1
|
Praeg N, Steinwandter M, Urbach D, Snethlage MA, Alves RP, Apple ME, Bilovitz P, Britton AJ, Bruni EP, Chen TW, Dumack K, Fernandez-Mendoza F, Freppaz M, Frey B, Fromin N, Geisen S, Grube M, Guariento E, Guisan A, Ji QQ, Jiménez JJ, Maier S, Malard LA, Minor MA, Mc Lean CC, Mitchell EAD, Peham T, Pizzolotto R, Taylor AFS, Vernon P, van Tol JJ, Wu D, Wu Y, Xie Z, Weber B, Illmer P, Seeber J. Biodiversity in mountain soils above the treeline. Biol Rev Camb Philos Soc 2025. [PMID: 40369817 DOI: 10.1111/brv.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Biological diversity in mountain ecosystems has been increasingly studied over the last decade. This is also the case for mountain soils, but no study to date has provided an overall synthesis of the current state of knowledge. Here we fill this gap with a first global analysis of published research on cryptogams, microorganisms, and fauna in mountain soils above the treeline, and a structured synthesis of current knowledge. Based on a corpus of almost 1400 publications and the expertise of 37 mountain soil scientists worldwide, we summarise what is known about the diversity and distribution patterns of each of these organismal groups, specifically along elevation, and provide an overview of available knowledge on the drivers explaining these patterns and their changes. In particular, we document an elevation-dependent decrease in faunal diversity above the treeline, while for cryptogams there is an initial increase above the treeline, followed by a decrease towards the nival belt. Thus, our data confirm the key role that elevation plays in shaping the biodiversity and distribution of these organisms in mountain soils. The response of prokaryote diversity to elevation, in turn, was more diverse, whereas fungal diversity appeared to be substantially influenced by plants. As far as available, we describe key characteristics, adaptations, and functions of mountain soil species, and despite a lack of ecological information about the uncultivated majority of prokaryotes, fungi, and protists, we illustrate the remarkable and unique diversity of life forms and life histories encountered in alpine mountain soils. By applying rule- as well as pattern-based literature-mining approaches and semi-quantitative analyses, we identified hotspots of mountain soil research in the European Alps and Central Asia and revealed significant gaps in taxonomic coverage, particularly among biocrusts, soil protists, and soil fauna. We further report thematic priorities for research on mountain soil biodiversity above the treeline and identify unanswered research questions. Building upon the outcomes of this synthesis, we conclude with a set of research opportunities for mountain soil biodiversity research worldwide. Soils in mountain ecosystems above the treeline fulfil critical functions and make essential contributions to life on land. Accordingly, seizing these opportunities and closing knowledge gaps appears crucial to enable science-based decision making in mountain regions and formulating laws and guidelines in support of mountain soil biodiversity conservation targets.
Collapse
Affiliation(s)
- Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Michael Steinwandter
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Davnah Urbach
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Mark A Snethlage
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Rodrigo P Alves
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Martha E Apple
- Department of Biological Sciences, Montana Technological University, Butte, 59701, MT, USA
| | - Peter Bilovitz
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Andrea J Britton
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Estelle P Bruni
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Ting-Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 702/7, České Budějovice, 37005, Czech Republic
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
| | - Kenneth Dumack
- Terrestrial Ecology, Cologne Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Fernando Fernandez-Mendoza
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Michele Freppaz
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
- Research Center on Natural Risks in Mountain and Hilly Environments, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Nathalie Fromin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Route de Mende 34199, Montpellier Cedex 5, France
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Martin Grube
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Elia Guariento
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Antoine Guisan
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Géopolis, Lausanne, 1015, Switzerland
| | - Qiao-Qiao Ji
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
| | - Juan J Jiménez
- Instituto Pirenaico de Ecología (IPE), Consejo Superior de Investigaciones Cientificas (CSIC), Avda. Ntra. Sra. de la Victoria 16, Jaca, 22700, Huesca, Spain
| | - Stefanie Maier
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Lucie A Malard
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
| | - Maria A Minor
- School of Food Technology and Natural Sciences, Massey University, Riddett Road, Palmerston North, 4410, New Zealand
| | - Cowan C Mc Lean
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Thomas Peham
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Roberto Pizzolotto
- Dipartimento di Biologia, Ecologia e Scienze della Terra, University of Calabria, Ponte Pietro Bucci 4b, Rende, 87036, Italy
| | - Andy F S Taylor
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Philippe Vernon
- UMR 6553 EcoBio CNRS, University of Rennes, Biological Station, Paimpont, 35380, France
| | - Johan J van Tol
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Donghui Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Yunga Wu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Zhijing Xie
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Bettina Weber
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Julia Seeber
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| |
Collapse
|
2
|
Noffsinger CR, Matheny PB. Historical Lead Contamination Linked to Atmospheric Deposition is Associated With Declines in Ectomycorrhizal Diversity and Shifts in Fungal Community Composition. Mol Ecol 2025; 34:e17725. [PMID: 40095755 DOI: 10.1111/mec.17725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Ectomycorrhizal and saprotrophic fungi respond differently to changing edaphic conditions caused by atmospheric deposition. Within each guild, responses can vary significantly, reflecting the diversity of species and their specific adaptations to environmental changes. Metal contaminants are often deposited onto earth's surface through atmospheric deposition, yet few studies have assessed the relationship between soil metal contamination and fungal communities. The goal of this study was to understand how soil metal contamination and other edaphic factors vary across the spruce-fir ecosystem in the Southern Appalachians and influence fungal diversity and function. Here, we characterize soil fungal communities using high-throughput sequencing of the ITS2 gene region and found that higher soil lead (Pb) concentrations were associated with lower fungal diversity. Ectomycorrhizal fungi were less diverse (specifically hydrophilic ectomycorrhizal functional types) at plots with elevated soil Pb concentrations, while saprotrophic fungi were less diverse at plots with elevated soil carbon:nitrogen ratios. Fungal community composition was significantly influenced by pH, Pb, and spatial factors. This study identifies important relationships between fungal diversity and soil Pb concentrations and indicates variable responses of genera within well-defined ecological guilds. Our work highlights the need to characterize poorly understood taxonomic groups of fungi and their function prior to further environmental degradation.
Collapse
Affiliation(s)
- Chance R Noffsinger
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - P Brandon Matheny
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Harder CB, Hesling E, Botnen SS, Lorberau KE, Dima B, von Bonsdorff-Salminen T, Niskanen T, Jarvis SG, Ouimette A, Hester A, Hobbie EA, Taylor AFS, Kauserud H. Mycena species can be opportunist-generalist plant root invaders. Environ Microbiol 2023; 25:1875-1893. [PMID: 37188366 DOI: 10.1111/1462-2920.16398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Traditional strict separation of fungi into ecological niches as mutualist, parasite or saprotroph is increasingly called into question. Sequences of assumed saprotrophs have been amplified from plant root interiors, and several saprotrophic genera can invade and interact with host plants in laboratory growth experiments. However, it is uncertain if root invasion by saprotrophic fungi is a widespread phenomenon and if laboratory interactions mirror field conditions. Here, we focused on the widespread and speciose saprotrophic genus Mycena and performed (1) a systematic survey of their occurrences (in ITS1/ITS2 datasets) in mycorrhizal roots of 10 plant species, and (2) an analysis of natural abundances of 13 C/15 N stable isotope signatures of Mycena basidiocarps from five field locations to examine their trophic status. We found that Mycena was the only saprotrophic genus consistently found in 9 out of 10 plant host roots, with no indication that the host roots were senescent or otherwise vulnerable. Furthermore, Mycena basidiocarps displayed isotopic signatures consistent with published 13 C/15 N profiles of both saprotrophic and mutualistic lifestyles, supporting earlier laboratory-based studies. We argue that Mycena are widespread latent invaders of healthy plant roots and that Mycena species may form a spectrum of interactions besides saprotrophy also in the field.
Collapse
Affiliation(s)
- Christoffer Bugge Harder
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Microbial Ecology, Lund University, Lund, Sweden
- Department of Biology, Section of Terrestrial Ecology, University of Copenhagen, Copenhagen, Denmark
| | - Emily Hesling
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Synnøve S Botnen
- Department of Biosciences, University of Oslo, Oslo, Norway
- Oslo Metropolitan University, Oslo, Norway
| | - Kelsey E Lorberau
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Bálint Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Botany Unit, Finnish Museum of Natural History LUOMUS, University of Helsinki, Helsinki, Finland
| | | | - Tuula Niskanen
- Botany Unit, Finnish Museum of Natural History LUOMUS, University of Helsinki, Helsinki, Finland
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey, UK
| | | | - Andrew Ouimette
- Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire, USA
| | | | - Erik A Hobbie
- Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire, USA
| | - Andy F S Taylor
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- The James Hutton Institute, Aberdeen, UK
| | | |
Collapse
|
4
|
Ortiz-Rivero J, Garrido-Benavent I, Heiðmarsson S, de los Ríos A. Moss and Liverwort Covers Structure Soil Bacterial and Fungal Communities Differently in the Icelandic Highlands. MICROBIAL ECOLOGY 2023; 86:1893-1908. [PMID: 36802019 PMCID: PMC10497656 DOI: 10.1007/s00248-023-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Cryptogamic covers extend over vast polar tundra regions and their main components, e.g., bryophytes and lichens, are frequently the first visible colonizers of deglaciated areas. To understand their role in polar soil development, we analyzed how cryptogamic covers dominated by different bryophyte lineages (mosses and liverworts) influence the diversity and composition of edaphic bacterial and fungal communities as well as the abiotic attributes of underlying soils in the southern part of the Highlands of Iceland. For comparison, the same traits were examined in soils devoid of bryophyte covers. We measured an increase in soil C, N, and organic matter contents coupled with a lower pH in association with bryophyte cover establishment. However, liverwort covers showed noticeably higher C and N contents than moss covers. Significant changes in diversity and composition of bacterial and fungal communities were revealed between (a) bare and bryophyte-covered soils, (b) bryophyte covers and the underlying soils, and (c) moss and liverworts covers. These differences were more obvious for fungi than bacteria, and involved different lineages of saprotrophic and symbiotic fungi, which suggests a certain specificity of microbial taxa to particular bryophyte groups. In addition, differences observed in the spatial structure of the two bryophyte covers may be also responsible for the detected differences in microbial community diversity and composition. Altogether, our findings indicate that soil microbial communities and abiotic attributes are ultimately affected by the composition of the most conspicuous elements of cryptogamic covers in polar regions, which is of great value to predict the biotic responses of these ecosystems to future climate change.
Collapse
Affiliation(s)
- Javier Ortiz-Rivero
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN-CSIC), C/ Serrano 115 dpdo, E-28045 Madrid, Spain
| | - Isaac Garrido-Benavent
- Departament de Botànica i Geologia, Fac. CC. Biològiques, Universitat de València, C/ Doctor Moliner 50, E-46100 Burjassot, Valencia Spain
| | - Starri Heiðmarsson
- Icelandic Institute of Natural History, Akureyri Division, Borgir Nordurslod, 600 Akureyri, Iceland
- Present address: Northwest Iceland Nature Research Centre, Aðalgötu 2, 550 Sauðárkrókur, Iceland
| | - Asunción de los Ríos
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN-CSIC), C/ Serrano 115 dpdo, E-28045 Madrid, Spain
| |
Collapse
|
5
|
Schön ME, Abarenkov K, Garnica S. Host generalists dominate fungal communities associated with alpine knotweed roots: a study of Sebacinales. PeerJ 2022; 10:e14047. [PMID: 36217381 PMCID: PMC9547586 DOI: 10.7717/peerj.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 08/22/2022] [Indexed: 01/19/2023] Open
Abstract
Bistorta vivipara is a widespread herbaceous perennial plant with a discontinuous pattern of distribution in arctic, alpine, subalpine and boreal habitats across the northern Hemisphere. Studies of the fungi associated with the roots of B. vivipara have mainly been conducted in arctic and alpine ecosystems. This study examined the fungal diversity and specificity from root tips of B. vivipara in two local mountain ecosystems as well as on a global scale. Sequences were generated by Sanger sequencing of the internal transcribed spacer (ITS) region followed by an analysis of accurately annotated nuclear segments including ITS1-5.8S-ITS2 sequences available from public databases. In total, 181 different UNITE species hypotheses (SHs) were detected to be fungi associated with B. vivipara, 73 of which occurred in the Bavarian Alps and nine in the Swabian Alps-with one SH shared among both mountains. In both sites as well as in additional public data, individuals of B. vivipara were found to contain phylogenetically diverse fungi, with the Basidiomycota, represented by the Thelephorales and Sebacinales, being the most dominant. A comparative analysis of the diversity of the Sebacinales associated with B. vivipara and other co-occurring plant genera showed that the highest number of sebacinoid SHs were associated with Quercus and Pinus, followed by Bistorta. A comparison of B. vivipara with plant families such as Ericaceae, Fagaceae, Orchidaceae, and Pinaceae showed a clear trend: Only a few species were specific to B. vivipara and a large number of SHs were shared with other co-occurring non-B. vivipara plant species. In Sebacinales, the majority of SHs associated with B. vivipara belonged to the ectomycorrhiza (ECM)-forming Sebacinaceae, with fewer SHs belonging to the Serendipitaceae encompassing diverse ericoid-orchid-ECM-endophytic associations. The large proportion of non-host-specific fungi able to form a symbiosis with other non-B. vivipara plants could suggest that the high fungal diversity in B. vivipara comes from an active recruitment of their associates from the co-occurring vegetation. The non-host-specificity suggests that this strategy may offer ecological advantages; specifically, linkages with generalist rather than specialist fungi. Proximity to co-occurring non-B. vivipara plants can maximise the fitness of B. vivipara, allowing more rapid and easy colonisation of the available habitats.
Collapse
Affiliation(s)
- Max Emil Schön
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Sigisfredo Garnica
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
6
|
Ectomycorrhizal Assemblages of Invasive Quercus rubra L. and Non-Invasive Carya Nutt. Trees under Common Garden Conditions in Europe. FORESTS 2022. [DOI: 10.3390/f13050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Invasive tree species change biodiversity, nutrient cycles, and ecosystem services, and can turn native ecosystems into novel ecosystems determined by invaders. In the acclimatization and invasion of alien tree species, the crucial role is played by ectomycorrhizal (ECM) fungi. We tested ECM fungi associated with Quercus rubra and Carya trees that are alien to Europe. Quercus rubra is among the most invasive tree species in Europe, and the Carya species are not considered invasive. Both form ectomycorrhizal symbiosis, and in their native range in North America, coexist in oak-hickory forests. Six study stands were located in Kórnik Arboretum: three for Q. rubra and three for Carya trees. Ectomycorrhizal fungi were assessed by molecular identification of ECM roots. We identified 73 ECM fungal taxa of 23 ECM phylogenetic lineages. All identified ECM fungi were native to Europe. Similar richness but different composition of ECM taxa were found on Q. rubra and Carya roots. Phylogenetic lineages /tomentella-thelephora, /russula-lactarius, and /genea-humaria were most abundant on both Carya and Q. rubra roots. Lineages /tuber-helvella and /entoloma were abundant only on Carya, and lineages /pisolithus-scleroderma and /cortinarius were abundant only on Q. rubra roots. Analysis of similarities revealed a significant difference in ectomycorrhizal assemblages between invasive Q. rubra and non-invasive Carya. Highlights: (1) under common garden conditions, ECM taxa richness was similar on Q. rubra and Carya roots; (2) ECM taxa composition differed between invasive Q. rubra and non-invasive Carya; (3) high abundance of long-distance exploration type (lineages from Boletales) was on Q. rubra; and (4) high abundance of short-distance exploration type (e.g., /tuber-helvella) was on Carya.
Collapse
|
7
|
Arraiano-Castilho R, Bidartondo MI, Niskanen T, Clarkson JJ, Brunner I, Zimmermann S, Senn-Irlet B, Frey B, Peintner U, Mrak T, Suz LM. Habitat specialisation controls ectomycorrhizal fungi above the treeline in the European Alps. THE NEW PHYTOLOGIST 2021; 229:2901-2916. [PMID: 33107606 DOI: 10.1111/nph.17033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Alpine habitats are one of the most vulnerable ecosystems to environmental change, however, little information is known about the drivers of plant-fungal interactions in these ecosystems and their resilience to climate change. We investigated the influence of the main drivers of ectomycorrhizal (EM) fungal communities along elevation and environmental gradients in the alpine zone of the European Alps and measured their degree of specialisation using network analysis. We sampled ectomycorrhizas of Dryas octopetala, Bistorta vivipara and Salix herbacea, and soil fungal communities at 28 locations across five countries, from the treeline to the nival zone. We found that: (1) EM fungal community composition, but not richness, changes along elevation, (2) there is no strong evidence of host specialisation, however, EM fungal networks in the alpine zone and within these, EM fungi associated with snowbed communities, are more specialised than in other alpine habitats, (3) plant host population structure does not influence EM fungal communities, and (4) most variability in EM fungal communities is explained by fine-scale changes in edaphic properties, like soil pH and total nitrogen. The higher specialisation and narrower ecological niches of these plant-fungal interactions in snowbed habitats make these habitats particularly vulnerable to environmental change in alpine ecosystems.
Collapse
Affiliation(s)
- Ricardo Arraiano-Castilho
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin I Bidartondo
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tuula Niskanen
- Identification and Naming, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - James J Clarkson
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Stephan Zimmermann
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beatrice Senn-Irlet
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck, 6020, Austria
| | - Tanja Mrak
- Slovenian Forestry Institute, Večna pot 2, Ljubljana, 1000, Slovenia
| | - Laura M Suz
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| |
Collapse
|
8
|
Botnen SS, Thoen E, Eidesen PB, Krabberød AK, Kauserud H. Community composition of arctic root-associated fungi mirrors host plant phylogeny. FEMS Microbiol Ecol 2020; 96:fiaa185. [PMID: 32918451 PMCID: PMC7840110 DOI: 10.1093/femsec/fiaa185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
The number of plant species regarded as non-mycorrhizal increases at higher latitudes, and several plant species in the High-Arctic Archipelago Svalbard have been reported as non-mycorrhizal. We used the rRNA ITS2 and 18S gene markers to survey which fungi, as well as other micro-eukaryotes, were associated with roots of 31 arctic plant species not usually regarded as mycorrhizal in Svalbard. We assessed to what degree the root-associated fungi showed any host preference and whether the phylogeny of the plant hosts may mirror the composition of root-associated fungi. Fungal communities were largely structured according to host plant identity and to a less extent by environmental factors. We observed a positive relationship between the phylogenetic distance of host plants and the distance of fungal community composition between samples, indicating that the evolutionary history of the host plants plays a major role for which fungi colonize the plant roots. In contrast to the ITS2 marker, the 18S rRNA gene marker showed that chytrid fungi were prevalently associated with plant roots, together with a wide spectrum of amoeba-like protists and nematodes. Our study confirms that arbuscular mycorrhizal (AM) fungi are present also in arctic environments in low abundance.
Collapse
Affiliation(s)
- S S Botnen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
- The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
- Oslo Metropolitan University, PO Box 4 St. Olavs plass, NO-0130 Oslo, Norway
| | - E Thoen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - P B Eidesen
- The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| | - A K Krabberød
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - H Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
9
|
Abrego N, Huotari T, Tack AJM, Lindahl BD, Tikhonov G, Somervuo P, Martin Schmidt N, Ovaskainen O, Roslin T. Higher host plant specialization of root-associated endophytes than mycorrhizal fungi along an arctic elevational gradient. Ecol Evol 2020; 10:8989-9002. [PMID: 32884673 PMCID: PMC7452766 DOI: 10.1002/ece3.6604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022] Open
Abstract
How community-level specialization differs among groups of organisms, and changes along environmental gradients, is fundamental to understanding the mechanisms influencing ecological communities. In this paper, we investigate the specialization of root-associated fungi for plant species, asking whether the level of specialization varies with elevation. For this, we applied DNA barcoding based on the ITS region to root samples of five plant species equivalently sampled along an elevational gradient at a high arctic site. To assess whether the level of specialization changed with elevation and whether the observed patterns varied between mycorrhizal and endophytic fungi, we applied a joint species distribution modeling approach. Our results show that host plant specialization is not environmentally constrained in arctic root-associated fungal communities, since there was no evidence for changing specialization with elevation, even if the composition of root-associated fungal communities changed substantially. However, the level of specialization for particular plant species differed among fungal groups, root-associated endophytic fungal communities being highly specialized on particular host species, and mycorrhizal fungi showing almost no signs of specialization. Our results suggest that plant identity affects associated mycorrhizal and endophytic fungi differently, highlighting the need of considering both endophytic and mycorrhizal fungi when studying specialization in root-associated fungal communities.
Collapse
Affiliation(s)
- Nerea Abrego
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
- Centre for Biodiversity DynamicsDepartment of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Tea Huotari
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | - Ayco J. M. Tack
- Department of EcologyEnvironment and Plant SciencesStockholm UniversityStockholmSweden
| | - Björn D. Lindahl
- Department of Soil and EnvironmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Gleb Tikhonov
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Computational Systems Biology groupDepartment of Computer ScienceAalto UniversityEspooFinland
| | - Panu Somervuo
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | | | - Otso Ovaskainen
- Centre for Biodiversity DynamicsDepartment of BiologyNorwegian University of Science and TechnologyTrondheimNorway
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Tomas Roslin
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
10
|
Izumi H. The proportions of ectomycorrhizal roots are varied depending on the different host plant compositions in Scottish arctic/alpine coastal relict vegetation. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Arraiano-Castilho R, Bidartondo M, Niskanen T, Zimmermann S, Frey B, Brunner I, Senn-Irlet B, Hörandl E, Gramlich S, Suz L. Plant-fungal interactions in hybrid zones: Ectomycorrhizal communities of willows (Salix) in an alpine glacier forefield. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Diversity and Distribution Patterns of Endolichenic Fungi in Jeju Island, South Korea. SUSTAINABILITY 2020. [DOI: 10.3390/su12093769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lichens are symbiotic organisms containing diverse microorganisms. Endolichenic fungi (ELF) are one of the inhabitants living in lichen thalli, and have potential ecological and industrial applications due to their various secondary metabolites. As the function of endophytic fungi on the plant ecology and ecosystem sustainability, ELF may have an influence on the lichen diversity and the ecosystem, functioning similarly to the influence of endophytic fungi on plant ecology and ecosystem sustainability, which suggests the importance of understanding the diversity and community pattern of ELF. In this study, we investigated the diversity and the factors influencing the community structure of ELF in Jeju Island, South Korea by analyzing 619 fungal isolates from 79 lichen samples in Jeju Island. A total of 112 ELF species was identified and the most common species belonged to Xylariales in Sordariomycetes. The richness and community structure of ELF were significantly influenced by the host taxonomy, together with the photobiont types and environmental factors. Our results suggest that various lichen species in more diverse environments need to be analyzed to expand our knowledge of the diversity and ecology of ELF.
Collapse
|
13
|
Esteve-Raventós F, Bandini D, Oertel B, González V, Moreno G, Olariaga I. Advances in the knowledge of the Inocybe mixtilis group ( Inocybaceae, Agaricomycetes), through molecular and morphological studies. PERSOONIA 2018; 41:213-236. [PMID: 30728606 PMCID: PMC6344818 DOI: 10.3767/persoonia.2018.41.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 06/29/2018] [Indexed: 01/05/2023]
Abstract
Inocybe mixtilis constitutes a complex of species characterized by nodulose-angulose spores, absence of cortina and a more or less bulbous marginate stipe that is not darkening when desiccated. In order to elucidate species limits within the I. mixtilis complex, an ITS-RPB2 phylogeny was performed and interpreted using morphological and ecological characters. Six supported clades were obtained in our analyses that correspond to I. mixtilis, I. subtrivialis, and four new species to science: I. ceskae, I. johannis-stanglii, I. nothomixtilis and I. occulta. Species within this complex can be morphologically recognized through a unique combination of morphological characters, such as the spore shape, cystidial length and shape, presence and development of the velipellis and pileus colour and viscidity. Nevertheless, those characters overlap, especially among I. mixtilis, I. ceskae and I. occulta, and intermediate collections are therefore more reliably identified through ITS-sequencing. Two species, I. ceskae and I. occulta are present in both North America and Europe, while the rest are so far only known in Europe, or Europe and Asia (I. mixtilis). All species, except I. johannis-stanglii, seem to be able to establish ectomycorrhizal association both with conifers and angiosperms. Descriptions, colour illustrations and a key to all known species in the I. mixtilis group are provided.
Collapse
Affiliation(s)
- F. Esteve-Raventós
- Departamento de Ciencias de la Vida (Area de Botánica), Universidad de Alcalá, E-28805 Alcalá de Henares, Spain
| | - D. Bandini
- Panoramastr. 47, 69257 Wiesenbach, Germany
| | - B. Oertel
- Höhenweg 15, D-53347 Alfter, Germany
| | - V. González
- Unidad de Sanidad Vegetal-Micología, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Av. Montañana 930, E-50059 Zaragoza, Spain
| | - G. Moreno
- Departamento de Ciencias de la Vida (Area de Botánica), Universidad de Alcalá, E-28805 Alcalá de Henares, Spain
| | - I. Olariaga
- Departamento de Ciencias de la Vida (Area de Botánica), Universidad de Alcalá, E-28805 Alcalá de Henares, Spain
- Department of Biology and Geology, Physics and Inorganic Chemistry, King Juan Carlos University, c/ Tulipan 28933, Móstoles, Spain
| |
Collapse
|
14
|
Investigating the Effect of a Mixed Mycorrhizal Inoculum on the Productivity of Biomass Plantation Willows Grown on Marginal Farm Land. FORESTS 2018. [DOI: 10.3390/f9040185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Koizumi T, Hattori M, Nara K. Ectomycorrhizal fungal communities in alpine relict forests of Pinus pumila on Mt. Norikura, Japan. MYCORRHIZA 2018; 28:129-145. [PMID: 29330574 DOI: 10.1007/s00572-017-0817-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Ectomycorrhizal (ECM) symbioses are indispensable for the establishment of host trees, yet available information of ECM symbiosis in alpine forests is scarce. Pinus pumila is a typical ice age relict tree species in Japan and often forms monodominant dwarf vegetation above the tree line in mountains. We studied ECM fungi colonizing P. pumila on Mt. Norikura, Japan, with reference to host developmental stages, i.e., from current-year seedlings to mature trees. ECM fungal species were identified based on rDNA ITS sequences. Ninety-two ECM fungal species were confirmed from a total of 2480 root tips examined. Species in /suillus-rhizopogon and /wilcoxina were dominant in seedling roots. ECM fungal diversity increased with host development, due to the addition of species-rich fungal lineages (/cenococcum, /cortinarius, and /russula-lactarius) in late-successional stages. Such successional pattern of ECM fungi is similar to those in temperate pine systems, suggesting the predominant role of /suillus-rhizopogon in seedling establishment, even in relict alpine habitats fragmented and isolated for a geological time period. Most of the ECM fungi detected were also recorded in Europe or North America, indicating their potential Holarctic distribution and the possibility of their comigration with P. pumila through land bridges during ice ages. In addition, we found significant effects of soil properties on ECM fungal communities, which explained 34.1% of the total variation of the fungal communities. While alpine vegetation is regarded as vulnerable to the ongoing global warming, ECM fungal communities associated with P. pumila could be altered by the edaphic change induced by the warming.
Collapse
Affiliation(s)
- Takahiko Koizumi
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
| | - Masahira Hattori
- Laboratory of Metagenomics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kazuhide Nara
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| |
Collapse
|
16
|
Brunner I, Frey B, Hartmann M, Zimmermann S, Graf F, Suz LM, Niskanen T, Bidartondo MI, Senn-Irlet B. Ecology of Alpine Macrofungi - Combining Historical with Recent Data. Front Microbiol 2017; 8:2066. [PMID: 29123508 PMCID: PMC5662630 DOI: 10.3389/fmicb.2017.02066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/09/2017] [Indexed: 11/13/2022] Open
Abstract
Historical datasets of living communities are important because they can be used to document creeping shifts in species compositions. Such a historical data set exists for alpine fungi. From 1941 to 1953, the Swiss geologist Jules Favre visited yearly the region of the Swiss National Park and recorded the occurring fruiting bodies of fungi >1 mm (so-called “macrofungi”) in the alpine zone. Favre can be regarded as one of the pioneers of alpine fungal ecology not least because he noted location, elevation, geology, and associated plants during his numerous excursions. However, some relevant information is only available in his unpublished field-book. Overall, Favre listed 204 fungal species in 26 sampling sites, with 46 species being previously unknown. The analysis of his data revealed that the macrofungi recorded belong to two major ecological groups, either they are symbiotrophs and live in ectomycorrhizal associations with alpine plant hosts, or they are saprotrophs and decompose plant litter and soil organic matter. The most frequent fungi were members of Inocybe and Cortinarius, which form ectomycorrhizas with Dryas octopetala or the dwarf alpine Salix species. The scope of the present study was to combine Favre's historical dataset with more recent data, either with the “SwissFungi” database or with data from major studies of the French and German Alps, and with the data from novel high-throughput DNA sequencing techniques of soils from the Swiss Alps. Results of the latter application revealed, that problems associated with these new techniques are manifold and species determination remains often unclear. At this point, the fungal taxa collected by Favre and deposited as exsiccata at the “Conservatoire et Jardin Botaniques de la Ville de Genève” could be used as a reference sequence dataset for alpine fungal studies. In conclusion, it can be postulated that new improved databases are urgently necessary for the near future, particularly, with regard to investigating fungal communities from alpine regions using new techniques.
Collapse
Affiliation(s)
- Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martin Hartmann
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stephan Zimmermann
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Frank Graf
- Community Ecology, WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland
| | - Laura M Suz
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Tuula Niskanen
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Martin I Bidartondo
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Beatrice Senn-Irlet
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
17
|
Esteve-Raventós F, Moreno G, Alvarado P, Olariaga I. Unraveling the Inocybe praetervisa group through type studies and ITS data: Inocybe praetervisoides sp. nov. from the Mediterranean region. Mycologia 2017; 108:123-34. [DOI: 10.3852/15-053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/03/2015] [Indexed: 11/10/2022]
Affiliation(s)
| | - Gabriel Moreno
- Department of Life Sciences (Botany Unit), University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Pablo Alvarado
- ALVALAB. C/ La Rochela 47. 39012 Santander, Cantabria, Spain
| | - Ibai Olariaga
- Department of Life Sciences (Botany Unit), University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
18
|
Gao Q, Yang ZL. Diversity and distribution patterns of root-associated fungi on herbaceous plants in alpine meadows of southwestern China. Mycologia 2016; 108:281-91. [PMID: 26740542 DOI: 10.3852/14-324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/08/2015] [Indexed: 11/10/2022]
Abstract
The diversity of root-associated fungi associated with four ectomycorrhizal herbaceous species, Kobresia capillifolia, Carex parva, Polygonum macrophyllum and Potentilla fallens, collected in three sites of alpine meadows in southwestern China, was estimated based on internal transcribed spacer (ITS) rDNA sequence analysis of root tips. Three hundred seventy-seven fungal sequences sorted to 154 operational taxonomical units (sequence similarity of ≥ 97% across the ITS) were obtained from the four plant species across all three sites. Similar taxa (in GenBank with ≥ 97% similarity) were not found in GenBank and/or UNITE for most of the OTUs. Ectomycorrhiz a made up 64% of the fungi operational taxonomic units (OTUs), endophytes constituted 4% and the other 33% were unidentified root-associated fungi. Fungal OTUs were represented by 57% basidiomycetes and 43% ascomycetes. Inocybe, Tomentella/Thelophora, Sebacina, Hebeloma, Pezizomycotina, Cenococcum geophilum complex, Cortinarius, Lactarius and Helotiales were OTU-rich fungal lineages. Across the sites and host species the root-associated fungal communities generally exhibited low host and site specificity but high host and sampling site preference. Collectively our study revealed noteworthy diversity and endemism of root-associated fungi of alpine plants in this global biodiversity hotspot.
Collapse
Affiliation(s)
- Qian Gao
- Department of Traditional Chinese Medicine, Kunming University of Traditional Chinese Medicine, Kunming 650500, P.R. China
| | - Zhu L Yang
- Key Laboratory for Plant Diversity of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, P.R. China
| |
Collapse
|
19
|
Corrales A, Arnold AE, Ferrer A, Turner BL, Dalling JW. Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. MYCORRHIZA 2016; 26:1-17. [PMID: 25940407 DOI: 10.1007/s00572-015-0641-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
Neotropical montane forests are often dominated by ectomycorrhizal (EM) tree species, yet the diversity of their EM fungal communities remains poorly explored. In lower montane forests in western Panama, the EM tree species Oreomunnea mexicana (Juglandaceae) forms locally dense populations in forest otherwise characterized by trees that form arbuscular mycorrhizal (AM) associations. The objective of this study was to compare the composition of EM fungal communities associated with Oreomunnea adults, saplings, and seedlings across sites differing in soil fertility and the amount and seasonality of rainfall. Analysis of fungal nrITS DNA (nuclear ribosomal internal transcribed spacers) revealed 115 EM fungi taxa from 234 EM root tips collected from adults, saplings, and seedlings in four sites. EM fungal communities were equally species-rich and diverse across Oreomunnea developmental stages and sites, regardless of soil conditions or rainfall patterns. However, ordination analysis revealed high compositional turnover between low and high fertility/rainfall sites located ca. 6 km apart. The EM fungal community was dominated by Russula (ca. 36 taxa). Cortinarius, represented by 14 species and previously reported to extract nitrogen from organic sources under low nitrogen availability, was found only in low fertility/high rainfall sites. Phylogenetic diversity analyses of Russula revealed greater evolutionary distance among taxa found on sites with contrasting fertility and rainfall than was expected by chance, suggesting that environmental differences among sites may be important in structuring EM fungal communities. More research is needed to evaluate whether EM fungal taxa associated with Oreomunnea form mycorrhizal networks that might account for local dominance of this tree species in otherwise diverse forest communities.
Collapse
Affiliation(s)
- Adriana Corrales
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA.
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Astrid Ferrer
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| | - Benjamin L Turner
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Republic of Panama
| | - James W Dalling
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Republic of Panama
| |
Collapse
|
20
|
Bogar LM, Dickie IA, Kennedy PG. Testing the co-invasion hypothesis: ectomycorrhizal fungal communities onAlnus glutinosaandSalix fragilisin New Zealand. DIVERS DISTRIB 2015. [DOI: 10.1111/ddi.12304] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Laura M. Bogar
- Department of Biology; Stanford University; 371 Serra Mall Stanford CA 94305 USA
| | - Ian A. Dickie
- Bio-Protection Research Centre; Lincoln University; Box 85084 Lincoln New Zealand
- Landcare Research; Box 69040 Lincoln New Zealand
| | - Peter G. Kennedy
- Department of Plant Biology; 250 Biological Science Center; University of Minnesota; 1445 Gortner Ave St. Paul MN 55108 USA
| |
Collapse
|
21
|
Molina R, Horton TR. Mycorrhiza Specificity: Its Role in the Development and Function of Common Mycelial Networks. ECOLOGICAL STUDIES 2015. [DOI: 10.1007/978-94-017-7395-9_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
22
|
Pickles BJ, Pither J. Still scratching the surface: how much of the 'black box' of soil ectomycorrhizal communities remains in the dark? THE NEW PHYTOLOGIST 2014; 201:1101-1105. [PMID: 24279722 DOI: 10.1111/nph.12616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Brian J Pickles
- Irving K. Barber School of Arts and Sciences, Department of Biology, University of British Columbia, Okanagan campus, 3333 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Jason Pither
- Irving K. Barber School of Arts and Sciences, Department of Biology, University of British Columbia, Okanagan campus, 3333 University Way, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
23
|
Botnen S, Vik U, Carlsen T, Eidesen PB, Davey ML, Kauserud H. Low host specificity of root-associated fungi at an Arctic site. Mol Ecol 2014; 23:975-85. [DOI: 10.1111/mec.12646] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 12/10/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Affiliation(s)
- Synnøve Botnen
- Department of Biosciences; Section for Genetics and Evolutionary Biology (EVOGENE); University of Oslo; PO box 1066 Blindern NO-0316 Oslo Norway
- The University Centre in Svalbard; PO box 156 NO-9171 Longyearbyen Norway
| | - Unni Vik
- Department of Biosciences; Section for Genetics and Evolutionary Biology (EVOGENE); University of Oslo; PO box 1066 Blindern NO-0316 Oslo Norway
| | - Tor Carlsen
- Department of Biosciences; Section for Genetics and Evolutionary Biology (EVOGENE); University of Oslo; PO box 1066 Blindern NO-0316 Oslo Norway
| | | | - Marie L. Davey
- The University Centre in Svalbard; PO box 156 NO-9171 Longyearbyen Norway
| | - Håvard Kauserud
- Department of Biosciences; Section for Genetics and Evolutionary Biology (EVOGENE); University of Oslo; PO box 1066 Blindern NO-0316 Oslo Norway
| |
Collapse
|
24
|
Tedersoo L, Mett M, Ishida TA, Bahram M. Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. THE NEW PHYTOLOGIST 2013; 199:822-31. [PMID: 23692134 DOI: 10.1111/nph.12328] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/07/2013] [Indexed: 05/17/2023]
Abstract
Geographic and taxonomic host ranges determine the distribution of biotrophic organisms. Host phylogenetic distance strongly affects the community composition of pathogens and parasites, but little is known about the host phylogeny effect on communities of mutualists, such as plant-pollinator and plant-mycorrhizal fungi systems. By incorporating phylogenetic eigenvectors into univariate and multivariate models, we aimed to determine the relative contribution of host phylogeny and environmental variables to mycorrhizal traits and community composition of ectomycorrhizal (EcM) fungi in Salicaceae at the local scale. Host phylogeny explained 75% of the variation in fungal species richness and 20% of the variation in community composition. We also re-analyzed a system involving eight hosts from Japan, in which host phylogeny explained 26% and 9% of the variation in fungal richness and community composition, respectively. [Correction added after online publication 21 May 2013: in the preceding sentence the values 9% and 26% have been transposed.] Phylogenetic eigenvectors that differentially account for clades and terminal taxa across the phylogeny revealed stronger host effects than did the treatment of host species as categorical or dummy variables in multiregression models, and in comparison with methods such as Mantel test and its analogs. Our results indicate the usefulness of the eigenvector method for the quantification of the host phylogeny effect, which represents an integrated complex function of taxonomic sampling effect and phylogenetic distance per se.
Collapse
Affiliation(s)
- Leho Tedersoo
- Natural History Museum, University of Tartu, Tartu, Estonia.
| | | | | | | |
Collapse
|
25
|
Davey ML, Heegaard E, Halvorsen R, Kauserud H, Ohlson M. Amplicon-pyrosequencing-based detection of compositional shifts in bryophyte-associated fungal communities along an elevation gradient. Mol Ecol 2012. [DOI: 10.1111/mec.12122] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marie L. Davey
- Department of Ecology and Natural Resource Management; Norwegian University of Life Sciences; PO Box 5003 NO-1432 Ås Norway
- Microbial Evolution Research Group (MERG); Department of Biology; University of Oslo; PO Box 1066 Blindern NO-0316 Oslo Norway
| | - Einar Heegaard
- Norwegian Forest and Landscape Institute; Fanaflaten 4 NO-5244 Fana Norway
| | - Rune Halvorsen
- Department of Botany, Natural History Museum; University of Oslo; PO Box 1172 Blindern NO-0318 Oslo Norway
| | - Håvard Kauserud
- Microbial Evolution Research Group (MERG); Department of Biology; University of Oslo; PO Box 1066 Blindern NO-0316 Oslo Norway
| | - Mikael Ohlson
- Department of Ecology and Natural Resource Management; Norwegian University of Life Sciences; PO Box 5003 NO-1432 Ås Norway
| |
Collapse
|
26
|
Timling I, Dahlberg A, Walker DA, Gardes M, Charcosset JY, Welker JM, Taylor DL. Distribution and drivers of ectomycorrhizal fungal communities across the North American Arctic. Ecosphere 2012. [DOI: 10.1890/es12-00217.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Timling I, Taylor DL. Peeking through a frosty window: molecular insights into the ecology of Arctic soil fungi. FUNGAL ECOL 2012. [DOI: 10.1016/j.funeco.2012.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|