chiu R, Shin H, Bosdet IE, Krzywinski MI, Fjell CD, Wilkin J, Yin T, DiFazio SP, Ali J, Asano JK, Chan S, Cloutier A, Girn N, Leach S, Lee D, Mathewson CA, Olson T, O'connor K, Prabhu AL, Smailus DE, Stott JM, Tsai M, Wye NH, Yang GS, Zhuang J, Holt RA, Putnam NH, Vrebalov J, Giovannoni JJ, Grimwood J, Schmutz J, Rokhsar D, Jones SJM, Marra MA, Tuskan GA, Bohlmann J, Ellis BE, Ritland K, Douglas CJ, Schein JE. A physical map of the highly heterozygous Populus genome: integration with the genome sequence and genetic map and analysis of haplotype variation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:1063-78. [PMID: 17488239 DOI: 10.1111/j.1365-313x.2007.03112.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 +/- 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa, version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.
Collapse
Affiliation(s)
- Colin T Kelleher
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hoeksema JD, Thompson JN. Geographic structure in a widespread plant?mycorrhizal interaction: pines and false truffles. J Evol Biol 2007; 20:1148-63. [PMID: 17465924 DOI: 10.1111/j.1420-9101.2006.01287.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mutualistic interactions are likely to exhibit a strong geographic mosaic in their coevolutionary dynamics, but the structure of geographic variation in these interactions is much more poorly characterized than in host-parasite interactions. We used a cross-inoculation experiment to characterize the scales and patterns at which geographic structure has evolved in an interaction between three pine species and one ectomycorrhizal fungus species along the west coast of North America. We found substantial and contrasting patterns of geographic interaction structure for the plants and fungi. The fungi exhibited a clinal pattern of local adaptation to their host plants across the geographic range of three coastal pines. In contrast, plant growth parameters were unaffected by fungal variation, but varied among plant populations and species. Both plant and fungal performance measures varied strongly with latitude. This set of results indicates that in such widespread species interactions, interacting species may evolve asymmetrically in a geographic mosaic because of differing evolutionary responses to clinally varying biotic and abiotic factors.
Collapse
Affiliation(s)
- J D Hoeksema
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA.
| | | |
Collapse
|
28
|
Frettinger P, Derory J, Herrmann S, Plomion C, Lapeyrie F, Oelmüller R, Martin F, Buscot F. Transcriptional changes in two types of pre-mycorrhizal roots and in ectomycorrhizas of oak microcuttings inoculated with Piloderma croceum. PLANTA 2007; 225:331-40. [PMID: 17016715 DOI: 10.1007/s00425-006-0355-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 06/20/2006] [Indexed: 05/09/2023]
Abstract
The formation of the ectomycorrhiza implies an alteration in gene expression of both the plant and fungal partners, a process which starts before the formation of any symbiotic interface. However, little is known on the regulation pattern occurring in different parts of the root system. Our experimental system consisting of a micropropagated oak with a hierarchical root system was shown to exhibit symbiosis functional traits prior to any mycorrhizal tissue differentiation after the inoculation with the basidiomycete Piloderma croceum. Using a cDNA array, the plant gene regulation was analyzed in the pre-mycorrhizal phase. Seventy-five transcripts showed differential expression in pre-mycorrhizal lateral and principal roots, and both root types exhibited different sets of responsive genes. For transcripts selected according to a statistical analysis, the alteration in gene expression was confirmed by RT-PCR and quantitative real-time PCR. Genes regulated in pre-mycorrhizal lateral roots displayed an almost identical expression in mycorrhizas. In contrast, genes regulated in pre-mycorrhizal principal roots were often regulated differently in ectomycorrhizas. Down-regulation affected most of the regulated genes involved in metabolism, whereas most of the regulated genes related to cell rescue functions, water regulation and defence response were up-regulated. Regulation of such genes could explain the increase of global resistance observed in mycorrhizal plants.
Collapse
Affiliation(s)
- Patrick Frettinger
- Department of Terrestrial Ecology, University of Leipzig, Institute of Biology I, Johannisallee 21-23, 04103, Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
With the completion of the Populus trichocarpa genome sequence and the development of various genetic, genomic, and biochemical tools, Populus now offers many possibilities to study questions that cannot be as easily addressed in Arabidopsis and rice, the two prime model systems of plant biology and genomics. Tree-specific traits such as wood formation, long-term perennial growth, and seasonality are obvious areas of research, but research in other areas such as control of flowering, biotic interactions, and evolution of adaptive traits is enriched by adding a tree to the suite of model systems. Furthermore, the reproductive biology of Populus (a dioeceous wind-pollinated long-lived tree) offers both new possibilities and challenges in the study and analysis of natural genetic and phenotypic variation. The relatively close phylogenetic relationship of Populus to Arabidopsis in the Eurosid clade of Eudicotyledonous plants aids in comparative functional studies and comparative genomics, and has the potential to greatly facilitate studies on genome and gene family evolution in eudicots.
Collapse
Affiliation(s)
- Stefan Jansson
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-901 87 Umeå, Sweden.
| | | |
Collapse
|
30
|
Gehring CA, Mueller RC, Whitham TG. Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia 2006; 149:158-64. [PMID: 16642319 DOI: 10.1007/s00442-006-0437-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
Although both environment and genetics have been shown to affect the mycorrhizal colonization of host plants, the impacts of these factors on hosts that can be dually colonized by both ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) fungi are less understood. We examined the influence of environment and host crosstype on the EM and AM colonization of cottonwoods (Populus angustifolia and natural hybrids) by comparing levels of colonization of trees growing in common gardens that differed in elevation and soil type. We also conducted a supplemental watering experiment to determine the influence of soil moisture on AM and EM colonization. Three patterns emerged. First, garden location had a significant impact on mycorrhizal colonization, such that EM colonization was 30% higher and AM colonization was 85% lower in the higher elevation garden than the lower elevation garden. Second, crosstype affected total (EM + AM) colonization, but did not affect EM or AM colonization. Similarly, a significant garden x crosstype interaction was found for total colonization, but not for EM or AM colonization. Third, experimental watering resulted in 33% higher EM colonization and 45% lower AM colonization, demonstrating that soil moisture was a major driver of the mycorrhizal differences observed between the gardens. We conclude that environment, particularly soil moisture, has a larger influence on colonization by AM versus EM fungi than host genetics, and suggest that environmental stress may be a major determinant of mycorrhizal colonization in dually colonized host plants.
Collapse
Affiliation(s)
- Catherine A Gehring
- Department of Biological Sciences, Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011-5640, USA.
| | | | | |
Collapse
|
31
|
Korkama T, Pakkanen A, Pennanen T. Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. THE NEW PHYTOLOGIST 2006; 171:815-24. [PMID: 16918552 DOI: 10.1111/j.1469-8137.2006.01786.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In northern boreal forests, the diversity of ectomycorrhizal (ECM) species is much greater than that of their host trees. This field study investigated the role of individual trees in shaping the ECM community. We compared ECM communities of eight Norway spruce (Picea abies) clones planted in a clear-cut area in 1994 with a randomized block design. In 2003, the ECM fungi were identified from randomly sampled root tips using denaturing gradient gel electrophoresis (DGGE) and rDNA internal transcribed spacer (ITS) sequence similarity. ECM diversity varied among clone groups, showing twofold growth differences. Moreover, according to detrended correspondence analysis (DCA), ECM community structure varied not only among but also within slow-growing or fast-growing clones. Results suggest that ECM diversity and community structure are related to the growth rate or size of the host. A direct or indirect influence of host genotype was also observed, and we therefore suggest that individual trees are partly responsible for the high diversity and patchy distribution of ECM communities in boreal forests.
Collapse
Affiliation(s)
- T Korkama
- Finnish Forest Research Institute (Metla) Vantaa Research Unit, PO Box 18, FI-01301, Vantaa, Finland.
| | | | | |
Collapse
|