1
|
Sakae K, Kitagami Y, Matsuda Y. Rhizosphere Bacterial Communities Alter in Process to Mycorrhizal Developments of a Mixotrophic Pyrola japonica. MICROBIAL ECOLOGY 2025; 88:28. [PMID: 40229524 PMCID: PMC11996954 DOI: 10.1007/s00248-025-02526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Rhizosphere bacteria work in synergy with mycorrhizal fungi to promote plant growth. The community structure of rhizosphere bacteria may be influenced by continuous changes in fungal associations with host plants. Asiatic herbaceous plant Pyrola japonica (Ericaceae) forms arbutoid mycorrhizas without fungal mantles, with its mycorrhizal development being visually distinguishable at the cellular level. This study aimed to investigate roles of rhizosphere bacteria and their community shifts along with mycorrhizal developments. We examined bacterial communities at three different developmental stages of mycorrhizal roots-limited, full, and digested-via a partial 16S rRNA amplicon sequencing. Both α- and β-diversities in the full condition were significantly lower than those in the limited and digested conditions. Significant clusters of bacterial compositions were found among all treatments. In terms of ecological processes of community assembly, communities in limited conditions and bulk soil were influenced by both deterministic and stochastic processes, whereas those in full and digested conditions were regulated only by stochastic ways. Furthermore, the order Rhizobiales and Actinomycetales known as mycorrhizal helper bacteria were characterized in the full and digested conditions through phylogenetic analysis and detection of indicator taxa. These results suggest that mycorrhizal fungi may play ecologically important roles not only as temporal drivers initiating the formation rhizosphere bacterial communities but also as key founders exerting continuous influences to establish priority effects. Moreover, the rhizosphere bacterial community remains after mycorrhizal degeneration and their historical continuity may contribute to maintaining plant-mycorrhizal fungi-bacterial associations.
Collapse
Affiliation(s)
- Kohtaro Sakae
- Laboratory of Forest Mycology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514 - 8507, Japan.
| | - Yudai Kitagami
- Laboratory of Forest Mycology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514 - 8507, Japan
| | - Yosuke Matsuda
- Laboratory of Forest Mycology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514 - 8507, Japan
| |
Collapse
|
2
|
Sakae K, Kawai S, Kitagami Y, Matsuo N, Selosse MA, Tanikawa T, Matsuda Y. Effects of fungicide treatments on mycorrhizal communities and carbon acquisition in the mixotrophic Pyrola japonica (Ericaceae). MYCORRHIZA 2024; 34:293-302. [PMID: 38922410 DOI: 10.1007/s00572-024-01157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Pyrola japonica, a member of the family Ericaceae, is a mixotroph that grows on forest floors and obtains carbon (C) from both its photosynthesis and its mycorrhizal fungi. Its mycorrhizal community is dominated by Russulaceae. However, the mechanism of its C acquisition and its flexibility are not well understood. Our aim was to assess the impact of disturbance of the mycorrhizal fungal communities on C acquisition by P. japonica. We repeatedly applied a fungicide (Benomyl) to soils around P. japonica plants in a broad-leaved forest of central Japan, in order to disturb fungal associates near roots. After fungicide treatment, P. japonica roots were collected and subjected to barcoding by next-generation sequencing, focusing on the ITS2 region. The rate of mycorrhizal formation and α-diversity did not significantly change upon fungicide treatments. Irrespective of the treatments, Russulaceae represented more than 80% of the taxa. Leaves and seeds of the plants were analysed for 13C stable isotope ratios that reflect fungal C gain. Leaf and seed δ13C values with the fungicide treatment were significantly lower than those with the other treatments. Thus the fungicide did not affect mycorrhizal communities in the roots, but disturbed mycorrhizal fungal pathways via extraradical hyphae, and resulted in a more photosynthetic behaviour of P. japonica for leaves and seeds.
Collapse
Affiliation(s)
- Kohtaro Sakae
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Shosei Kawai
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Yudai Kitagami
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Naoko Matsuo
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, 57 Rue Cuvier, 75005, Paris, France
- Faculty of Biology, University of Gdańsk, Ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
- Institut Universitaire de France, Paris, France
| | - Toko Tanikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yosuke Matsuda
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
3
|
Suetsugu K, Matsuoka S, Shutoh K, Okada H, Taketomi S, Onimaru K, Tanabe AS, Yamanaka H. Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat. MYCORRHIZA 2021; 31:219-229. [PMID: 33215330 DOI: 10.1007/s00572-020-01002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Mycoheterotrophic plants typically form associations with a narrow range of mycorrhizal fungi. Consequently, mycorrhizal specialization is often considered to be an important step in mycoheterotrophic evolution. However, it remains unclear whether such specialization is likely to occur in plants of the genus Pyrola, which are generally associated with fungi in multiple ectomycorrhizal families. Here, we investigated the mycorrhizal communities of a nearly fully mycoheterotrophic Pyrola species (Pyrola subaphylla), a closely related partially mycoheterotrophic Pyrola species (Pyrola japonica), and a co-occurring autotrophic ectomycorrhizal tree, Quercus crispula, which is their potential carbon source, in a cool-temperate Japanese forest. High-throughput DNA sequencing revealed that numerous common ectomycorrhizal OTUs interact with the two Pyrola species and Q. crispula, thereby providing an opportunity to exploit a certain amount of carbon from common mycorrhizal networks. In addition, not only P. japonica but also P. subaphylla exhibited exceptionally high alpha mycobiont diversity, with 52 ectomycorrhizal OTUs belonging to 12 families being identified as P. subaphylla mycobionts and 69 ectomycorrhizal OTUs in 18 families being detected as P. japonica mycobionts. Nonetheless, the beta mycobiont diversity of P. subaphylla and P. japonica individuals was significantly lower than that of Q. crispula. Moreover, the beta mycobiont diversity of P. subaphylla was found to be significantly lower than that of P. japonica. Therefore, despite their seemingly broad mycorrhizal interactions, the two Pyrola species (particularly P. subaphylla) showed consistent fungal associations, suggesting that mycorrhizal specialization may have developed during the course of mycoheterotrophic evolution within the genus Pyrola.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan.
| | - Shunsuke Matsuoka
- Graduate School of Simulation Studies, University of Hyogo, Kobe, Hyogo, 650-0047, Japan
| | - Kohtaroh Shutoh
- The Hokkaido University Museum, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Hidehito Okada
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Shintaro Taketomi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Kaede Onimaru
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Akifumi S Tanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Hiroki Yamanaka
- Faculty of Science and Technology, Ryukoku University, Otsu, Shiga, 520-2194, Japan
- Center for Biodiversity Science, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| |
Collapse
|
4
|
Matsuda Y, Yamaguchi Y, Matsuo N, Uesugi T, Ito J, Yagame T, Figura T, Selosse MA, Hashimoto Y. Communities of mycorrhizal fungi in different trophic types of Asiatic Pyrola japonica sensu lato (Ericaceae). JOURNAL OF PLANT RESEARCH 2020; 133:841-853. [PMID: 33099700 DOI: 10.1007/s10265-020-01233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Mixotrophic plants obtain carbon by their own photosynthetic activity and from their root-associated mycorrhizal fungi. Mixotrophy is deemed a pre-adaptation for evolution of mycoheterotrophic nutrition, where plants fully depend on fungi and lose their photosynthetic activity. The aim of this study was to clarify mycorrhizal dependency and heterotrophy level in various phenotypes of mixotrophic Pyrola japonica (Ericaceae), encompassing green individuals, rare achlorophyllous variants (albinos) and a form with minute leaves, P. japonica f. subaphylla. These three phenotypes were collected in two Japanese forests. Phylogenetic analysis of both plants and mycorrhizal fungi was conducted based on DNA barcoding. Enrichment in 13C among organs (leaves, stems and roots) of the phenotypes with reference plants and fungal fruitbodies were compared by measuring stable carbon isotopic ratio. All plants were placed in the same clade, with f. subaphylla as a separate subclade. Leaf 13C abundances of albinos were congruent with a fully mycoheterotrophic nutrition, suggesting that green P. japonica leaves are 36.8% heterotrophic, while rhizomes are 74.0% heterotrophic. There were no significant differences in δ13C values among organs in both albino P. japonica and P. japonica f. subaphylla, suggesting full and high mycoheterotrophic nutrition, respectively. Among 55 molecular operational taxonomic units (OTUs) detected as symbionts, the genus Russula was the most abundant in each phenotype and its dominance was significantly higher in albino P. japonica and P. japonica f. subaphylla. Russula spp. detected in P. japonica f. subaphylla showed higher dissimilarity with other phenotypes. These results suggest that P. japonica sensu lato is prone to evolve mycoheterotrophic variants, in a process that changes its mycorrhizal preferences, especially towards the genus Russula for which this species has a marked preference.
Collapse
Affiliation(s)
- Yosuke Matsuda
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| | - Yusuke Yamaguchi
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Naoko Matsuo
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Takashi Uesugi
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Junko Ito
- Natural History Museum and Institute, Aoba-cho, Chuo-ku, Chiba, 260-8682, Japan
| | - Takahiro Yagame
- Mizuho Municipal Museum, 316-5 Kamagata-fujisan, Mizuho-machi, Tokyo, 190-1202, Japan
| | - Tomáš Figura
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, 75005, Paris, France
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844, Prague, Czech Republic
| | - Marc-André Selosse
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, 75005, Paris, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Yasushi Hashimoto
- Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
5
|
Chen B, Li X, Liu J, Qin W, Liang M, Liu Q, Chen D. Antioxidant and Cytoprotective effects of Pyrola decorata H. Andres and its five phenolic components. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:275. [PMID: 31638966 PMCID: PMC6805648 DOI: 10.1186/s12906-019-2698-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/26/2019] [Indexed: 11/28/2022]
Abstract
Background Pyrola decorata H. Andres, is exclusively distributed in China and a source of traditional Chinese herbal medicine Luxiancao for more than 2000 years. Here, we evaluated the antioxidant and cytoprotective effects of P. decorata and its five phenolic components (protocatechuic acid, gallic acid, hyperoside, 2′′-O-galloylhyperin, and quercetin), and discussed their antioxidant chemistry. Methods A lyophilized aqueous extract of P. decorata (LAEP) was prepared and analyzed with high-performance liquid chromatography (HPLC). LAEP and its five phenolic components were comparatively investigated using five antioxidant assays, including ferric-reducing antioxidant power, cupric ion-reducing antioxidant capacity, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical (PTIO•)-scavenging, 1,1-diphenyl-2-picryl-hydrazl radical (DPPH•)-scavenging, and 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) radical (ABTS+•)-scavenging activities. The reaction products of the five phenolic components with 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl radical (4-methoxy-TEMPO•) were determined with ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis. LAEP and its five phenolic components were incubated with bone marrow-derived mesenchymal stem cells (bmMSCs) subjected to oxidative stress to demonstrate their cytoprotective effects with a flow cytometry assay. Results In the five antioxidant assays, LAEP and its five phenolic components dose-dependently increased the radical-scavenging (or reducing power) activities. However, the IC50 values of hyperoside were consistently higher than those of 2′′-O-galloylhyperin. UPLC-ESI-Q-TOF-MS/MS analysis results indicated that the five phenolics could yield dimer products in the presence of 4-methoxy-TEMPO• via the radical adduct formation (RAF) pathway. Flow cytometry assay results confirmed the cytoprotective activity of LAEP and its five phenolic components toward stressed bmMSCs. In particular, 2′′-O-galloylhyperin could more effectively reduce the percentage of damaged bmMSCs than hyperoside. Conclusion LAEP and its five phenolic components may undergo redox-based pathways (such as electron transfer and H+ transfer) and covalent-based pathway (i.e., RAF) to exhibit antioxidant activity. One consequence of RAF is the generation of phenolic-phenolic dimer. In both organic and aqueous media, 2′′-O-galloylhyperin exhibited higher redox-based antioxidant levels (or cytoprotective levels) than those with hyperoside. The differences could be attributed to 2′′-O-galloylation reaction.
Collapse
|
6
|
Detection of a root-associated group of Hyaloscyphaceae (Helotiales) species that commonly colonizes Fagaceae roots and description of three new species in genus Glutinomyces. MYCOSCIENCE 2018. [DOI: 10.1016/j.myc.2018.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Jia S, Nakano T, Hattori M, Nara K. Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan. MYCORRHIZA 2017; 27:733-745. [PMID: 28707027 PMCID: PMC5645451 DOI: 10.1007/s00572-017-0788-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Pyroleae species are perennial understory shrubs, many of which are partial mycoheterotrophs. Most fungi colonizing Pyroleae roots are ectomycorrhizal (ECM) and share common mycobionts with their Pyroleae hosts. However, such mycobiont sharing has neither been examined in depth before nor has the interspecific variation in sharing among Pyroleae species. Here, we examined root-associated fungal communities in three co-existing Pyroleae species, including Pyrola alpina, Pyrola incarnata, and Orthilia secunda, with reference to co-existing ECM fungi on the surrounding trees in the same soil blocks in subalpine coniferous forests. We identified 42, 75, and 18 fungal molecular operational taxonomic units in P. alpina, P. incarnata, and O. secunda roots, respectively. Mycobiont sharing with surrounding trees, which was defined as the occurrence of the same mycobiont between Pyroleae and surrounding trees in each soil block, was most frequent among P. incarnata (31 of 44 plants). In P. alpina, sharing was confirmed in 12 of 37 plants, and the fungal community was similar to that of P. incarnata. Mycobiont sharing was least common in O. secunda, found in only 5 of 32 plants. Root-associated fungi of O. secunda were dominated by Wilcoxina species, which were absent from the surrounding ECM roots in the same soil blocks. These results indicate that mycobiont sharing with surrounding trees does not equally occur among Pyroleae plants, some of which may develop independent mycorrhizal associations with ECM fungi, as suggested in O. secunda at our research sites.
Collapse
Affiliation(s)
- Shuzheng Jia
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
| | - Takashi Nakano
- Mount Fuji Research Institute, Fujiyoshida, Yamanashi, Japan
| | - Masahira Hattori
- Laboratory of Metagenomics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kazuhide Nara
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| |
Collapse
|