1
|
Diao F, Liu K, Wu W, Xu J. Leaf transcriptomic responses to arbuscular mycorrhizal symbioses exerting growth depressions in tomato. Arch Microbiol 2025; 207:139. [PMID: 40338334 DOI: 10.1007/s00203-025-04343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025]
Abstract
Arbuscular mycorrhizal (AM) fungi play important roles in sustainable agriculture, given that they provide multiple benefits for numerous crops. Conversely, negative plant growth effects induced by AM fungi are also occasionally observed. However, little information is available regarding the responses of symbiosis. In this study, compared with an absence of AM fungus inoculation, tomato seedlings inoculated with Funneliformis mosseae or Rhizophagus intraradices were characterized by reduced shoot and root growth. The two AM fungi decreased the carbon contents and the carbon-nitrogen ratios in shoots. To gain further insights into the underlying mechanisms, transcriptomic analyses were performed in the study. A total of 190 and 870 differentially expressed genes (DEGs) were identified in the F. mosseae vs. control and R. intraradices vs. control comparisons, respectively. KEGG enrichment analysis of the former 190 DEGs revealed significant enrichment of the "Protein processing in endoplasmic reticulum," "Flavonoid biosynthesis," "Flavone and flavonol biosynthesis," and "Stilbenoid, diarylheptanoid, and gingerol biosynthesis" pathways, whereas "DNA replication," "Photosynthesis - antenna proteins," "Cutin, suberine, and wax biosynthesis," "Protein processing in endoplasmic reticulum," and "Glycerophospholipid metabolism" were identified as pathways significantly enriched with the latter 870 DEGs. GO functional analysis revealed that among both groups of DEGs, large numbers of genes were assigned the "Response to stimulus" term. Moreover, many of the enriched terms were associated with stimulus and stress response processes, including response to salt stress, heat, and reactive oxygen species. Therefore, the findings indicated that AM fungi may trigger defense-related responses in hosts, even though the symbioses performed growth depressions. These findings will contribute to advancing our current understanding of AM fungi.
Collapse
Affiliation(s)
- Fengwei Diao
- Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, No. 81 Longcheng Street, Taiyuan, Shanxi, 030031, China.
| | - Ke Liu
- Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, No. 81 Longcheng Street, Taiyuan, Shanxi, 030031, China
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Wenjing Wu
- Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, No. 81 Longcheng Street, Taiyuan, Shanxi, 030031, China
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Jing Xu
- Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, No. 81 Longcheng Street, Taiyuan, Shanxi, 030031, China.
| |
Collapse
|
2
|
Majhi P, Pradhan U, Toppo A, Shukla AK. Fungal Endophytes: An Insight into Diversity, Stress Tolerance, Biocontrol and Plant Growth-Promoting Potentials. Curr Microbiol 2025; 82:283. [PMID: 40332616 DOI: 10.1007/s00284-025-04266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/26/2025] [Indexed: 05/08/2025]
Abstract
Food and human health are closely related to each other. A healthy diet contributes to excellent health. However, chemical-based agricultural products delivered the poisons in our tray, which cause fatal illnesses like cancer. Overuse of chemical-based fertilizer, herbicides, insecticides, pesticides, etc. is responsible for decreasing soil health status and the development of resistant variants of phytopathogens. Endophytes may overcome such issues effectively without showing any harmful effects. Endophytes are microorganisms that invade intercellular or intracellular parts of host plants without causing any apparent symptoms of infection. Endophytes are broad groups of microorganisms; they may be algae, fungi, bacteria, or ascomycetes. Among them, endophytic fungi are a major group of endophytes that reside inside the host plant body. Types and biodiversity of fungal endophytes make them a potent biological agent for sustainable agricultural management because of their vast geographical distribution. Historically fungal endophytes are broadly categorized into two groups as clavicipitaceous and non-clavicipitaceous based on phylogeny and life history traits. Based on various criteria such as in planta biodiversity, colonization, transmission and fitness to the host, non-clavicipitaceous fungi classified into three distinct classes. They promote plant growth and development by overcoming biotic and abiotic stress and by accelerating systematic inducing resistance (SIR) in plants. They harbor a variety of bioactive compounds like., alkaloids, terpenoids, phenolic acid, steroids, tannins, and saponins that act as antifungal, antibacterial, anticancer, antioxidant, and insecticidal agents. These bioactive compounds have a great potential role in sustainable agricultural management. This review highlights the potential role of fungal endophytes in the field of sustainable agricultural practices to overcome biotic and abiotic stress along with plant growth-promoting activities rather than the use of chemicals in agro-ecosystems.
Collapse
Affiliation(s)
- Purusottam Majhi
- Microbiology Laboratory, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, 484887, India.
| | - Umakant Pradhan
- Microbiology Laboratory, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, 484887, India
| | - Anunay Toppo
- Microbiology Laboratory, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, 484887, India
| | - A K Shukla
- Microbiology Laboratory, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, 484887, India.
| |
Collapse
|
3
|
Mazumder S, Bhattacharya D, Lahiri D, Nag M. Rhizobacteria and Arbuscular Mycorrhizal Fungi (AMF) Community in Growth Management and Mitigating Stress in Millets: A Plant-Soil Microbe Symbiotic Relationship. Curr Microbiol 2025; 82:242. [PMID: 40220175 DOI: 10.1007/s00284-025-04230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Millets, commonly referred to as the "future crop," provide a practical solution for addressing hunger and reducing the impact of climate change. The nutritional and physiological well-being of soil is crucial for the survival and resilience of plants while countering environmental stressors, both abiotic and biotic, that arise from the current climate change scenario. The health and production of millet are directly influenced by the soil microbial community. Millets have several plant growth-promoting rhizobacteria such as Pseudomonas, Azotobacter, Bacillus, Rhizobium, and fungi like Penicillium sp., that increase nutrient uptake, growth, and productivity and protect against abiotic and biotic stressors. Rhizobacteria enhance plant productivity by many mechanisms, including the release of plant hormones and secondary metabolic compounds, the conversion of nutrients into soluble forms, the ability to fix nitrogen, and the provision of resistance to both biotic and abiotic stresses. The microbial populations in the rhizosphere have a significant impact on the growth and production of millet such as enhancing soil fertility and plant nourishment. Additionally, arbuscular mycorrhizal fungi invade the roots of millets. The taxon Glomus is the most prevalent in association with millet plant soil, followed by Acaulospora, Funneliformis, and Rhizophagus. The symbiotic relationship between arbuscular mycorrhizal fungi and millet plants improves plant growth and nutrient absorption under diverse soil and environmental circumstances, including challenging abiotic factors like drought and salinity.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata, West Bengal, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India.
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India.
| |
Collapse
|
4
|
Ahmed N, Li J, Li Y, Deng L, Deng L, Chachar M, Chachar Z, Chachar S, Hayat F, Raza A, Umrani JH, Gong L, Tu P. Symbiotic synergy: How Arbuscular Mycorrhizal Fungi enhance nutrient uptake, stress tolerance, and soil health through molecular mechanisms and hormonal regulation. IMA Fungus 2025; 16:e144989. [PMID: 40162002 PMCID: PMC11953731 DOI: 10.3897/imafungus.16.144989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
Arbuscular Mycorrhizal (AM) symbiosis is integral to sustainable agriculture and enhances plant resilience to abiotic and biotic stressors. Through their symbiotic association with plant roots, AM improves nutrient and water uptake, activates antioxidant defenses, and facilitates hormonal regulation, contributing to improved plant health and productivity. Plants release strigolactones, which trigger AM spore germination and hyphal branching, a process regulated by genes, such as D27, CCD7, CCD8, and MAX1. AM recognition by plants is mediated by receptor-like kinases (RLKs) and LysM domains, leading to the formation of arbuscules that optimize nutrient exchange. Hormonal regulation plays a pivotal role in this symbiosis; cytokinins enhance AM colonization, auxins support arbuscule formation, and brassinosteroids regulate root growth. Other hormones, such as salicylic acid, gibberellins, ethylene, jasmonic acid, and abscisic acid, also influence AM colonization and stress responses, further bolstering plant resilience. In addition to plant health, AM enhances soil health by improving microbial diversity, soil structure, nutrient cycling, and carbon sequestration. This symbiosis supports soil pH regulation and pathogen suppression, offering a sustainable alternative to chemical fertilizers and improving soil fertility. To maximize AM 's potential of AM in agriculture, future research should focus on refining inoculation strategies, enhancing compatibility with different crops, and assessing the long-term ecological and economic benefits. Optimizing AM applications is critical for improving agricultural resilience, food security, and sustainable farming practices.
Collapse
Affiliation(s)
- Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Juan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Lifang Deng
- Institute of Biomass Engineering, South China Agricultural University, 510642, Guangzhou, China
| | - Lansheng Deng
- Institute of Biomass Engineering, South China Agricultural University, 510642, Guangzhou, China
| | - Muzafaruddin Chachar
- College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | - Zaid Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Faisal Hayat
- Faculty of Crop Production, Sindh Agriculture University, 70060), Tandojam, Pakistan
| | - Ahmed Raza
- College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | - Javed Hussain Umrani
- College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | - Lin Gong
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| |
Collapse
|
5
|
Serrano K, Tedeschi F, Andersen SU, Scheller HV. Unraveling plant-microbe symbioses using single-cell and spatial transcriptomics. TRENDS IN PLANT SCIENCE 2024; 29:1356-1367. [PMID: 38991926 DOI: 10.1016/j.tplants.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024]
Abstract
Plant-microbe symbioses require intense interaction and genetic coordination to successfully establish in specific cell types of the host and symbiont. Traditional RNA-seq methodologies lack the cellular resolution to fully capture these complexities, but single-cell and spatial transcriptomics (ST) are now allowing scientists to probe symbiotic interactions at an unprecedented level of detail. Here, we discuss the advantages that novel spatial and single-cell transcriptomic technologies provide in studying plant-microbe endosymbioses and highlight key recent studies. Finally, we consider the remaining limitations of applying these approaches to symbiosis research, which are mainly related to the simultaneous capture of both plant and microbial transcripts within the same cells.
Collapse
Affiliation(s)
- Karen Serrano
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; DOE Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Francesca Tedeschi
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark.
| | - Henrik V Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; DOE Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Pujasatria GC, Miura C, Yamaguchi K, Shigenobu S, Kaminaka H. Colonization by orchid mycorrhizal fungi primes induced systemic resistance against necrotrophic pathogen. FRONTIERS IN PLANT SCIENCE 2024; 15:1447050. [PMID: 39145195 PMCID: PMC11322130 DOI: 10.3389/fpls.2024.1447050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
Orchids and arbuscular mycorrhiza (AM) plants evolved independently and have different structures and fungal partners, but they both facilitate nutrient uptake. Orchid mycorrhiza (OM) supports orchid seed germination, but unlike AM, its role in disease resistance of mature plants is largely unknown. Here, we examined whether OM induces systemic disease resistance against a necrotrophic pathogen in a similar fashion to AM. We investigated the priming effect of mycorrhizal fungi inoculation on resistance of a terrestrial orchid, Bletilla striata, to soft rot caused by Dickeya fangzhongdai. We found that root colonization by a compatible OM fungus primed B. striata seedlings and induced systemic resistance against the infection. Transcriptome analysis showed that priming was mediated by the downregulation of jasmonate and ethylene pathways and that these pathways are upregulated once infection occurs. Comparison with the reported transcriptome of AM fungus-colonized rice leaves revealed similar mechanisms in B. striata and in rice. These findings highlight a novel aspect of commonality between OM and AM plants in terms of induced systemic resistance.
Collapse
Affiliation(s)
| | - Chihiro Miura
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology Core Research Facilities, Okazaki, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology Core Research Facilities, Okazaki, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori, Japan
| |
Collapse
|
7
|
Serrano K, Bezrutczyk M, Goudeau D, Dao T, O'Malley R, Malmstrom RR, Visel A, Scheller HV, Cole B. Spatial co-transcriptomics reveals discrete stages of the arbuscular mycorrhizal symbiosis. NATURE PLANTS 2024; 10:673-688. [PMID: 38589485 PMCID: PMC11035146 DOI: 10.1038/s41477-024-01666-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
The symbiotic interaction of plants with arbuscular mycorrhizal (AM) fungi is ancient and widespread. Plants provide AM fungi with carbon in exchange for nutrients and water, making this interaction a prime target for crop improvement. However, plant-fungal interactions are restricted to a small subset of root cells, precluding the application of most conventional functional genomic techniques to study the molecular bases of these interactions. Here we used single-nucleus and spatial RNA sequencing to explore both Medicago truncatula and Rhizophagus irregularis transcriptomes in AM symbiosis at cellular and spatial resolution. Integrated, spatially registered single-cell maps revealed infected and uninfected plant root cell types. We observed that cortex cells exhibit distinct transcriptome profiles during different stages of colonization by AM fungi, indicating dynamic interplay between both organisms during establishment of the cellular interface enabling successful symbiosis. Our study provides insight into a symbiotic relationship of major agricultural and environmental importance and demonstrates a paradigm combining single-cell and spatial transcriptomics for the analysis of complex organismal interactions.
Collapse
Affiliation(s)
- Karen Serrano
- Joint Bioenergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Margaret Bezrutczyk
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danielle Goudeau
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thai Dao
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ronan O'Malley
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rex R Malmstrom
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Visel
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Henrik V Scheller
- Joint Bioenergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Benjamin Cole
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
8
|
da Sousa LDS, Correia TS, Dos Farias FDS, Santana MDF, Lara TS. Influence of arbuscular mycorrhizal fungi density on growth and metabolism of Handroanthus serratifolius (Vahl) S.O. Grose seedlings. PHYSIOLOGIA PLANTARUM 2023; 175:e14067. [PMID: 38148251 DOI: 10.1111/ppl.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/02/2023] [Accepted: 10/15/2023] [Indexed: 12/28/2023]
Abstract
Studies on the relationship between Handroanthus serratifolius and arbuscular mycorrhizal fungi (AMF) are limited in the literature. The influence of AMF spore density on plant development is fundamental information to determining the degree of benefits in this relationship. Therefore, the objective of this study was to investigate the effects of different AMF spore densities on thirty-day-old H. serratifolius seedlings, focusing on growth and biochemical parameters using a completely randomized experimental design with three different spore densities and control. The spore densities were classified as low, medium, and high, with 1.54, 3.08, and 12.35 spores g-1 , respectively. Plant growth analysis, mycorrhizal colonization, nitrogen compound concentration, and carbohydrate analysis were performed. The medium spore density treatment showed the greatest increases in biomass, height, leaf area, and root volume. Furthermore, greater absorption of phosphorus and better dynamics in nitrogen metabolism were observed in mycorrhizal plants compared to the control since the ammonium and nitrate compounds were rapidly incorporated into protein and chlorophyll compounds. The carbohydrate analysis revealed the influence of source-sink dynamics on sugar concentration in different plant parts. These findings support the importance of determining the appropriate spore density for assessing the symbiotic relationship between forest species and AMF.
Collapse
Affiliation(s)
- Ludyanne da Silva da Sousa
- Laboratory of Plant Physiology and Plant Growth, Federal University of Western Pará, Santarém, Pará, Brazil
| | - Tatiane Santos Correia
- Laboratory of Plant Physiology and Plant Growth, Federal University of Western Pará, Santarém, Pará, Brazil
| | | | | | - Túlio Silva Lara
- Laboratory of Plant Physiology and Plant Growth, Federal University of Western Pará, Santarém, Pará, Brazil
| |
Collapse
|
9
|
Scholz SS, Barth E, Clément G, Marmagne A, Ludwig-Müller J, Sakakibara H, Kiba T, Vicente-Carbajosa J, Pollmann S, Krapp A, Oelmüller R. The Root-Colonizing Endophyte Piriformospora indica Supports Nitrogen-Starved Arabidopsis thaliana Seedlings with Nitrogen Metabolites. Int J Mol Sci 2023; 24:15372. [PMID: 37895051 PMCID: PMC10607921 DOI: 10.3390/ijms242015372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The root-colonizing endophytic fungus Piriformospora indica promotes the root and shoot growth of its host plants. We show that the growth promotion of Arabidopsis thaliana leaves is abolished when the seedlings are grown on media with nitrogen (N) limitation. The fungus neither stimulated the total N content nor did it promote 15NO3- uptake from agar plates to the leaves of the host under N-sufficient or N-limiting conditions. However, when the roots were co-cultivated with 15N-labelled P. indica, more labels were detected in the leaves of N-starved host plants but not in plants supplied with sufficient N. Amino acid and primary metabolite profiles, as well as the expression analyses of N metabolite transporter genes suggest that the fungus alleviates the adaptation of its host from the N limitation condition. P. indica alters the expression of transporter genes, which participate in the relocation of NO3-, NH4+ and N metabolites from the roots to the leaves under N limitation. We propose that P. indica participates in the plant's metabolomic adaptation against N limitation by delivering reduced N metabolites to the host, thus alleviating metabolic N starvation responses and reprogramming the expression of N metabolism-related genes.
Collapse
Affiliation(s)
- Sandra S. Scholz
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| | - Emanuel Barth
- Bioinformatics Core Facility, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France (A.M.); (A.K.)
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France (A.M.); (A.K.)
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, 01217 Dresden, Germany;
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.S.); (T.K.)
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.S.); (T.K.)
| | - Jesús Vicente-Carbajosa
- Centro de Biotechnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, 28223 Madrid, Spain; (J.V.-C.); (S.P.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotechnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, 28223 Madrid, Spain; (J.V.-C.); (S.P.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Anne Krapp
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France (A.M.); (A.K.)
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| |
Collapse
|
10
|
Yurkov AP, Afonin AM, Kryukov AA, Gorbunova AO, Kudryashova TR, Kovalchuk AI, Gorenkova AI, Bogdanova EM, Kosulnikov YV, Laktionov YV, Kozhemyakov AP, Romanyuk DA, Zhukov VA, Puzanskiy RK, Mikhailova YV, Yemelyanov VV, Shishova MF. The Effects of Rhizophagus irregularis Inoculation on Transcriptome of Medicago lupulina Leaves at Early Vegetative and Flowering Stages of Plant Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3580. [PMID: 37896043 PMCID: PMC10610208 DOI: 10.3390/plants12203580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
The study is aimed at revealing the effects of Rhizophagus irregularis inoculation on the transcriptome of Medicago lupulina leaves at the early (second leaf formation) and later (flowering) stages of plant development. A pot experiment was conducted under conditions of low phosphorus (P) level in the substrate. M. lupulina plants were characterized by high mycorrhizal growth response and mycorrhization parameters. Library sequencing was performed on the Illumina HiseqXTen platform. Significant changes in the expression of 4863 (padj < 0.01) genes from 34049 functionally annotated genes were shown by Massive Analysis of cDNA Ends (MACE-Seq). GO enrichment analysis using the Kolmogorov-Smirnov test was performed, and 244 functional GO groups were identified, including genes contributing to the development of effective AM symbiosis. The Mercator online tool was used to assign functional classes of differentially expressed genes (DEGs). The early stage was characterized by the presence of six functional classes that included only upregulated GO groups, such as genes of carbohydrate metabolism, cellular respiration, nutrient uptake, photosynthesis, protein biosynthesis, and solute transport. At the later stage (flowering), the number of stimulated GO groups was reduced to photosynthesis and protein biosynthesis. All DEGs of the GO:0016036 group were downregulated because AM plants had higher resistance to phosphate starvation. For the first time, the upregulation of genes encoding thioredoxin in AM plant leaves was shown. It was supposed to reduce ROS level and thus, consequently, enhance the mechanisms of antioxidant protection in M. lupulina plants under conditions of low phosphorus level. Taken together, the obtained results indicate genes that are the most important for the effective symbiosis with M. lupulina and might be engaged in other plant species.
Collapse
Affiliation(s)
- Andrey P. Yurkov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Alexey M. Afonin
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Alexey A. Kryukov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Anastasia O. Gorbunova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Tatyana R. Kudryashova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russia
| | - Anastasia I. Kovalchuk
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russia
| | - Anastasia I. Gorenkova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Ekaterina M. Bogdanova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Yuri V. Kosulnikov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Yuri V. Laktionov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Andrey P. Kozhemyakov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (D.A.R.); (V.A.Z.)
| | - Vladimir A. Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (D.A.R.); (V.A.Z.)
| | - Roman K. Puzanskiy
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg 197022, Russia
| | - Yulia V. Mikhailova
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg 197022, Russia;
| | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| |
Collapse
|
11
|
Gomez SK, Maurya AK, Irvin L, Kelly MP, Schoenherr AP, Huguet-Tapia JC, Bombarely A. A snapshot of the transcriptome of Medicago truncatula (Fabales: Fabaceae) shoots and roots in response to an arbuscular mycorrhizal fungus and the pea aphid (Acyrthosiphon pisum) (Hemiptera: Aphididae). ENVIRONMENTAL ENTOMOLOGY 2023; 52:667-680. [PMID: 37467039 DOI: 10.1093/ee/nvad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Plants simultaneously interact with belowground symbionts such as arbuscular mycorrhizal (AM) fungi and aboveground antagonists such as aphids. Generally, plants gain access to valuable resources including nutrients and water through the AM symbiosis and are more resistant to pests. Nevertheless, aphids' performance improves on mycorrhizal plants, and it remains unclear whether a more nutritious food source and/or attenuated defenses are the contributing factors. This study examined the shoot and root transcriptome of barrel medic (Medicago truncatula Gaertn.) plants highly colonized by the AM fungus Rhizophagus irregularis (Blaszk., Wubet, Renker, and Buscot) C. Walker and A. Schüßler (Glomerales: Glomeraceae) and exposed to 7 days of mixed age pea aphid (Acyrthosiphon pisum (Harris)) herbivory. The RNA-seq samples chosen for this study showed that aphids were heavier when fed mycorrhizal plants compared to nonmycorrhizal plants. We hypothesized that (i) insect-related plant defense pathways will be downregulated in shoots of mycorrhizal plants with aphids compared to nonmycorrhizal plants with aphids; (ii) pathways involved in nutrient acquisition, carbohydrate-related and amino acid transport will be upregulated in shoots of mycorrhizal plants with aphids compared to nonmycorrhizal plants with aphids; and (iii) roots of mycorrhizal plants with aphids will exhibit mycorrhiza-induced resistance. The transcriptome data revealed that the gene repertoire related to defenses, nutrient transport, and carbohydrates differs between nonmycorrhizal and mycorrhizal plants with aphids, which could explain the weight gain in aphids. We also identified novel candidate genes that are differentially expressed in nonmycorrhizal plants with aphids, thus setting the stage for future functional studies.
Collapse
Affiliation(s)
- Susana K Gomez
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Abhinav K Maurya
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
- Apex Bait Technologies, Inc., Santa Clara, CA 95054, USA
| | - Lani Irvin
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Michael P Kelly
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Andrew P Schoenherr
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Jose C Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), UPV-CSIC, 46022 Valencia, Spain
| |
Collapse
|
12
|
Kryukov AA, Gorbunova AO, Kudriashova TR, Ivanchenko OB, Shishova MF, Yurkov AP. SWEET transporters of Medicago lupulina in the arbuscular-mycorrhizal system in the presence of medium level of available phosphorus. Vavilovskii Zhurnal Genet Selektsii 2023; 27:189-196. [PMID: 37293443 PMCID: PMC10244586 DOI: 10.18699/vjgb-23-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 06/10/2023] Open
Abstract
Arbuscular mycorrhiza (AM) fungi receive photosynthetic products and sugars from plants in exchange for contributing to the uptake of minerals, especially phosphorus, from the soil. The identification of genes controlling AM symbiotic efficiency may have practical application in the creation of highly productive plant-microbe systems. The aim of our work was to evaluate the expression levels of SWEET sugar transporter genes, the only family in which sugar transporters specific to AM symbiosis can be detected. We have selected a unique "host plant-AM fungus" model system with high response to mycorrhization under medium phosphorus level. This includes a plant line which is highly responsive to inoculation by AM fungi, an ecologically obligate mycotrophic line MlS-1 from black medick (Medicago lupulina) and the AM fungus Rhizophagus irregularis strain RCAM00320, which has a high efficiency in a number of plant species. Using the selected model system, differences in the expression levels of 11 genes encoding SWEET transporters in the roots of the host plant were evaluated during the development of or in the absence of symbiosis of M. lupulina with R. irregularis at various stages of the host plant development in the presence of medium level of phosphorus available for plant nutrition in the substrate. At most stages of host plant development, mycorrhizal plants had higher expression levels of MlSWEET1b, MlSWEET3c, MlSWEET12 and MlSWEET13 compared to AM-less controls. Also, increased expression relative to control during mycorrhization was observed for MlSWEET11 at 2nd and 3rd leaf development stages, for MlSWEET15c at stemming (stooling) stage, for MlSWEET1a at 2nd leaf development, stemming and lateral branching stages. The MlSWEET1b gene can be confidently considered a good marker with specific expression for effective development of AM symbiosis between M. lupulina and R. irregularis in the presence of medium level of phosphorus available to plants in the substrate.
Collapse
Affiliation(s)
- A A Kryukov
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - A O Gorbunova
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - T R Kudriashova
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - O B Ivanchenko
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - M F Shishova
- Saint Petersburg State University, Biological Faculty, St. Petersburg, Russia
| | - A P Yurkov
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| |
Collapse
|
13
|
Salmeron-Santiago IA, Martínez-Trujillo M, Valdez-Alarcón JJ, Pedraza-Santos ME, Santoyo G, López PA, Larsen J, Pozo MJ, Chávez-Bárcenas AT. Carbohydrate and lipid balances in the positive plant phenotypic response to arbuscular mycorrhiza: increase in sink strength. PHYSIOLOGIA PLANTARUM 2023; 175:e13857. [PMID: 36648218 DOI: 10.1111/ppl.13857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The exchange of phosphorus (P) and carbon (C) between plants and arbuscular mycorrhizal fungi (AMF) is a major determinant of their mutualistic symbiosis. We explored the C dynamics in tomato (Solanum lycorpersicum) inoculated or not with Rhizophagus irregularis to study their growth response under different NaH2 PO4 concentrations (Null P, 0 mM; Low P, 0.065 mM; High P, 1.3 mM). The percentage of AMF colonization was similar in plants under Null and Low P, but severely reduced under High P. However, the AMF mass biomarker 16:1ω5 revealed higher fungal accumulation in inoculated roots under Low P, while more AMF spores were produced in the Null P. Under High P, AMF biomass and spores were strongly reduced. Plant growth response to mycorrhiza was negative under Null P, showing reduction in height, biovolume index, and source leaf (SL) area. Under Low P, inoculated plants showed a positive response (e.g., increased SL area), while inoculated plants under High P were similar to non-inoculated plants. AMF promoted the accumulation of soluble sugars in the SL under all fertilization levels, whereas the soluble sugar level decreased in roots under Low P in inoculated plants. Transcriptional upregulation of SlLIN6 and SlSUS1, genes related to carbohydrate metabolism, was observed in inoculated roots under Null P and Low P, respectively. We conclude that P-limiting conditions that increase AMF colonization stimulate plant growth due to an increase in the source and sink strength. Our results suggest that C partitioning and allocation to different catabolic pathways in the host are influenced by AMF performance.
Collapse
Affiliation(s)
| | | | - Juan J Valdez-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Martha E Pedraza-Santos
- Facultad de Agrobiología "Presidente Juárez", Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Mexico
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Pedro A López
- Colegio de Postgraduados-Campus Puebla, San Pedro Cholula, Mexico
| | - John Larsen
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - María J Pozo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Granada, Spain
| | - Ana T Chávez-Bárcenas
- Facultad de Agrobiología "Presidente Juárez", Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Mexico
| |
Collapse
|