1
|
Tapwal A, Sharma N. Characterization of ectomycorrhizal fungal community of Abies Pindrow using sporocarp sampling, morphotyping, and metabarcoding through next-generation sequencing. Int Microbiol 2025; 28:69-79. [PMID: 38717563 DOI: 10.1007/s10123-024-00522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/27/2024] [Accepted: 04/10/2024] [Indexed: 01/29/2025]
Abstract
Abies pindrow, commonly known as the West-Himalayan Fir, holds great ecological importance as a native tree species in the Himalayas. Beyond its value as a fuel and timber source, it serves as a keystone species within the ecosystem. However, over recent years, extensive degradation and deforestation have afflicted A. pindrow forests. Utilizing ectomycorrhizal fungal symbionts of A. pindrow could prove pivotal in restoring these deteriorated forests. This study aimed to evaluate the diversity and composition of the ectomycorrhizal fungal community associated with A. pindrow. We employed ectomycorrhizal root tip morphotyping, sporocarp sampling, and Illumina MiSeq metabarcoding of the ITS region of fungal nrDNA. The ectomycorrhizal root tips were categorized into 10 morphotypes based on their morphological characteristics, exhibiting an average colonization rate of 74%. Sporocarp sampling revealed 22 species across 10 genera, with Russula being the most prevalent. The metabarcoding yielded 285,148 raw sequences, identifying 326 operational taxonomic units (OTUs) belonging to 193 genera, 114 families, 45 orders, 22 classes, and 6 divisions. Of these, 36 OTUs across 20 genera were ectomycorrhizal, constituting 63.1% of the fungal community. Notably, Tuber was the most abundant, representing 37.42% of the fungal population, followed by Russula at 21.06%. This study provides a comprehensive understanding of mycorrhizal symbionts of A. pindrow. The findings hold significant implications for utilizing dominant ectomycorrhizal fungi in reforestation endeavors aimed at restoring this important Himalayan conifer.
Collapse
Affiliation(s)
- Ashwani Tapwal
- ICFRE-Himalayan Forest Research Institute, 171013, Shimla, India.
| | - Neha Sharma
- ICFRE-Himalayan Forest Research Institute, 171013, Shimla, India
| |
Collapse
|
2
|
McPolin MC, Kranabetter JM, Philpott TJ, Hawkins BJ. Sporocarp nutrition of ectomycorrhizal fungi indicates an important role for endemic species in a high productivity temperate rainforest. THE NEW PHYTOLOGIST 2024; 242:1603-1613. [PMID: 37771241 DOI: 10.1111/nph.19280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Endemic species of ectomycorrhizal fungi (EMF) are found throughout many biomes, but it is unclear whether their localized distribution is dictated by habitat filtering or geographical barriers to dispersal. We examined community composition (via long-read metabarcoding) and differences in sporocarp nutrition between endemic and cosmopolitan EMF species across perhumid temperate rainforests of British Columbia, characterized by soils with high nitrogen (N) supply alongside low phosphorus (P) and cation availability. Endemic EMF species, representing almost half of the community, had significantly greater sporocarp N (24% higher), potassium (+16%), and magnesium (+17%) concentrations than cosmopolitan species. Sporocarp P concentrations were comparatively low and did not differ by fungal range. However, sporocarp N% and P% were well correlated, supporting evidence for linkages in N and P acquisition. Endemics were more likely to occur on Tsuga heterophylla (a disjunct host genus) than Picea sitchensis (a circumpolar genus). The Inocybaceae and Thelephoraceae families had high proportions of endemic taxa, while species in Cortinariaceae were largely cosmopolitan, indicating some niche conservatism among genera. We conclude that superior adaptive traits in relation to perhumid soils were skewed toward the endemic community, underscoring the potentially important contribution of these localized fungi to rainforest nutrition and productivity.
Collapse
Affiliation(s)
- M Claire McPolin
- Centre for Forest Biology, University of Victoria, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| | - J Marty Kranabetter
- British Columbia Ministry of Forests, PO Box 9536, Stn Prov Govt, Victoria, BC, V8W 9C4, Canada
| | - Tim J Philpott
- British Columbia Ministry of Forests, 200-640 Borland St., Williams Lake, BC, V2G 4T1, Canada
| | - Barbara J Hawkins
- Centre for Forest Biology, University of Victoria, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| |
Collapse
|
3
|
You YH, Park JM, Ku YB, Jeong TY, Lim K, Shin JH, Kim JS, Hong JW. Fungal Microbiome of Alive and Dead Korean Fir in its Native Habitats. MYCOBIOLOGY 2024; 52:68-84. [PMID: 38415173 PMCID: PMC10896143 DOI: 10.1080/12298093.2024.2307117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024]
Abstract
A rapid decline of Abies koreana has been reported in most of the natural alpine habitats in Korea. It is generally accepted that this phenomenon is due to climate change even though no clear conclusions have been drawn. Most research has focused on abiotic environmental factors, but studies on the relationships between A. koreana and soil fungal microbiomes are scarce. In this study, the rhizoplane and rhizosphere fungal communities in the alive and dead Korean fir trees from its three major natural habitats including Mt. Deogyu, Mt. Halla, and Mt. Jiri in Korea were investigated to identify specific soil fungal groups closely associated with A. koreana. Soil fungal diversity in each study site was significantly different from another based on the beta diversity calculations. Heat tree analysis at the genus level showed that Clavulina, Beauveria, and Tomentella were most abundant in the healthy trees probably by forming ectomycorrhizae with Korean fir growth and controlling pests and diseases. However, Calocera, Dacrymyces, Gyoerffyella, Hydnotrya, Microdochium, Hyaloscypha, Mycosymbioces, and Podospora were abundant in the dead trees. Our findings suggested that Clavulina, Beauveria, and Tomentella are the major players that could be considered in future reforestation programs to establish ectomycorrhizal networks and promote growth. These genera may have played a significant role in the survival and growth of A. koreana in its natural habitats. In particular, the genus Gyoerffyella may account for the death of the seedlings. Our work presented exploratory research on the specific fungal taxa associated with the status of A. koreana.
Collapse
Affiliation(s)
- Young-Hyun You
- Biological Resources Utilization Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Jong Myong Park
- Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City, Incheon, Republic of Korea
| | - Youn-Bong Ku
- Biological Resources Utilization Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Tae-Yong Jeong
- Department of Environmental Science, College of Natural Sciences, Hankuk University of Foreign Studies, Yongin, Republic of Korea
| | - Kyeongmo Lim
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Suk Kim
- Korea Fern Research Society, Seoul, Republic of Korea
| | - Ji Won Hong
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, Republic of Korea
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
de Meiras-Ottoni A, Gibertoni TB. Clavarioid fungi from Brazil: novelties in Clavulina (Cantharellales). Mycol Prog 2023. [DOI: 10.1007/s11557-023-01873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
5
|
Salas-Lizana R, Villegas Ríos M, Alvarez-Manjarrez J, Pérez-Pazos E, Farid A, Franck A, Smith ME, Garibay-Orijel R. Neotropical Clavulina: Two new species from Mexico and a re-evaluation of Clavulina floridana. Mycologia 2023; 115:135-152. [PMID: 36649208 DOI: 10.1080/00275514.2022.2148191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clavulina comprises ca. 90 described species distributed worldwide in both tropical and temperate regions. However, only one species (C. floridana) has been described so far from tropical North America. We used morphological and molecular data from three DNA loci (nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 [ITS], a portion of nuc 28S rDNA [28S], and a fragment of DNA-directed RNA polymerase II second largest subunit [RPB2]) from basidiomata and ectomycorrhizas collected in tropical ecosystems from three biogeographic provinces of Mexico and one tropical province in the USA to investigate the phylogenetic and taxonomic diversity of Clavulina in the region. Nine new species-level clades were discovered, two of which are proposed as new species (C. arboreiparva and C. tuxtlasana). Specimens of C. floridana recently collected in Florida were included in our analyses, for which a modern description is provided. In addition, C. floridana is a new record for Mexico. The diversity of Clavulina in tropical North America is comparable to that found in lowland tropical South America. However, some of the species found in tropical deciduous forests produce small, rare, and inconspicuous basidiomata, which easily go unnoticed, and therefore are poorly represented in collections. Many species remain undescribed in tropical regions of North America.
Collapse
Affiliation(s)
- Rodolfo Salas-Lizana
- Laboratorios de Micología, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Margarita Villegas Ríos
- Laboratorios de Micología, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Julieta Alvarez-Manjarrez
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Eduardo Pérez-Pazos
- Ecology, Evolution, and Behavior Graduate Program, University of Minnesota, St. Paul, Minnesota 55108.,Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Arian Farid
- Herbarium, Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620
| | - Alan Franck
- Florida Museum of Natural History, University of Florida Herbarium, Gainesville, Florida 32611-7800
| | - Mathew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| |
Collapse
|
6
|
Unipartite and bipartite mycorrhizal networks of Abies religiosa forests: Incorporating network theory into applied ecology of conifer species and forest management. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Cao T, Hu YP, Yu JR, Wei TZ, Yuan HS. A phylogenetic overview of the Hydnaceae ( Cantharellales, Basidiomycota) with new taxa from China. Stud Mycol 2021; 99:100121. [PMID: 35035603 PMCID: PMC8717575 DOI: 10.1016/j.simyco.2021.100121] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The family Hydnaceae (Cantharellales, Basidiomycota) is a group of fungi found worldwide which exhibit stichic nuclear division. The group is highly diverse in morphology, ecology, and phylogeny, and includes some edible species which are popular all over the world. Traditionally, Hydnaceae together with Cantharellaceae, Clavulinaceae and Sistotremataceae are four families in the Cantharellales. The four families were combined and redefined as "Hydnaceae", however, a comprehensive phylogeny based on multiple-marker dataset for the entire Hydnaceae sensu stricto is still lacking and the delimitation is also unclear. We inferred Maximum Likelihood and Bayesian phylogenies for the family Hydnaceae from the data of five DNA regions: the large subunit of nuclear ribosomal RNA gene (nLSU), the internal transcribed spacer regions (ITS), the mitochondrial small subunit rDNA gene (mtSSU), the second largest subunit of RNA polymerase II (RPB2) and the translation elongation factor 1-alpha gene (TEF1). We also produced three more phylogenetic trees for Cantharellus based on 5.8S, nLSU, mtSSU, RPB2 and TEF1, Craterellus and Hydnum both based on the combined nLSU and ITS. This study has reproduced the status of Hydnaceae in the order Cantharellales, and phylogenetically confirmed seventeen genera in Hydnaceae. Twenty nine new taxa or synonyms are described, revealed, proposed, or reported, including eight new subgenera (Cantharellus subgenus Magnus, Craterellus subgenus Cariosi, subg. Craterellus, subg. Imperforati, subg. Lamelles, subg. Longibasidiosi, subg. Ovoidei, and Hydnum subgenus Brevispina); seventeen new species (Ca. laevihymeninus, Ca. magnus, Ca. subminor, Cr. badiogriseus, Cr. croceialbus, Cr. macrosporus, Cr. squamatus, H. brevispinum, H. flabellatum, H. flavidocanum, H. longibasidium, H. pallidocroceum, H. pallidomarginatum, H. sphaericum, H. tangerinum, H. tenuistipitum and H. ventricosum); two synonyms (Ca. anzutake and Ca. tuberculosporus as Ca. yunnanensis), and two newly recorded species (H. albomagnum and H. minum). The distinguishing characters of the new species and subgenera as well as their allied taxa are discussed in the notes which follow them. The delimitation and diversity in morphology, ecology, and phylogeny of Hydnaceae is discussed. Notes of seventeen genera which are phylogenetically accepted in Hydnaceae by this study and a key to the genera in Hydnaceae are provided.
Collapse
Key Words
- Cantharellales
- Cantharellus anzutake W. Ogawa, N. Endo, M. Fukuda and A. Yamada and Ca. tuberculosporus M. Zang as Ca. yunnanensis W.F. Chiu
- Cantharellus laevihymeninus T. Cao & H.S. Yuan, Ca. magnus T. Cao & H.S. Yuan, Ca. subminor T. Cao & H.S. Yuan
- Craterellus badiogriseus T. Cao & H.S. Yuan, Cr. croceialbus T. Cao & H.S. Yuan, Cr. macrosporus T. Cao & H.S. Yuan, Cr. squamatus T. Cao & H.S. Yuan
- Hydnaceae
- Hydnum albomagnum Banker
- Hydnum brevispinum T. Cao & H.S. Yuan, H. flabellatum T. Cao & H.S. Yuan, H. flavidocanum T. Cao & H.S. Yuan, H. longibasidium T. Cao & H.S. Yuan, H. pallidocroceum T. Cao & H.S. Yuan, H. pallidomarginatum T. Cao & H.S. Yuan, H. sphaericum T. Cao & H.S. Yuan, H. tangerinum T. Cao & H.S. Yuan, H. tenuistipitum T. Cao & H.S. Yuan, H. ventricosum T. Cao & H.S. Yuan
- Hydnum minum Yanaga & N. Maek
- In genus Cantharellus: Cantharellus subgenus Magnus T. Cao & H.S. Yuan
- Multiple-marker phylogeny
- Taxonomy
- in genus Craterellus: Craterellus subgenus Cariosi T. Cao & H.S. Yuan, subg. Craterellus, subg. Imperforati T. Cao & H.S. Yuan, subg. Lamelles T. Cao & H.S. Yuan, subg. Longibasidiosi T. Cao & H.S. Yuan, subg. Ovoidei T. Cao & H.S. Yuan
- in genus Hydnum: Hydnum subgenus Brevispina T. Cao & H.S. Yuan
Collapse
Affiliation(s)
- Ting Cao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ya-Ping Hu
- Nanjing Institute of Environmental Sciences, MEE/State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains, Nanjing 210042, PR China
| | - Jia-Rui Yu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tie-Zheng Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
8
|
Rodríguez-Gutiérrez I, Garibay-Orijel R, Santiago-Morales B, Lindig-Cisneros R. Comparación entre las abundancias de esporomas y ectomicorrizas del género Laccaria en Ixtlán de Juárez, Oaxaca. REV MEX BIODIVERS 2020. [DOI: 10.22201/ib.20078706e.2020.91.3340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Masumoto H, Degawa Y. Bryoclavula phycophila gen. et sp. nov. belonging to a novel lichenized lineage in Cantharellales (Basidiomycota). Mycol Prog 2020. [DOI: 10.1007/s11557-020-01588-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Kim CS, Jo JW, Lee H, Kwag YN, Cho SE, Oh SH. Comparison of Soil Higher Fungal Communities between Dead and Living Abies koreana in Mt. Halla, the Republic of Korea. MYCOBIOLOGY 2020; 48:364-372. [PMID: 36860556 PMCID: PMC9969794 DOI: 10.1080/12298093.2020.1811193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To improve our understanding of the relationship between soil higher fungi (belonging to Ascomycota and Basidiomycota) and Abies koreana, we surveyed A. koreana soil fungal communities in a forest in Mt. Halla, Jeju Island, Korea by next-generation sequencing (Illumina Miseq). To confirm the soil higher fungal communities, we collected two types of soils from a defined plot: soils with dead (AKDTs) and living A. koreana (AKLTs), respectively. Soil fungi were classified into 2 phyla, 19 classes, 64 orders, 133 families, 195 genera, and 229 OTUs (895,705 sequence reads). Nonmetric multidimensional scaling (NMDS) showed significantly different soil higher fungal communities between AKDTs and AKLTs (p < .05). In addition, the saprophyte composition was significantly affected by A. koreana status (p < .05). The proportion of the mycorrhizal Clavulina spp. was different between soils with AKDTs and AKLTs, suggesting that Clavulina spp. may be a crucial soil fungal species influencing A. koreana. This study will lead to a better understanding of the ecological status of A. koreana in Mt. Halla. In addition, this study could be useful for the conservation and management of A. koreana habitats.
Collapse
Affiliation(s)
- Chang Sun Kim
- Forest Biodiversity Division, Korea National
Arboretum, Pocheon, Korea
- CONTACT Chang Sun Kim
| | - Jong Won Jo
- Forest Biodiversity Division, Korea National
Arboretum, Pocheon, Korea
| | - Hyen Lee
- Forest Biodiversity Division, Korea National
Arboretum, Pocheon, Korea
| | - Young-Nam Kwag
- Forest Biodiversity Division, Korea National
Arboretum, Pocheon, Korea
| | - Sung Eun Cho
- Forest Biodiversity Division, Korea National
Arboretum, Pocheon, Korea
| | - Seung Hwan Oh
- Forest Biodiversity Division, Korea National
Arboretum, Pocheon, Korea
| |
Collapse
|
11
|
Gavito ME, Leyva-Morales R, Vega-Peña EV, Arita H, Jairus T, Vasar M, Öpik M. Local-scale spatial diversity patterns of ectomycorrhizal fungal communities in a subtropical pine-oak forest. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM. Notes, outline and divergence times of Basidiomycota. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00435-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Collapse
|
13
|
Eduardo PP, Margarita VR, Roberto GO, Rodolfo SL. Two new species of Clavulina and the first record of Clavulina reae from temperate Abies religiosa forests in central Mexico. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01516-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Wu D, Zhang M, Peng M, Sui X, Li W, Sun G. Variations in Soil Functional Fungal Community Structure Associated With Pure and Mixed Plantations in Typical Temperate Forests of China. Front Microbiol 2019; 10:1636. [PMID: 31379786 PMCID: PMC6646410 DOI: 10.3389/fmicb.2019.01636] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022] Open
Abstract
Forest plants are in constant contact with the soil fungal community, which plays an important role in the circulation of nutrients through forest ecosystems. The objective of this study was to evaluate the fungal diversity in soil and elucidate the ecological role of functional fungal communities in forest ecosystems using soil samples from seven different plantations in northeastern China. Our results showed that the fungal communities were dominated by the phyla Ascomycota, Basidiomycota, and Mortierellomycota, and the mixed plantation of Fraxinus mandshurica and Pinus koraiensis had a soil fungal population clearly divergent from those in the other plantations. Additionally, the mixed plantation of F. mandshurica and P. koraiensis, which was low in soil nutrients, contained a highly diverse and abundant population of ectomycorrhizal fungi, whereas saprophytic fungi were more abundant in plantations with high soil nutrients. Redundancy analysis demonstrated a strong correlation between saprophytic fungi and the level of soil nutrients, whereas ectomycorrhizal fungi were mainly distributed in soils with low nutrient. Our findings provide insights into the importance of functional fungi and the mediation of soil nutrients in mixed plantations and reveal the effect of biodiversity on temperate forests.
Collapse
Affiliation(s)
- Di Wu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Mengmeng Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Mu Peng
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xin Sui
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wei Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, China
| | - Guangyu Sun
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
15
|
Svantesson S, Larsson KH, Kõljalg U, W. May T, Patrik Cangren, Henrik Nilsson R, Larsson E. Solving the taxonomic identity of Pseudotomentellatristis s.l. (Thelephorales, Basidiomycota) - a multi-gene phylogeny and taxonomic review, integrating ecological and geographical data. MycoKeys 2019; 50:1-77. [PMID: 31043855 PMCID: PMC6477855 DOI: 10.3897/mycokeys.50.32432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
P.tristis is an ectomycorrhizal, corticioid fungus whose name is frequently assigned to collections of basidiomata as well as root tip and soil samples from a wide range of habitats and hosts across the northern hemisphere. Despite this, its identity is unclear; eight heterotypic taxa have in major reviews of the species been considered synonymous with or morphologically similar to P.tristis, but no sequence data from type specimens have been available. With the aim to clarify the taxonomy, systematics, morphology, ecology and geographical distribution of P.tristis and its morphologically similar species, we studied their type specimens as well as 147 basidiomata collections of mostly North European material. We used gene trees generated in BEAST 2 and PhyML and species trees estimated in STACEY and ASTRAL to delimit species based on the ITS, LSU, Tef1α and mtSSU regions. We enriched our sampling with environmental ITS sequences from the UNITE database. We found the P.tristis group to contain 13 molecularly and morphologically distinct species. Three of these, P.tristis, P.umbrina and P.atrofusca, are already known to science, while ten species are here described as new: P.sciastra sp. nov., P.tristoides sp. nov., P.umbrinascens sp. nov., P.pinophila sp. nov., P.alnophila sp. nov., P.alobata sp. nov., P.pluriloba sp. nov., P.abundiloba sp. nov., P.rotundispora sp. nov. and P.media sp. nov. We discovered P.rhizopunctata and P.atrofusca to form a sister clade to all other species in P.tristis s.l. These two species, unlike all other species in the P.tristis complex, are dimitic. In this study, we designate epitypes for P.tristis, P.umbrina and Hypochnopsisfuscata and lectotypes for Auriculariaphylacteris and Thelephorabiennis. We show that the holotype of Hypochnussitnensis and the lectotype of Hypochnopsisfuscata are conspecific with P.tristis, but in the absence of molecular information we regard Pseudotomentellalongisterigmata and Hypochnusrhacodium as doubtful taxa due to their aberrant morphology. We confirm A.phylacteris, Tomentellabiennis and Septobasidiumarachnoideum as excluded taxa, since their morphology clearly show that they belong to other genera. A key to the species of the P.tristis group is provided. We found P.umbrina to be a common species with a wide, Holarctic distribution, forming ectomycorrhiza with a large number of host species in habitats ranging from tropical forests to the Arctic tundra. The other species in the P.tristis group were found to be less common and have narrower ecological niches.
Collapse
Affiliation(s)
- Sten Svantesson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, 405 30 Göteborg, Sweden
- Royal Botanic Gardens Victoria, Birdwood Ave, Melbourne, Victoria 3004, Australia
| | - Karl-Henrik Larsson
- The Mycological Herbarium, Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318 Oslo, Norway
| | - Urmas Kõljalg
- Natural History Museum, University of Tartu, 14a Ravila, 50411 Tartu, Estonia
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411 Tartu, Estonia
| | - Tom W. May
- Royal Botanic Gardens Victoria, Birdwood Ave, Melbourne, Victoria 3004, Australia
| | - Patrik Cangren
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, 405 30 Göteborg, Sweden
| | - R. Henrik Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, 405 30 Göteborg, Sweden
| | - Ellen Larsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, 405 30 Göteborg, Sweden
| |
Collapse
|
16
|
Unuk T, Martinović T, Finžgar D, Šibanc N, Grebenc T, Kraigher H. Root-Associated Fungal Communities From Two Phenologically Contrasting Silver Fir ( Abies alba Mill.) Groups of Trees. FRONTIERS IN PLANT SCIENCE 2019; 10:214. [PMID: 30891052 PMCID: PMC6413537 DOI: 10.3389/fpls.2019.00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/07/2019] [Indexed: 05/23/2023]
Abstract
Root-associated fungal communities are important components in ecosystem processes, impacting plant growth and vigor by influencing the quality, direction, and flow of nutrients and water between plants and fungi. Linkages of plant phenological characteristics with belowground root-associated fungal communities have rarely been investigated, and thus our aim was to search for an interplay between contrasting phenology of host ectomycorrhizal trees from the same location and root-associated fungal communities (ectomycorrhizal, endophytic, saprotrophic and pathogenic root-associated fungi) in young and in adult silver fir trees. The study was performed in a managed silver fir forest site. Twenty-four soil samples collected under two phenologically contrasting silver fir groups were analyzed for differences in root-associated fungal communities using Illumina sequencing of a total root-associated fungal community. Significant differences in beta diversity and in mean alpha diversity were confirmed for overall community of ectomycorrhizal root-associated fungi, whereas for ecologically different non-ectomycorrhizal root-associated fungal communities the differences were significant only for beta diversity and not for mean alpha diversity. At genus level root-associated fungal communities differed significantly between early and late flushing young and adult silver fir trees. We discuss the interactions through which the phenology of host plants either drives or is driven by the root-associated fungal communities in conditions of a sustainably co-naturally managed silver fir forest.
Collapse
Affiliation(s)
- Tina Unuk
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Tijana Martinović
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Domen Finžgar
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Nataša Šibanc
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
- Biotechnical Faculty, Department of Agronomy, University of Ljubljana, Ljubljana, Slovenia
| | - Tine Grebenc
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Hojka Kraigher
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| |
Collapse
|
17
|
Four new species of Hydnobolites (sequestrate Pezizaceae, Ascomycota) from China. Mycol Prog 2019. [DOI: 10.1007/s11557-018-01465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Ectomycorrhizal Fungi in South America: Their Diversity in Past, Present and Future Research. Fungal Biol 2019. [DOI: 10.1007/978-3-030-15228-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Argüelles-Moyao A, Garibay-Orijel R. Ectomycorrhizal fungal communities in high mountain conifer forests in central Mexico and their potential use in the assisted migration of Abies religiosa. MYCORRHIZA 2018; 28:509-521. [PMID: 29948411 DOI: 10.1007/s00572-018-0841-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Abies religiosa forests in central Mexico are the only overwinter refuge of the monarch butterfly and provide important ecosystem services. These forests have lost 55% of their original area and as a consequence, diversity and biotic interactions in these ecosystems are in risk. The aim of this study was to compare the soil fungal diversity and community structure in the Abies religiosa forests and surrounding Pinus montezumae, Pinus hartwegii, and coniferous mixed forest plant communities to provide data on ecology of mycorrhizal interactions for the assisted migration of A. religiosa. We sampled soil from five coniferous forests, extracted total soil DNA, and sequenced the ITS2 region by Illumina MiSeq. The soil fungi community was integrated by 1746 taxa with a species turnover ranging from 0.280 to 0.461 between sampling sites. In the whole community, the more abundant and frequent species were Russula sp. (aff. olivobrunnea), Mortierella sp.1, and Piloderma sp. (aff. olivacearum). The ectomycorrhizal fungi were the more frequent and abundant functional group. A total of 298 species (84 ectomycorrhizal) was shared in the five conifer forests; these widely distributed species were dominated by Russulaceae and Clavulinaceae. The fungal community composition was significantly influenced by altitude and the lowest species turnover happened between the two A. religiosa forests even though they have different soil types. As Pinus montezumae forests have a higher altitudinal distribution adjacent to A. religiosa and share the largest number of ectomycorrhizal fungi with it, we suggest these forests as a potential habitat for new A. religiosa populations.
Collapse
Affiliation(s)
- Andrés Argüelles-Moyao
- Laboratorio de Sistemática, Ecología y Aprovechamiento de Hongos Ectomicorrízicos, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria. Del. Coyoacán, C.P. 04510, Mexico City, CDMX, Mexico
- Posgrado en Ciencias Biológicas, Edificio B, 1° Piso, Unidad de Posgrado, Circuito de Posgrados, Universidad Nacional Autónoma de México, Ciudad Universitaria, Del. Coyoacán, C.P. 04510, Mexico City, CDMX, Mexico
| | - Roberto Garibay-Orijel
- Laboratorio de Sistemática, Ecología y Aprovechamiento de Hongos Ectomicorrízicos, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria. Del. Coyoacán, C.P. 04510, Mexico City, CDMX, Mexico.
| |
Collapse
|
20
|
Alvarez-Manjarrez J, Garibay-Orijel R, Smith ME. Caryophyllales are the main hosts of a unique set of ectomycorrhizal fungi in a Neotropical dry forest. MYCORRHIZA 2018; 28:103-115. [PMID: 29181635 DOI: 10.1007/s00572-017-0807-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
The ectomycorrhizal symbiosis was long thought to be restricted to temperate forests. However, as tropical forests have been explored, it has become clear that these habitats host unique ectomycorrhizal (ECM) fungi. We have been exploring tropical dry forests (TDF), which are endangered terrestrial ecosystems and hotspots of endemism. Since Fabaceae is the main plant family in this environment, we hypothesized that trees in this lineage would be the main ECM hosts. We sequenced the ITS rDNA region from fungi and both rbcL and trnL cpDNA from plants to identify both symbiotic partners from root tips. The systematic position of each symbiont was confirmed by Bayesian phylogenetic inference. We identified 20 plant species belonging to 10 families that hosted 19 unique ECM fungal species from 5 lineages. Most ECM fungi were associated with Caryophyllales, not with Fabaceae. Achatocarpus and Guapira, the main hosts, are scattered throughout the forest and are not in monodominant patches. The low ECM fungal diversity can be explained by the low density of host plants and their high specificity. Our results indicate that Caryophyllales is an important order of tropical ECM hosts with at least four independent evolutionary lineages that have evolved the ability to form ectomycorrhizae.
Collapse
Affiliation(s)
- Julieta Alvarez-Manjarrez
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito, Ciudad Universitaria. Del. Coyoacán, 04510, Ciudad de México, Cd Mx, Mexico
- Posgrado en Ciencias Biológicas, Edificio B, 1° Piso. Circuito de Posgrados, Ciudad Universitaria. Del. Coyoacán, 04510, Ciudad de México, Cd Mx, Mexico
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito, Ciudad Universitaria. Del. Coyoacán, 04510, Ciudad de México, Cd Mx, Mexico.
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611-0680, USA
| |
Collapse
|
21
|
Ramos A, Garay-Serrano E, César E, Montoya L, Bandala VM. Ectomycorrhizas of two species of Tuber (clade Puberulum) in the Mexican subtropical cloud forest. Symbiosis 2017. [DOI: 10.1007/s13199-017-0535-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
García-Guzmán OM, Garibay-Orijel R, Hernández E, Arellano-Torres E, Oyama K. Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot. MYCORRHIZA 2017; 27:811-822. [PMID: 28819747 DOI: 10.1007/s00572-017-0793-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Quercus is the most diverse genus of ectomycorrhizal (ECM) host plants; it is distributed in the Northern and Southern Hemispheres, from temperate to tropical regions. However, their ECM communities have been scarcely studied in comparison to those of conifers. The objectives of this study were to determine the richness of ECM fungi associated with oak forests in the Cuitzeo basin in southwestern Mexico; and to determine the level of richness, potential endemism and species similarity among ECM fungal communities associated with natural oak forests worldwide through a meta-analysis. The ITS DNA sequences of ECM root tips from 14 studies were included in the meta-analysis. In total, 1065 species of ECM fungi have been documented worldwide; however, 812 species have been only found at one site. Oak forests in Europe contain 416 species, Mexico 307, USA 285, and China 151. Species with wider distributions are Sebacinaceae sp. SH197130, Amanita subjunquillea, Cenococcum geophilum, Cortinarius decipiens, Russula hortensis, R. risigallina, R. subrubescens, Sebacinaceae sp. SH214607, Tomentella ferruginea, and T. lapida. The meta-analysis revealed (1) that Mexico is not only a hotspot for oak species but also for their ECM mycobionts. (2) There is a particularly high diversity of ECM Pezizales in oak seasonal forests from western USA to southwestern Mexico. (3) The oak forests in southwestern Mexico have the largest number of potential endemic species. (4) Globally, there is a high turnover of ECM fungal species associated with oaks, which indicates high levels of alpha and beta diversity in these communities.
Collapse
Affiliation(s)
- Olimpia Mariana García-Guzmán
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Tercer Circuito s/n, Ciudad Universitaria. Delegación Coyoacán, C.P. 04510, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Tercer Circuito s/n, Ciudad Universitaria. Delegación Coyoacán, C.P. 04510, Mexico City, Mexico.
| | - Edith Hernández
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Tercer Circuito s/n, Ciudad Universitaria. Delegación Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Elsa Arellano-Torres
- Departamento de Ecología y Recursos Naturales. Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad. Universitaria. Delegación Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Antigua carretera a Pátzcuaro No. 8701, Expropiación Petrolera INDECO, Mexico City, Michoacán, Mexico
| |
Collapse
|
23
|
Baeza-Guzmán Y, Medel-Ortiz R, Garibay-Orijel R. Caracterización morfológica y genética de los hongos ectomicorrízicos asociados a bosques de Pinus hartwegii en el Parque Nacional Cofre de Perote, Veracruz. REV MEX BIODIVERS 2017. [DOI: 10.1016/j.rmb.2017.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Ectomycorrhizal Fungal Lineages: Detection of Four New Groups and Notes on Consistent Recognition of Ectomycorrhizal Taxa in High-Throughput Sequencing Studies. BIOGEOGRAPHY OF MYCORRHIZAL SYMBIOSIS 2017. [DOI: 10.1007/978-3-319-56363-3_6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|