1
|
Jian X, Shi C, Xu T, Liu B, Zhou L, Jiang L, Liu K. Efficacy and safety of dietary polyphenol administration as assessed by hormonal, glycolipid metabolism, inflammation and oxidative stress parameters in patients with PCOS: a meta-analysis and systematic review. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 39682053 DOI: 10.1080/10408398.2024.2440063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND The current knowledge about the efficacy and safety of dietary polyphenol administration in patients with polycystic ovarian syndrome (PCOS) is divergent. OBJECTIVE To evaluate the pooled efficacy and safety of dietary polyphenol administration in the treatment of patients with PCOS. METHODS The pubmed, Embase, Scopus, Cochrane Library, and Web of Science databases were searched for randomized controlled trials (RCTs) of dietary polyphenol administration for the treatment of PCOS. English-language RCTs involving adults with PCOS were thoroughly searched in electronic databases from the time of their establishment to May 2024. Random-effects models were used because heterogeneity was derived from differences in intervention materials and study duration, among other confounding factors. The effect sizes of the outcomes in the pooled analysis are expressed as weighted mean differences (WMDs) and 95% confidence intervals (CIs). RESULTS A total of 15 RCTs involving 934 patients were finally included. Compared with control treatments, dietary polyphenol administration significantly reduced luteinizing hormone (LH) (WMD: -0.85, 95% CI [-1.32 to -0.38], p = 0.00), and prolactin levels (WMD: -3.73, 95% CI [-6.73 to -0.74], p = 0.01). Dietary polyphenol administration significantly reduced insulin levels (WMD: -0.85, 95% CI [-1.32 to -0.38], p = 0.00). Regarding lipid metabolism, dietary polyphenol administration only reduced triglyceride levels (WMD: -8.96, 95% CI [-16.44 to -1.49], p = 0.02). Malondialdehyde (MDA) (WMD: -0.65, 95% CI [-0.68 to -0.62], p = 0.00), tumor necrosis factor (TNF-α) (WMD: -1.39, 95% CI [-2.41 to -0.37], p = 0.01) concentrations were significantly reduced by dietary polyphenol administration. None of the interventions significantly affected weight, body mass index (BMI), waist circumference (WC), homeostatic model-insulin resistance (HOMA-IR), fasting blood sugar (FBS), glycated hemoglobin (HBA1c), follicle-stimulating hormone (FSH), testosterone (T), dehydroepiandrosterone (DHEA), estradiol (E2), anti-Müllerian hormone (AMH), quantitative insulin-sensitivity check index (QUICKI), sex hormone-binding globulin (SHBG), total antioxidant capacity (TAC), C-peptide, C-reactive protein (CRP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), cholesterol, cholesterol/HDL, acne score, thyroid-stimulating hormone (TSH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) or alkaline phosphatase (ALP). CONCLUSION Dietary polyphenol administration was efficacious in patients with PCOS in our study. This review might provide new insight into the treatment of patients with PCOS and the potential of daily polyphenol supplementation in patients with PCOS. Nevertheless, these results must be interpreted carefully as a result of the heterogeneity and risk of bias among the studies and we expect that more high-quality RCTs evaluating the efficacy and safety of dietary polyphenol adnimistration in patients with PCOS will be conducted in the future. SYSTEMATIC REVIEW REGISTRATION CRD42024498494.
Collapse
Affiliation(s)
- Xian Jian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Chen Shi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Liyuan Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| |
Collapse
|
2
|
Ulug E, Pinar AA. A New Approach to Polycystic Ovary Syndrome and Related Cardio-metabolic Risk Factors: Dietary Polyphenols. Curr Nutr Rep 2023; 12:508-526. [PMID: 37530952 DOI: 10.1007/s13668-023-00488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW Polycystic ovarian syndrome (PCOS) is a common endocrine disease characterized by ovulatory dysfunction, hyperandrogenism, and polycystic ovarian morphology and causing various reproductive, metabolic, cardiovascular, oncological, and psychological complications. Recent meta-analyses and systemic reviews showed that PCOS increases the risk factor for various cardio-metabolic complications like insulin resistance, type II diabetes mellitus, dyslipidemia, metabolic syndrome, hypertension, and endothelial dysfunction. In addition to these, it was suggested that chronic low-grade inflammation and oxidative stress are the underlying mechanisms of PCOS-mediated metabolic consequences and might trigger cardio-metabolic risk in women with PCOS. At this point, there is substantial evidence to suggest that various non-nutrient food components modulate cardio-metabolic health together with inflammation and oxidative stress. RECENT FINDINGS Increasing the intake of dietary polyphenols might reduce oxidative stress and inflammation and thus alleviate the risk of metabolic, endothelial, and cardiovascular disorders. Nowadays, there are an increasing number of studies related to the effects of dietary polyphenols on PCOS and its accompanying cardio-metabolic disturbances. Currently, there is a cumulative number of studies connected to the effects of dietary polyphenols on PCOS and accompanying cardio-metabolic disturbances. However, there is a lack of knowledge in combining the probable mechanisms of dietary polyphenols on PCOS and related cardio-metabolic consequences. Thus, the effects of dietary polyphenols on PCOS and accompanying cardio-metabolic disturbances need to be discussed and evaluated with underlying mechanisms. Consequently, this review was written to reveal the potential effects of dietary polyphenols on PCOS and related metabolic and cardiovascular risk factors in all their aspects.
Collapse
Affiliation(s)
- Elif Ulug
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Ankara, Turkey
| | - Aylin Acikgoz Pinar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
3
|
Çıtar Dazıroğlu ME, Acar Tek N. The Effect on Inflammation of Adherence to the Mediterranean Diet in Polycystic Ovary Syndrome. Curr Nutr Rep 2023; 12:191-202. [PMID: 36719550 DOI: 10.1007/s13668-023-00451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Polycystic ovary syndrome (PCOS), which is common in women of reproductive age worldwide, is a syndrome that reduces the lifelong quality of life and poses a significant risk for various diseases. PCOS is a combination of symptoms of hyperandrogenism, oligo-anovulation, and polycystic ovarian morphology (PCOM). In PCOS, which is characterized by chronic low-grade inflammation, some inflammatory cytokines are increased. This review aimed to explain possible mechanisms of inflammation in PCOS and the effects of Mediterranean diet components on reducing this inflammation. RECENT FINDINGS Although the exact mechanisms of inflammation in PCOS are not yet fully known, it is stated that it is mediated by obesity, insulin resistance, and high androgen concentration. This inflammatory state negatively impacts the risk of future health problems and the quality of life of PCOS. Therefore, strategies to reduce inflammation are thought to be important. Dietary adjustments have important effects in reducing this inflammation and preventing disease. At this point, the Mediterranean diet, which has been proven to have a protective effect against many diseases, draws attention. Among the components of the Mediterranean diet, especially omega-3, antioxidants and dietary fiber may contribute to the reduction of inflammation through different mechanisms. PCOS is characterized by chronic low-grade inflammation, which increases women's risk of health problems, both now and in the future. Reducing inflammation is therefore extremely important, and it can be achieved with adherence to the Mediterranean diet. Inflammation pathways and the effect of the components of the Mediterranean diet in PCOS. AGE, advanced glycation end products; NF-κB, nuclear factor kappa-B. Obesity, insulin resistance, and hyperandrogenism may cause inflammation in PCOS through different mechanisms. Antioxidants, omega-3, and dietary fiber, which are the main components of the Mediterranean diet, may be effective in reducing this inflammation in PCOS. (Created with BioRender.com).
Collapse
Affiliation(s)
- Merve Esra Çıtar Dazıroğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara, Turkey.
| | - Nilüfer Acar Tek
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara, Turkey
| |
Collapse
|
4
|
Luo ED, Jiang HM, Chen W, Wang Y, Tang M, Guo WM, Diao HY, Cai NY, Yang X, Bian Y, Xing SS. Advancements in lead therapeutic phytochemicals polycystic ovary syndrome: A review. Front Pharmacol 2023; 13:1065243. [PMID: 36699064 PMCID: PMC9868606 DOI: 10.3389/fphar.2022.1065243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases in women of reproductive age and features complex pathological symptoms and mechanisms. Existing medical treatments have, to some extent, alleviated the deterioration of PCOS. However, these strategies only temporarily control symptoms, with a few side effects and no preventive effect. Phytochemicals extracted from medicinal herbs and plants are vital for discovering novel drugs. In recent years, many kinds of research have proven that phytochemicals isolated from traditional Chinese medicine (TCM) and medicinal plants show significant potential in preventing, alleviating, and treating PCOS. Nevertheless, compared to the abundance of experimental literature and minimal specific-topic reviews related to PCOS, there is a lack of systematic reviews to summarize these advancements in this promising field. Under this background, we systematically document the progress of bioactive phytochemicals from TCM and medicinal plants in treating PCOS, including flavonoids, polyphenols, and alkaloids. According to the literature, these valuable phytochemicals demonstrated therapeutic effects on PCOS supported by in vivo and in vitro experiments, mainly depending on anti-inflammatory, antioxidation, improvement of hormone disorder and insulin resistance (IR), and alleviation of hyperinsulinemia. Based on the current progress, future research directions should emphasize 1) exploring bioactive phytochemicals that potentially mediate bone metabolism for the treatment of PCOS; 2) improving unsatisfactory bioavailability by using advanced drug delivery systems such as nanoparticles and antibody-conjugated drugs, as well as a chemical modification; 3) conducting in-depth research on the pathogenesis of PCOS to potentially impact the gut microbiota and its metabolites in the evolution of PCOS; 4) revealing the pharmacological effects of these bioactive phytochemicals on PCOS at the genetic level; and 5) exploring the hypothetical and unprecedented functions in regulating PCOS by serving as proteolysis-targeting chimeras and molecular glues compared with traditional small molecule drugs. In brief, this review aims to provide detailed mechanisms of these bioactive phytochemicals and hopefully practical and reliable insight into clinical applications concerning PCOS.
Collapse
Affiliation(s)
- Er-Dan Luo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hai-Mei Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Chen
- Traditional Chinese Medicine Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Mi Tang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen-Mei Guo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao-Yang Diao
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ning-Yuan Cai
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Sha-Sha Xing
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Silva RLDS, Lins TLBG, Monte APOD, de Andrade KO, de Sousa Barberino R, da Silva GAL, Campinho DDSP, Junior RCP, Matos MHTD. Protective effect of gallic acid on doxorubicin-induced ovarian toxicity in mouse. Reprod Toxicol 2023; 115:147-156. [PMID: 36572231 DOI: 10.1016/j.reprotox.2022.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The aims of the present study were to evaluate the protective effects of gallic acid against doxorubicin-induced ovarian toxicity in mice, and to verify the possible involvement of PI3K and mTOR signaling pathway members (PTEN, Akt, FOXO3a and rpS6) in the gallic acid protective actions. Mice were pretreated with NaCl (0.15 M, p.o.) (control and doxorubicin groups) or gallic acid (50, 100 or 200 mg/kg body weight, p.o.) once daily, for 5 days, and on the third day of treatment, after 1 h of treatment administration, the mice received saline solution (i.p.) (control group) or doxorubicin (10 mg/kg of body weight, i.p.). Next, the ovaries were harvested for histological (follicular morphology and activation), fluorescence (GSH and mitochondrial activity), and immunohistochemical (PCNA, cleaved caspase-3, TNF-α, p-PTEN, Akt, p-Akt, p-rpS6 and p-FOXO3a) analyses. The results showed that cotreatment with 50 mg/kg gallic acid plus doxorubicin preserved the percentage of normal follicles and cell proliferation, reduced the percentage of cleaved caspase-3 follicles, prevented inflammation, and increased GSH concentrations and mitochondrial activity compared to doxorubicin treatment alone. Furthermore, cotreatment 50 mg/kg gallic acid plus doxorrubicin increased expression of Akt, p-Akt, p-rpS6 and p-FOXO3a compared to the doxorubicin alone. In conclusion, 50 mg/kg gallic acid protects the mouse ovary against doxorubicin-induced damage by improving GSH concentrations and mitochondrial activity and cellular proliferation, inhibiting inflammation and apoptosis, and regulating PI3K and mTOR signaling pathway.
Collapse
Affiliation(s)
- Regina Lucia Dos Santos Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Thae Lanne Barbosa Gama Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Alane Pains Oliveira do Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Kíscyla Oliveira de Andrade
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Ricássio de Sousa Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Gizele Augusta Lemos da Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Daniela da Silva Pereira Campinho
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Raimundo Campos Palheta Junior
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley, Petrolina 56300-900, PE, Brazil
| | - Maria Helena Tavares de Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil.
| |
Collapse
|
6
|
Corrie L, Gulati M, Singh SK, Kapoor B, Khursheed R, Awasthi A, Vishwas S, Chellappan DK, Gupta G, Jha NK, Anand K, Dua K. Recent updates on animal models for understanding the etiopathogenesis of polycystic ovarian syndrome. Life Sci 2021; 280:119753. [PMID: 34171379 DOI: 10.1016/j.lfs.2021.119753] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is the primary cause of female infertility affecting several women worldwide. Changes in hormonal functions such as hyperandrogenism are considered a significant factor in developing PCOS in women. In addition, many molecular pathways are involved in the pathogenesis of PCOS in women. To have better insights about PCOS, it is data from clinical studies carried on women suffering from PCOS should be collected. However, this approach has several implications, including ethical considerations, cost involved and availability of subject. Moreover, during the early drug development process, it is always advisable to use non-human models mimicking human physiology as they are less expensive, readily available, have a shorter gestation period and less risk involved. Many animal models have been reported that resemble the PCOS pathways in human subjects. However, the models developed on rats and mice are more preferred over other rodent/non-rodent models due to their closer resemblance with human PCOS development mechanism. The most extensively reported PCOS models for rats and mice include those induced by using testosterone, letrozole and estradiol valerate. As the pathophysiology of PCOS is complex, none of the explored models completely surrogates the PCOS related conditions occurring in women. Hence, there is a need to develop an animal model that can resemble the pathophysiology of PCOS in women. The review focuses on various animal models explored to understand the pathophysiology of PCOS. The article also highlights some environmental and food-related models that have been used to induce PCOS.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia
| |
Collapse
|
7
|
Silva GAL, Araújo LB, Silva LCR, Gouveia BB, Barberino RS, Lins TLBG, Monte APO, Macedo TJS, Santos JMS, Menezes VG, Silva RLS, Matos MHT. Gallic acid promotes the in vitro development of sheep secondary isolated follicles involving the phosphatidylinositol 3-kinase pathway. Anim Reprod Sci 2021; 230:106767. [PMID: 34030069 DOI: 10.1016/j.anireprosci.2021.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
This study was conducted to evaluate the effect of addition of gallic acid as the single antioxidant to the base medium for in vitro culture of sheep secondary follicles and if the phosphatidylinositol 3-kinase (PI3K) pathway is involved in the action of gallic acid. Secondary follicles were isolated and cultured for 12 days in α-MEM supplemented with bovine serum albumin (BSA), insulin, glutamine, hypoxanthine, transferrin, selenium, and ascorbic acid (control medium: α-MEM+) or in α-MEM supplemented with BSA, insulin, glutamine, hypoxanthine and different concentrations of gallic acid (25, 50 or 100 μM), thus replacing transferrin, selenium and ascorbic acid in the medium. Follicle morphology, glutathione (GSH), and mitochondrial activity, and meiotic resumption were evaluated. Furthermore, inhibition of PI3K pathway was performed by pretreatment with LY294002. After 12 days of culture, the follicle survival in a medium containing 100 μM gallic acid was similar (P > 0.05) to α-MEM+ and greater (P < 0.05) compared with other gallic acid concentrations. Antrum formation, follicle diameter, GSH, and mitochondrial activity, and meiotic resumption, however, were greater (P < 0.05) when 100 μM gallic acid was included in the α-MEM+ culture medium compared with the control medium. Furthermore, LY294002 inhibited (P < 0.05) follicle survival, development, and meiotic resumption stimulated by 100 μM gallic acid. In conclusion, concentration of 100 μM of gallic acid can be a substitute for transferrin, selenium, and ascorbic acid in the base medium during in vitro culture of sheep secondary follicles, inducing follicle development likely through the PI3K pathway.
Collapse
Affiliation(s)
- Gizele A L Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Luana B Araújo
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Larissa C R Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Bruna B Gouveia
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Thae Lanne B G Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Alane P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Taís J S Macedo
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Jamile M S Santos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Vanúzia G Menezes
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Regina L S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Maria Helena T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil.
| |
Collapse
|
8
|
Mihanfar A, Nouri M, Roshangar L, Khadem-Ansari MH. Polyphenols: Natural compounds with promising potential in treating polycystic ovary syndrome. Reprod Biol 2021; 21:100500. [PMID: 33878526 DOI: 10.1016/j.repbio.2021.100500] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/30/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Polyphenols are natural compounds used by plants as a defense system against various stresses. In recent years, the importance of these polyhydroxyphenols has extensively increased due to their potent cardioprotection, anti-carcinogenic, anti-oxidant, anti-apoptotic, and anti-inflammatory properties. Therefore, various studies have reported promising results from the studies investigating their efficacy as a therapeutic strategy in various disorders such as human malignancies, cardiovascular diseases, nervous system impairments, diabetes, metabolic syndrome, aging, and inflammation-associated disorders, as well as a polycystic ovarian syndrome (PCOS). Since oxidative stress, hormonal, metabolic, and endocrine disturbances have been shown to play a crucial role in the initiation/progression of PCOS, polyphenols are suggested to be an effective treatment for this disorder. Therefore, this study aimed to discuss the therapeutic potential of multiple polyphenols in PCOS.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz, Iran; Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|