1
|
Opitz MW, Díaz-Manzano FE, Ruiz-Ferrer V, Daneshkhah R, Ludwig R, Lorenz C, Escobar C, Steinkellner S, Wieczorek K. The other side of the coin: systemic effects of Serendipita indica root colonization on development of sedentary plant-parasitic nematodes in Arabidopsis thaliana. PLANTA 2024; 259:121. [PMID: 38615288 PMCID: PMC11016515 DOI: 10.1007/s00425-024-04402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
MAIN CONCLUSION Upon systemic S. indica colonization in split-root system cyst and root-knot nematodes benefit from endophyte-triggered carbon allocation and altered defense responses what significantly facilitates their development in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with different plants including Arabidopsis thaliana. It enhances host's growth and resistance to different abiotic and biotic stresses such as infestation by the cyst nematode Heterodera schachtii (CN). In this work, we show that S. indica also triggers similar direct reduction in development of the root-knot nematode Meloidogyne javanica (RKN) in A. thaliana. Further, to mimick the natural situation occurring frequently in soil where roots are unequally colonized by endophytes we used an in vitro split-root system with one half of A. thaliana root inoculated with S. indica and the other half infected with CN or RKN, respectively. Interestingly, in contrast to direct effects, systemic effects led to an increase in number of both nematodes. To elucidate this phenomenon, we focused on sugar metabolism and defense responses in systemic non-colonized roots of plants colonized by S. indica. We analyzed the expression of several SUSs and INVs as well as defense-related genes and measured sugar pools. The results show a significant downregulation of PDF1.2 as well as slightly increased sucrose levels in the non-colonized half of the root in three-chamber dish. Thus, we speculate that, in contrast to direct effects, both nematode species benefit from endophyte-triggered carbon allocation and altered defense responses in the systemic part of the root, which promotes their development. With this work, we highlight the complexity of this multilayered tripartite relationship and deliver new insights into sugar metabolism and plant defense responses during S. indica-nematode-plant interaction.
Collapse
Affiliation(s)
- Michael W Opitz
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Fernando Evaristo Díaz-Manzano
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Virginia Ruiz-Ferrer
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Roshanak Daneshkhah
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Roland Ludwig
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cindy Lorenz
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Carolina Escobar
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Siegrid Steinkellner
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Krzysztof Wieczorek
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria.
| |
Collapse
|
2
|
Lax P, Passone MA, Becerra AG, Sosa AL, Ciancio A, Finetti-Sialer MM, Rosso LC. Sustainable strategies for management of the "false root-knot nematode" Nacobbus spp. FRONTIERS IN PLANT SCIENCE 2022; 13:1046315. [PMID: 36570909 PMCID: PMC9774502 DOI: 10.3389/fpls.2022.1046315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The genus Nacobbus, known as the false root-knot nematode, is native to the American continent and comprises polyphagous species adapted to a wide range of climatic conditions. Alone or in combination with other biotic and abiotic factors, Nacobbus spp. can cause significant economic yield losses on main food crops such as potato, sugar beet, tomato, pepper and bean, in South and North America. Although the genus distribution is restricted to the American continent, it has quarantine importance and is subject to international legislation to prevent its spread to other regions, such as the European Union. The management of Nacobbus spp. remains unsatisfactory due to the lack of information related to different aspects of its life cycle, survival stages in the soil and in plant material, a rapid and reliable diagnostic method for its detection and the insufficient source of resistant plant genotypes. Due to the high toxicity of chemical nematicides, the search for alternatives has been intensified. Therefore, this review reports findings on the application of environmentally benign treatments to manage Nacobbus spp. Biological control strategies, such as the use of different organisms (mainly bacteria, fungi and entomopathogenic nematodes) and other eco-compatible approaches (such as metabolites, essential oils, plant extracts, phytohormones and amendments), either alone or as part of a combined control strategy, are discussed. Knowledge of potential sources of resistance for genetic improvement for crops susceptible to Nacobbus spp. are also reported. The sustainable strategies outlined here offer immediate benefits, not only to counter the pathogen, but also as good alternatives to improve crop health and growth.
Collapse
Affiliation(s)
- Paola Lax
- Instituto de Diversidad y Ecología Animal (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Centro de Zoología Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - María A. Passone
- Laboratorio de Ecología Microbiana Ambiental (ECOMA), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto, Argentina
| | - Alejandra G. Becerra
- Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Ana L. Sosa
- Laboratorio de Ecología Microbiana Ambiental (ECOMA), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto, Argentina
| | - Aurelio Ciancio
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | | | - Laura C. Rosso
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| |
Collapse
|
3
|
Weng W, Yan J, Zhou M, Yao X, Gao A, Ma C, Cheng J, Ruan J. Roles of Arbuscular mycorrhizal Fungi as a Biocontrol Agent in the Control of Plant Diseases. Microorganisms 2022; 10:microorganisms10071266. [PMID: 35888985 PMCID: PMC9317293 DOI: 10.3390/microorganisms10071266] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Arbuscularmycorrhizal fungi (AMF) are a class of beneficial microorganisms that are widely distributed in soil ecosystems and can form symbionts with 80% of terrestrial higher plants, and improve the nutritional status of plants. The use of AMF as a biocontrol method to antagonize soil-borne pathogens has received increasing interest from phytopathologists and ecologists. In this paper, the mechanisms of resistance to diseases induced by AMF and the application of AMF to plant fungal, bacterial, and nematode diseases have been summarized. This study aimed to enhance the potential use of AMF as a biological control method to prevent plant diseases in the future. Root morphological alteration characteristics were explained, including the influence of AMF on root structure, function, and the regulation of AMF via secondary metabolites. AMF can improve the rhizosphere environment by influencing the physical and chemical proprieties of soil, enhancing the growth of other beneficial microorganisms, and by competing with pathogenic microorganisms. Two microorganism types may compete for the same invasive sites in root systems and regulate nutrition distribution. AMF can induce the host plant to form defense systems, including improving phytohormone concentrations, inducing signal substrate production, gene expression regulation, and enhancing protein production.
Collapse
Affiliation(s)
- Wenfeng Weng
- College of Agriculture, Guizhou University, Guiyang 550025, China; (W.W.); (X.Y.); (A.G.); (C.M.); (J.C.)
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing in Ministry of Agriculture and Rural Affairs, Schools of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang 550025, China; (W.W.); (X.Y.); (A.G.); (C.M.); (J.C.)
| | - Aning Gao
- College of Agriculture, Guizhou University, Guiyang 550025, China; (W.W.); (X.Y.); (A.G.); (C.M.); (J.C.)
| | - Chao Ma
- College of Agriculture, Guizhou University, Guiyang 550025, China; (W.W.); (X.Y.); (A.G.); (C.M.); (J.C.)
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang 550025, China; (W.W.); (X.Y.); (A.G.); (C.M.); (J.C.)
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang 550025, China; (W.W.); (X.Y.); (A.G.); (C.M.); (J.C.)
- Correspondence: ; Tel./Fax: +86-8510-8830-5238
| |
Collapse
|
4
|
Abstract
Guava (Psidium guajava L.) production is prominent in the irrigated fruit growing area of Brazil. However, the parasite Meloidogyne enterolobii (a phytonematode) has caused a decrease in guava production. Arbuscular mycorrhizal fungi (AMF) are known to be beneficial to plants; however, their ability to protect plants against nematodes such as M. enterolobii remains poorly known. This study aimed to monitor M. enterolobii infection in guava seedlings inoculated with three AMF species. After AMF inoculation, the seedlings were grown in sterile soil for 60 days before inoculation with 2000 M. enterolobii eggs. Plant growth parameters, mycorrhizal colonization and the number of Meloidogyne in the roots were determined over time (30 and 60 days after Meloidogyne inoculation). The AMF enhanced guava seedling growth, and reduced the amount of Meloidogyne in the roots at 30 and 60 days after nematode inoculation, indicating that these AMF species could serve as biocontrol agents of M. enterolobii in guava cultivation.
Collapse
|
5
|
Ceustermans A, Van Hemelrijck W, Van Campenhout J, Bylemans D. Effect of Arbuscular Mycorrhizal Fungi on Pratylenchus penetrans Infestation in Apple Seedlings under Greenhouse Conditions. Pathogens 2018; 7:E76. [PMID: 30241406 PMCID: PMC6313298 DOI: 10.3390/pathogens7040076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022] Open
Abstract
A major problem in fruit cultivation in Flanders is replant disease due to a lack of uncultivated soils available for new plantings. Replant disease can cause poor growth and affect time to full production, however Arbuscular Mycorrhizal Fungi (AMF) can prove their usefulness with regard to these problems. To further investigate the effect of AMF on nematodes, different AMF species were amended to potted apple seedlings in the presence of the nematode Pratylenchus penetrans. Generally, apple seedlings grew better in the presence of nematodes when mycorrhiza were inoculated into the soil. Moreover, a positive correlation (R² ≥ 0.88) was found between the percentage root length colonization of the roots of apple seedlings, by AMF species, and nematode reduction in the soil of the seedlings. Indigenous AMF could colonize the roots of apple seedlings the most efficiently, resulting in a higher biocontrol effect. Besides, a synergistic effect was observed when two AMF strains were applied together leading to a significant growth response of the seedlings.
Collapse
Affiliation(s)
- An Ceustermans
- Research Station for Fruit Cultivation, B-3800 Sint-Truiden, Belgium.
| | | | | | - Dany Bylemans
- Research Station for Fruit Cultivation, B-3800 Sint-Truiden, Belgium.
- Department of Biosystems, KU Leuven, B-3001 Heverlee, Belgium.
| |
Collapse
|
6
|
Sharma IP, Sharma AK. Physiological and biochemical changes in tomato cultivar PT-3 with dual inoculation of mycorrhiza and PGPR against root-knot nematode. Symbiosis 2016. [DOI: 10.1007/s13199-016-0423-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Upscaling Arbuscular Mycorrhizal Symbiosis and Related Agroecosystems Services in Smallholder Farming Systems. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4376240. [PMID: 26942194 PMCID: PMC4749795 DOI: 10.1155/2016/4376240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/29/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022]
Abstract
Smallholder farming systems form unique ecosystems that can protect beneficial soil biota and form an important source of useful genetic resources. They are characterized by high level of agricultural diversity mainly focused on meeting farmers' needs. Unfortunately, these systems often experience poor crop production mainly associated with poor planning and resource scarcity. Soil fertility is among the primary challenges faced by smallholder farmers, which necessitate the need to come up with affordable and innovative ways of replenishing soils. One such way is the use of microbial symbionts such as arbuscular mycorrhizal fungi (AMF), a beneficial group of soil microbiota that form symbiotic associations with majority of cultivated crops and play a vital role in biological soil fertility, plant nutrition, and protection. AMF can be incorporated in smallholder farming systems to help better exploit chemical fertilizers inputs which are often unaffordable to many smallholder farmers. The present review highlights smallholder farming practices that could be innovatively redesigned to increase AMF symbiosis and related agroecosystem services. Indeed, the future of global food security depends on the success of smallholder farming systems, whose crop productivity depends on the services provided by well-functioning ecosystems, including soil fertility.
Collapse
|
8
|
Su L, Ruan Y, Yang X, Wang K, Li R, Shen Q. Suppression on plant-parasitic nematodes using a soil fumigation strategy based on ammonium bicarbonate and its effects on the nematode community. Sci Rep 2015; 5:17597. [PMID: 26621630 PMCID: PMC4664931 DOI: 10.1038/srep17597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/30/2015] [Indexed: 11/12/2022] Open
Abstract
Banana production is severely hindered by plant-parasitic nematodes in acidic, sandy soil. This study investigated the possibility of applying a novel fumigation agent based on ammonium bicarbonate as a strategy for controlling plant-parasitic nematodes under sealed conditions. Moreover, its effects on the nematode community in pot and field experiments were also measured using morphology and feeding-habit based classification and the PCR-DGGE method. Results showed that a mixture (LAB) of lime (L) and ammonium bicarbonate (AB) in suitable additive amounts (0.857 g kg−1 of L and 0.428 g kg−1 of AB) showed stronger nematicidal ability than did the use of AB alone or the use of ammonium hydroxide (AH) and calcium cyanamide (CC) with an equal nitrogen amount. The nematode community was altered by the different fumigants, and LAB showed an excellent plant-parasitic nematicidal ability, especially for Meloidogyne and Rotylenchulus, as revealed by morphology and feeding-habit based classification, and for Meloidogyne, as revealed by the PCR-DGGE method. Fungivores and omnivore-predators were more sensitive to the direct effects of the chemicals than bacterivores. This study explored a novel fumigation agent for controlling plant-parasitic nematodes based on LAB and provides a potential strategy to ensure the worldwide development of the banana industry.
Collapse
Affiliation(s)
- Lanxi Su
- Jiangsu Key Lab for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yunze Ruan
- Hainan key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Agriculture, Hainan University, 570228, Haikou, China
| | - Xiujuan Yang
- Jiangsu Key Lab for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Kang Wang
- Jiangsu Key Lab for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Rong Li
- Jiangsu Key Lab for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qirong Shen
- Jiangsu Key Lab for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
9
|
Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible. Symbiosis 2015. [DOI: 10.1007/s13199-015-0334-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Gerlach N, Schmitz J, Polatajko A, Schlüter U, Fahnenstich H, Witt S, Fernie AR, Uroic K, Scholz U, Sonnewald U, Bucher M. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis. PLANT, CELL & ENVIRONMENT 2015; 38:1591-612. [PMID: 25630535 DOI: 10.1111/pce.12508] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/12/2015] [Indexed: 05/20/2023]
Abstract
Most terrestrial plants benefit from the symbiosis with arbuscular mycorrhizal fungi (AMF) mainly under nutrient-limited conditions. Here the crop plant Zea mays was grown with and without AMF in a bi-compartmented system separating plant and phosphate (Pi) source by a hyphae-permeable membrane. Thus, Pi was preferentially taken up via the mycorrhizal Pi uptake pathway while other nutrients were ubiquitously available. To study systemic effects of mycorrhizal Pi uptake on leaf status, leaves of these plants that display an increased biomass in the presence of AMF were subjected to simultaneous ionomic, transcriptomic and metabolomic analyses. We observed robust changes of the leaf elemental composition, that is, increase of P, S and Zn and decrease of Mn, Co and Li concentration in mycorrhizal plants. Although changes in anthocyanin and lipid metabolism point to an improved P status, a global increase in C versus N metabolism highlights the redistribution of metabolic pools including carbohydrates and amino acids. Strikingly, an induction of systemic defence gene expression and concomitant accumulation of secondary metabolites such as the terpenoids alpha- and beta-amyrin suggest priming of mycorrhizal maize leaves as a mycorrhiza-specific response. This work emphasizes the importance of AM symbiosis for the physiological status of plant leaves and could lead to strategies for optimized breeding of crop species with high growth potential.
Collapse
Affiliation(s)
- Nina Gerlach
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Jessica Schmitz
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Aleksandra Polatajko
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Urte Schlüter
- Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, 91058, Germany
| | | | - Sandra Witt
- Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Kalle Uroic
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, OT Gatersleben, 06466, Germany
| | - Uwe Sonnewald
- Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| |
Collapse
|
11
|
Ishwar PS, A KS. Application of arbuscular mycorrhiza for managing root-knot disease in tomato (Lycopersicon esculentum) under glass-house conditions in Pantnagar, India. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajmr2014.7356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Sui XL, Li AR, Chen Y, Zhuo L, Liu YY. Arbuscular mycorrhizal fungi: potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis? MYCORRHIZA 2014; 24:187-195. [PMID: 24077881 DOI: 10.1007/s00572-013-0528-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/13/2013] [Indexed: 06/02/2023]
Abstract
Spatial expansion of root hemiparasitic Pedicularis kansuensis in Bayanbulak Grassland of Xinjiang Uygur Autonomous Region (China) has caused great loss of herbage yield and has threatened the local livestock industry. Current management practices using manual eradication and chemical control have been proved problematic. Arbuscular mycorrhizal (AM) fungi have been suggested to be potential biocontrol agents against a number of plant pests, but experimental evidence is lacking against weedy P. kansuensis. In this study, we tested the hypothesis that inoculation with AM fungi will cause growth depression in P. kansuensis and reduce its damage to host plants. Based on the confirmation of AM status and host community of the hemiparasite in the field, a pot cultivation experiment was conducted to test the influence of an AM fungus (Glomus mosseae) on growth of P. kansuensis and the parasitized host (Elymus nutans). AM colonization was observed in roots of P. kansuensis, but the levels were much lower than those of its adjacent host species. A negative correlation between AM levels and the numbers of haustoria was detected for the field samples of the hemiparasite. Strong suppression of haustorium formation, a significant reduction in plant dry weight (DW), as well as marked reduction in the survival rate of P. kansuensis after inoculation with AM fungi was observed. In contrast, inoculation with G. mosseae increased root DW and whole plant DW of parasitized host plants. Our findings demonstrated significantly repressive effects of AM fungi on growth performance of P. kansuensis with and without the presence of a host. The potential of AM fungi as biocontrol agents against the damaging hemiparasite was confirmed.
Collapse
|
13
|
Daneshkhah R, Cabello S, Rozanska E, Sobczak M, Grundler FMW, Wieczorek K, Hofmann J. Piriformospora indica antagonizes cyst nematode infection and development in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3763-74. [PMID: 23956413 PMCID: PMC3745735 DOI: 10.1093/jxb/ert213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The beneficial endophytic fungus Piriformospora indica colonizes the roots of many plant species, including the model plant Arabidopsis thaliana. Its colonization promotes plant growth, development, and seed production as well as resistance to various biotic and abiotic stresses. In the present work, P. indica was tested as potential antagonist of the sedentary plant-parasitic nematode Heterodera schachtii. This biotrophic cyst-forming nematode induces severe host plant damage by changing the morphogenesis and physiology of infected roots. Here it is shown that P. indica colonization, as well as the application of fungal exudates and cell-wall extracts, significantly affects the vitality, infectivity, development, and reproduction of H. schachtii.
Collapse
Affiliation(s)
- R. Daneshkhah
- Department of Crop Sciences, Division of Plant Protection, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| | - S. Cabello
- Department of Crop Sciences, Division of Plant Protection, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| | - E. Rozanska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland
| | - M. Sobczak
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland
| | - F. M. W. Grundler
- Institute of Crop Science and Resource Conservation, Molecular Phytomedicine, University Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany
| | - K. Wieczorek
- Department of Crop Sciences, Division of Plant Protection, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| | - J. Hofmann
- Department of Crop Sciences, Division of Plant Protection, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, 3430 Tulln, Austria
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|