1
|
Sun T, Wang J, Liu X, Huang H, Wang J, Suo M, Zhang J, Li Z. Finite element models of intervertebral disc: recent advances and prospects. Ann Med 2025; 57:2453089. [PMID: 39840609 PMCID: PMC11755745 DOI: 10.1080/07853890.2025.2453089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVES The incidence rate of intervertebral disc degeneration (IVDD) is increasing year by year, which brings great harm to our health. The change of biomechanical factors is an important reason for IVDD. Therefore, more and more studies use finite element (FE) models to analyze the biomechanics of spine. METHODS In this review, literatures which reported the FE model of intervertebral disc (IVD) were reviewed. We summarized the types and constructional methods of the FE models and analyzed the applications of some representative FE models. RESULTS The most widely used model was the nonlinear model which considers the behavior of porous elastic materials. As more advanced methods, More and more models which involve penetration parameters were used to simulate the biological behavior and biomechanical properties of IVD. CONCLUSIONS Personalized modeling should be carried out in order to better provide accurate basis for the diagnosis and treatment of the disease. In addition, microstructure, cell behavior and complex load should be considered in the process of model construction to build a more realistic model.
Collapse
Affiliation(s)
- Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Junlin Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, The People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, Dalian, The People’s Republic of China
| |
Collapse
|
2
|
Kishore YS, Sreedhara BM, Manoj A, Raveesh RM, Rakesh B, Bhaskar S, Kuntoji G, Chethan BA. Effect of vehicular vibrations on L-4 lumbar vertebrae - A finite element study. J Orthop 2025; 63:109-115. [PMID: 39564085 PMCID: PMC11570820 DOI: 10.1016/j.jor.2024.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Lower Back Pain (LBP) is a global health issue, with increasing prevalence, partly attributed to vehicular vibrations experienced by motorcyclists. The L4 lumbar vertebra is responsible for greater mobility and flexibility of the body, but also is the most crucial body element affected by vehicular vibrations. Anthropometric properties, types of speed humps, and vehicle types are the critical variables that impact bone health during riding, need to be studied. To understand the potential zones of injury, computational simulation can be performed under the influence of vehicle vibrations while crossing different types of speed humps at varying speeds. In the present study, finite element method (FEM) is used to evaluate stress and deformation in the bone. The L4 cortical bone is modelled by considering the CT-Scan data and assumed to be homogeneous and isotropic material. Vibration data is collected using two vehicle types (Type I and Type II) on four different humps (Trapezoidal, Bitumen Semi-circular, Rubber Semi-circular, and Rumble strip). The bone's dynamic behavior is studied using FEM simulation, which involved static structural, modal and transient dynamic analyses. The findings from static analysis indicate that the most concentrated stress is located in the lower pedicle region and is an expected commonplace for injuries because of vibrations. In transient dynamic analysis, Type I vehicle showed a 25 % higher stress than Type II.
Collapse
Affiliation(s)
- Y S Kishore
- Department of Civil Engineering, Siddaganga Institute of Technology, Tumakuru, Karnataka, 572103, India
| | - B M Sreedhara
- Department of Civil Engineering, Siddaganga Institute of Technology, Tumakuru, Karnataka, 572103, India
| | - A Manoj
- Department of Architecture and Planning, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India
| | - R M Raveesh
- Department of Water Resource and Ocean Engineering, National Institute of Technology Karnataka Surathkal, 575025, India
| | - B Rakesh
- Department of Civil Engineering, Siddaganga Institute of Technology, Tumakuru, Karnataka, 572103, India
| | - S Bhaskar
- Department of Civil Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India
| | - Geetha Kuntoji
- Department of Civil Engineering, BMS College of Engineering, Bengaluru, Karnataka, 560019, India
| | - B A Chethan
- Department of Civil Engineering, Government Engineering College Mosalehosahalli, 573212, India
| |
Collapse
|
3
|
Ma T, Tu X, Li J, Wu J, Nong L. In Vitro Biomechanical Experiment on the Effect of Unilateral Partial Facetectomy Performed by Percutaneous Endoscopy on the Stability of Lumbar Spine. Bioengineering (Basel) 2025; 12:414. [PMID: 40281774 PMCID: PMC12024851 DOI: 10.3390/bioengineering12040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
OBJECTIVES This study's purpose is to investigate the lumbar biomechanical effects of unilateral partial facetectomy (UPF) of different facet joint (FJ) portions under percutaneous endoscopy. METHODS Forty fresh calf spine models were used to simulate UPF under a physiological load performed through three commonly used needle insertion points (IPs): (1) The apex of the superior FJ (as the first IP); (2) The midpoint of the ventral side of the superior FJ (as the second IP); (3) The lowest point of the ventral side of the superior FJ (as the third IP). The range of motion (ROM) and the L4/5 intradiscal maximum pressure (IMP) were measured and analyzed under a physiological load in all models during flexion, extension, left-right lateral flexion, and left-right axial rotation. RESULTS When UPF was performed through the second IP, the ROM of the lumbar spine and the L4/5 IMP in the calf spine models were not statistically different from the intact calf spine model. CONCLUSIONS UPF through the second IP resulted in a minimal impact on the biomechanics of the lumbar spine. Thus, it might be considered the most appropriate IP for UPF.
Collapse
Affiliation(s)
- Tao Ma
- Orthopedics Department, The Third Affiliated Hospital of Nanjing Medical University, Changzhou 213164, China; (T.M.); (X.T.); (J.L.); (J.W.)
- Orthopaedics Department, Nanjing Medical University, Nanjing 211103, China
| | - Xiaoshuang Tu
- Orthopedics Department, The Third Affiliated Hospital of Nanjing Medical University, Changzhou 213164, China; (T.M.); (X.T.); (J.L.); (J.W.)
- Orthopaedics Department, Nanjing Medical University, Nanjing 211103, China
| | - Junyang Li
- Orthopedics Department, The Third Affiliated Hospital of Nanjing Medical University, Changzhou 213164, China; (T.M.); (X.T.); (J.L.); (J.W.)
- Orthopaedics Department, Nanjing Medical University, Nanjing 211103, China
| | - Jingwei Wu
- Orthopedics Department, The Third Affiliated Hospital of Nanjing Medical University, Changzhou 213164, China; (T.M.); (X.T.); (J.L.); (J.W.)
- Orthopaedics Department, Nanjing Medical University, Nanjing 211103, China
| | - Luming Nong
- Orthopedics Department, The Third Affiliated Hospital of Nanjing Medical University, Changzhou 213164, China; (T.M.); (X.T.); (J.L.); (J.W.)
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213164, China
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, No.29 Xinglong Lane, Tianning District, Changzhou 213000, China
| |
Collapse
|
4
|
Narendran N, Mikhail CM, Nilssen PK, Tuchman A, Skaggs DL. Lumbar Total Disc Replacement Leads to Increased Subsequent Facet Injections Compared to Anterolateral Lumbar Interbody Fusions. Global Spine J 2025; 15:1733-1742. [PMID: 38860341 PMCID: PMC11572116 DOI: 10.1177/21925682241260733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
Study DesignRetrospective Matched Cohort.ObjectiveDespite known consequences to the facet joints following lumbar total disc replacement (TDR), there is limited data on facet injection usage for persistent postoperative pain. This study uses real-world data to compare the usage of therapeutic lumbar facet injections as a measure of symptomatic facet arthrosis following single-level, stand-alone TDR vs anterolateral lumbar interbody fusion (ALIF/LLIF).MethodsThe PearlDiver database was queried for patients (2010-2021) with lumbar degenerative disc disease who received either a single-level, stand-alone TDR or ALIF/LLIF. All patients were followed for ≥2 years and excluded if they had a history of facet injections or spinal trauma, fracture, infection, or neoplasm. The two cohorts were matched 1:1 based on age, sex, insurance, year of operation, and medical comorbidities. The primary outcome was the use of therapeutic lumbar facet injections at 1-, 2-, and 5-year follow-up. Secondary outcomes included subsequent lumbar surgeries and surgical complications.ResultsAfter 1:1 matching, each cohort had 1203 patients. Lumbar facet injections occurred significantly more frequently in the TDR group at 1-year (6.07% vs 1.66%, P < .0001), 2-year (8.40% vs 3.74%%, P < .0001), and 5-year (11.47% vs 6.40%, P < .0001) follow-up. 5-year injection-free probability curves demonstrated an 87.1% injection-free rate for TDR vs 92.9% for ALIF/LLIF. There was no clinical difference in the incidence of subsequent lumbar surgeries or complications.ConclusionCompared with ALIF/LLIF, patients who underwent TDR received significantly more facet injections, suggesting a greater progression of symptomatic facet arthrosis. TDR was not protective against reoperations compared to ALIF/LLIF.
Collapse
Affiliation(s)
- Nakul Narendran
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Paal K. Nilssen
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander Tuchman
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David L. Skaggs
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
5
|
Kurtz SM, Rundell SA, Spece H, Yarbrough RV. Sensitivity of Lumbar Total Joint Replacement Contact Stresses Under Misalignment Conditions-Finite Element Analysis of a Spine Wear Simulator. Bioengineering (Basel) 2025; 12:229. [PMID: 40150693 PMCID: PMC11939812 DOI: 10.3390/bioengineering12030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 03/29/2025] Open
Abstract
A novel total joint replacement (TJR) that treats lumbar spine degeneration was previously assessed under Mode I and Mode IV conditions. In this study, we relied on these previous wear tests to establish a relationship between finite element model (FEM)-based bearing stresses and in vitro wear penetration maps. Our modeling effort addressed the following question of interest: Under reasonably worst-case misaligned conditions, do the lumbar total joint replacement (L-TJR) polyethylene stresses and strains remain below values associated with Mode IV impingement wear tests? The FEM was first formally verified and validated using the risk-informed credibility assessment framework established by ASME V&V 40 and FDA guidance. Then, based on criteria for unreasonable misuse outlined in the surgical technique guide, a parametric analysis of reasonably worst-case misalignment using the validated L-TJR FEM was performed. Reasonable misalignment was created by altering device positioning from the baseline condition in three scenarios: Axial Plane Convergence (20-40°), Axial Plane A-P Offset (0-4 mm), and Coronal Plane Tilt (±20°). We found that, for the scenarios considered, the contact pressures, von Mises stresses, and effective strains of the L-TJR-bearing surfaces remained consistent with Mode I (clean) conditions. Specifically, the mechanical response values fell below those determined under Mode IV (worst-case) boundary conditions, which provided the upper-bound benchmarks for the study (peak contact pressure 83.3 MPa, peak von Mises stress 32.2 MPa, and peak effective strain 42%). The L-TJR was judged to be insensitive to axial and coronal misalignment under the in vitro boundary conditions imposed by the study.
Collapse
Affiliation(s)
- Steven M. Kurtz
- Gyroid LLC, Haddonfield, NJ 08033, USA;
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | | | - Hannah Spece
- Gyroid LLC, Haddonfield, NJ 08033, USA;
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | | |
Collapse
|
6
|
Bui HP, Duprez M, Rohan PY, Lejeune A, Bordas SPA, Bucki M, Chouly F. Enhancing Biomechanical Simulations Based on a Posteriori Error Estimates: The Potential of Dual-Weighted Residual-Driven Adaptive Mesh Refinement. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2025; 41:e3897. [PMID: 39821633 DOI: 10.1002/cnm.3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/31/2024] [Accepted: 11/29/2024] [Indexed: 01/19/2025]
Abstract
The finite-element method (FEM) is a well-established procedure for computing approximate solutions to deterministic engineering problems described by partial differential equations. FEM produces discrete approximations of the solution with a discretisation error that can be quantified with a posteriori error estimates. The practical relevance of error estimates for biomechanics problems, especially for soft tissue where the response is governed by large strains, is rarely addressed. In this contribution, we propose an implementation of a posteriori error estimates targeting a user-defined quantity of interest, using the dual-weighted residual (DWR) technique tailored to biomechanics. The proposed method considers a general setting that encompasses three-dimensional geometries and model nonlinearities, which appear in hyperelastic soft tissues. We take advantage of the automatic differentiation capabilities embedded in modern finite-element software, which allows the error estimates to be computed generically for a large class of models and constitutive laws. First, we validate our methodology using experimental measurements from silicone samples and then illustrate its applicability for patient-specific computations of pressure ulcers on a human heel.
Collapse
Affiliation(s)
| | - Michel Duprez
- MIMESIS, MLMS, Inria Nancy Grand-Est, Université de Strasbourg, Strasbourg, France
| | - Pierre-Yves Rohan
- Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Institute of Technology, Paris, France
| | - Arnaud Lejeune
- Department of Applied Mechanics, FEMTO-ST Institute, University of Franche-Comte, UMR 6174 CNRS, Besançon, France
| | - Stéphane P A Bordas
- Department of Engineering, Institute of Computational Engineering, Luxembourg, Luxembourg
| | | | - Franz Chouly
- Center of Mathematics, University of the Republic Uruguay, Montevideo, Uruguay
| |
Collapse
|
7
|
Li J, Deng Y, Zhang J, Wang B, Huang K, Liu H, Rong X. Combined effect of artificial cervical disc replacement and facet tropism on the index-level facet joints: a finite element study. BMC Musculoskelet Disord 2024; 25:839. [PMID: 39443893 PMCID: PMC11515681 DOI: 10.1186/s12891-024-07895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Artificial Cervical Disc Replacement (ACDR) is an effective treatment for cervical degenerative disc diseases. However, clinical information regarding the facet joint alterations after ACDR was limited. Facet tropism is common in the sub-axial cervical spine. Our previous research indicated that facet tropism could lead to increased pressure on the cervical facet joints. This study aimed to assess the impact of facet tropism on the facet contact force and facet capsule stress after ACDR. METHODS A C2-T1 cervical finite element model was constructed from computed tomography (CT) scans of a 28-year-old male volunteer. Symmetrical, moderate asymmetrical (7 degrees tropism), and severe asymmetrical (14 degrees tropism) models were created at the C5/C6 level by altering the facet orientation at the C5-C6 level. The C5/C6 ACDR was simulated in the intact, moderate asymmetrical and severe asymmetrical models. A 75-N follower load with 1.0-Nm moments was applied to the top of C2 vertebra in the models to simulate flexion, extension, lateral bending, and axial rotation with the T1 vertebra fixed. The range of motions (ROMs) under all moments, facet contact forces (FCFs) and facet capsule strains were tested. RESULTS In the asymmetrical model, the right FCFs considerably increased under flexion, extension, right bending, left rotation, especially under right bending the right sided FCF of the severe asymmetrical model was about 5.44 times of the neutral position, and 3.14 times of the symmetrical model. and concentrated on the cephalad part of the facets. The facet capsule stresses on both sides remarkably increased under extension, lateral bending and right rotation. In the moderate and severe asymmetrical models, the capsule strain was greater on both sides of each position than in the symmetric model. CONCLUSIONS The face tropism increased facet contact force and facet capsule strain after ACDR, especially under extension, lateral bending, and rotation, and also could result in abnormal stress distribution on the facet joint surface and facet joint capsule. The results suggest that face tropism might be a risk factor for post-operative facet joint degeneration progression after ACDR. Facet tropism may be noteworthy when ACDR is considered as a surgical option.
Collapse
Affiliation(s)
- Jing Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxiao Deng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Junqi Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Kangkang Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Rong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Xu C, Bai X, Ruan D, Zhang C. Comparative finite element analysis of posterior short segment fixation constructs with or without intermediate screws in the fractured vertebrae for the treatment of type a thoracolumbar fracture. Comput Methods Biomech Biomed Engin 2024; 27:1398-1409. [PMID: 37553841 DOI: 10.1080/10255842.2023.2243360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Six-screw short-segment posterior fixation for thoracolumbar fractures, which involves intermediate screws at the fractured vertebrae has been proposed to reduce the rates of kyphosis recurrence and implant failure. Yet, little is known about the mechanisms and biomechanical responses by which intermediate screws at the fracture vertebrae enhance fixation strength. The objective of this study was to investigate the biomechanical properties that are associated with the augmentation of intermediate screws in relation to the severity of type A thoracolumbar fracture using finite element analysis. Short-segment stabilization models with or without augmentation screws at fractured vertebrae were established based on finite element model of moderate compressive fractures, severe compressive fractures and burst fractures. The spinal stiffness, stresses at the implanted hardware, and axial displacement of the bony defect were measured and compared under mechanical loading conditions. All six-screw stabilization showed a decreased range of motion in extension, lateral bending, and axial rotation compared to the traditional four-screw fixation models. Burst thoracolumbar fracture benefited more from augmentation of intermediate screws at the fracture vertebrae. The stress of the rod in six-screw models increased while decreased that of pedicle screws. Our results suggested that patients with more unstable fractures might achieve greater benefits from augmentation of intermediate screws at the fracture vertebrae. Augmentation of intermediate screws at the fracture vertebrae is recommended for patients with higher wedge-shaped or burst fractures to reduce the risk of hardware failure and postoperative re-collapse of injured vertebrae.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Orthopaedic Surgery, The Sixth Medical Center, General Hospital of PLA, Beijing, China
| | - Xuedong Bai
- Department of Orthopaedic Surgery, The Sixth Medical Center, General Hospital of PLA, Beijing, China
| | - Dike Ruan
- Department of Orthopaedic Surgery, The Sixth Medical Center, General Hospital of PLA, Beijing, China
| | - Chao Zhang
- Department of Orthopaedic Surgery, The Sixth Medical Center, General Hospital of PLA, Beijing, China
| |
Collapse
|
9
|
Gruber G, Nicolini LF, Ribeiro M, Lerchl T, Wilke HJ, Jaramillo HE, Senner V, Kirschke JS, Nispel K. Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars. Front Bioeng Biotechnol 2024; 12:1391957. [PMID: 38903189 PMCID: PMC11188472 DOI: 10.3389/fbioe.2024.1391957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction: Numerical modeling of the intervertebral disc (IVD) is challenging due to its complex and heterogeneous structure, requiring careful selection of constitutive models and material properties. A critical aspect of such modeling is the representation of annulus fibers, which significantly impact IVD biomechanics. This study presents a comparative analysis of different methods for fiber reinforcement in the annulus fibrosus of a finite element (FE) model of the human IVD. Methods: We utilized a reconstructed L4-L5 IVD geometry to compare three fiber modeling approaches: the anisotropic Holzapfel-Gasser-Ogden (HGO) model (HGO fiber model) and two sets of structural rebar elements with linear-elastic (linear rebar model) and hyperelastic (nonlinear rebar model) material definitions, respectively. Prior to calibration, we conducted a sensitivity analysis to identify the most important model parameters to be calibrated and improve the efficiency of the calibration. Calibration was performed using a genetic algorithm and in vitro range of motion (RoM) data from a published study with eight specimens tested under four loading scenarios. For validation, intradiscal pressure (IDP) measurements from the same study were used, along with additional RoM data from a separate publication involving five specimens subjected to four different loading conditions. Results: The sensitivity analysis revealed that most parameters, except for the Poisson ratio of the annulus fibers and C01 from the nucleus, significantly affected the RoM and IDP outcomes. Upon calibration, the HGO fiber model demonstrated the highest accuracy (R2 = 0.95), followed by the linear (R2 = 0.89) and nonlinear rebar models (R2 = 0.87). During the validation phase, the HGO fiber model maintained its high accuracy (RoM R2 = 0.85; IDP R2 = 0.87), while the linear and nonlinear rebar models had lower validation scores (RoM R2 = 0.71 and 0.69; IDP R2 = 0.86 and 0.8, respectively). Discussion: The results of the study demonstrate a successful calibration process that established good agreement with experimental data. Based on our findings, the HGO fiber model appears to be a more suitable option for accurate IVD FE modeling considering its higher fidelity in simulation results and computational efficiency.
Collapse
Affiliation(s)
- Gabriel Gruber
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luis Fernando Nicolini
- Department of Mechanical Engineering, Federal University of Santa Maria, Av. Santa Maria, Brazil
| | - Marx Ribeiro
- Department for Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Tanja Lerchl
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Associate Professorship of Sport Equipment and Sport Materials, School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, University of Ulm, Ulm, Germany
| | | | - Veit Senner
- Associate Professorship of Sport Equipment and Sport Materials, School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kati Nispel
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Associate Professorship of Sport Equipment and Sport Materials, School of Engineering and Design, Technical University of Munich, Garching, Germany
| |
Collapse
|
10
|
Singh NK, Singh NK, Verma R, Diwan AD. Validation and Estimation of Obesity-Induced Intervertebral Disc Degeneration through Subject-Specific Finite Element Modelling of Functional Spinal Units. Bioengineering (Basel) 2024; 11:344. [PMID: 38671766 PMCID: PMC11048157 DOI: 10.3390/bioengineering11040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Intervertebral disc degeneration has been linked to obesity; its potential mechanical effects on the intervertebral disc remain unknown. This study aimed to develop and validate a patient-specific model of L3-L4 vertebrae and then use the model to estimate the impact of increasing body weight on disc degeneration. (2) Methods: A three-dimensional model of the functional spinal unit of L3-L4 vertebrae and its components were developed and validated. Validation was achieved by comparing the range of motions (RoM) and intradiscal pressures with the previous literature. Subsequently, the validated model was loaded according to the body mass index and estimated stress, deformation, and RoM to assess disc degeneration. (3) Results: During validation, L3-L4 RoM and intradiscal pressures: flexion 5.17° and 1.04 MPa, extension 1.54° and 0.22 MPa, lateral bending 3.36° and 0.54 MPa, axial rotation 1.14° and 0.52 MPa, respectively. When investigating the impact of weight on disc degeneration, escalating from normal weight to obesity reveals an increased RoM, by 3.44% during flexion, 22.7% during extension, 29.71% during lateral bending, and 33.2% during axial rotation, respectively. Also, stress and disc deformation elevated with increasing weight across all RoM. (4) Conclusions: The predicted mechanical responses of the developed model closely matched the validation dataset. The validated model predicts disc degeneration under increased weight and could lay the foundation for future recommendations aimed at identifying predictors of lower back pain due to disc degeneration.
Collapse
Affiliation(s)
- Nitesh Kumar Singh
- Computational Biomechanics Lab, Department of Biomedical Engineering, National Institute of Technology, Raipur 492010, India;
| | - Nishant K. Singh
- Computational Biomechanics Lab, Department of Biomedical Engineering, National Institute of Technology, Raipur 492010, India;
| | - Rati Verma
- Biomechanics Lab, School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India;
| | - Ashish D. Diwan
- Spine Labs & Spine Service, St George & Sutherland Campus, Clinical School of Faculty of Health & Medicine, University of New South Wales, Sydney, NSW 2502, Australia;
| |
Collapse
|
11
|
Dong R, Liu Z, Guo Y, An Y, Shi Z, Shi M. [Effect of fiber volume and material property and nucleus pulposus area on intervertebral disc mechanical behavior]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:144-151. [PMID: 38403615 PMCID: PMC10894742 DOI: 10.7507/1001-5515.202305001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/06/2023] [Indexed: 02/27/2024]
Abstract
The material properties and volume proportion of the fibers as well as the cross-sectional area proportion of nucleus pulposus vary greatly in different studies. The effect of these factors on the mechanical behavior of intervertebral discs (IVDs) are uncertain. The IVDs finite element models with different parameters were created to investigate the pressure, height, rotation, stress, and strain of the IVDs under loads: pure compression, rotation after compression or axial moment after compression. The results showed that the material properties of fibers had great impact on the mechanical behavior of IVDs, especially on the rotation angle. When the fiber volume ratio was small, its changes had a significant impact on the rotation angle of the IVDs. The area proportions of nucleus pulposus had relatively little effect on the mechanical behavior of IVDs. The IVDs rotation should be observed when validating the model. By adjusting the elastic modulus or volume ratio of fibers within a reasonable range, a model that could simulate the mechanical behavior of normal IVDs could be obtained. It was reasonable to make the area proportion of nucleus pulposus within 25%-50% for the IVDs finite element model. This study provides guidance and reference for finite element modeling of the IVDs and the investigation of the IVDs degeneration mechanism.
Collapse
Affiliation(s)
- Ruichun Dong
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Zhong Liu
- Spinal Surgery and Oncology Department, Zibo Central Hospital, Zibo, Shandong 255000, P. R. China
| | - Yunqiang Guo
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Yukun An
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Zhou Shi
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Ming Shi
- Spinal Surgery and Oncology Department, Zibo Central Hospital, Zibo, Shandong 255000, P. R. China
| |
Collapse
|
12
|
Bellina E, Laurino ME, Perego A, Pezzinga A, Carpenedo L, Ninarello D, La Barbera L. Assessment of a fully-parametric thoraco-lumbar spine model generator with articulated ribcage. J Biomech 2024; 164:111951. [PMID: 38310005 DOI: 10.1016/j.jbiomech.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The present paper describes a novel user-friendly fully-parametric thoraco-lumbar spine CAD model generator including the ribcage, based on 22 independent parameters (1 posterior vertebral body height per vertebra + 4 sagittal alignment parameters, namely pelvic incidence, sacral slope, L1-L5 lumbar lordosis, and T1-T12 thoracic kyphosis). Reliable third-order polynomial regression equations were implemented in Solidworks to analytically calculate 56 morphological dependent parameters and to automatically generate the spine CAD model based on primitive geometrical features. A standard spine CAD model, representing the case-study of an average healthy adult, was then created and positively assessed in terms of spinal anatomy, ribcage morphology, and sagittal profile. The immediate translation from CAD to FEM for relevant biomechanical analyses was successfully demonstrated, first, importing the CAD model into Abaqus, and then, iteratively calibrating the constitutive parameters of one lumbar and three thoracic FSUs, with particular interest on the hyperelastic material properties of the IVD, and the spinal and costo-vertebral ligaments. The credibility of the resulting lumbo-sacral and thoracic spine FEM with/without ribcage were assessed and validated throughout comparison with extensive in vitro and in vivo data both in terms of kinematics (range of motion) and dynamics (intradiscal pressure) either collected under pure bending moments and complex loading conditions (bending moments + axial compressive force).
Collapse
Affiliation(s)
- Emilia Bellina
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| | - Maria Elvira Laurino
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Alice Perego
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Alice Pezzinga
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Linda Carpenedo
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Davide Ninarello
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Luigi La Barbera
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; IRCCS Galeazzi-Sant'Ambrogio Hospital, Milan, Italy.
| |
Collapse
|
13
|
Jorda-Gomez P, Vanaclocha V, Vanaclocha A, Atienza CM, Belloch V, Santabarbara JM, Barrios C, Saiz-Sapena N, Medina-Ripoll E, Vanaclocha L. Cadaveric biomechanical studies of ADDISC total lumbar disc prosthesis. Clin Biomech (Bristol, Avon) 2024; 112:106185. [PMID: 38262121 DOI: 10.1016/j.clinbiomech.2024.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Most total disc replacements provide excessive mobility and not reproduce spinal kinematics, inducing zygapophyseal joint arthritic changes and chronic back pain. In cadaveric lumbosacral spines, we studied if a new lumbar disc prosthesis kinematics mimics the intact intervertebral disc. METHODS In eight cold preserved cadaveric lumbosacral spines, we registered the movement ranges in flexion, extension, right and left lateral bending, and rotation in the intact status, post-discectomy, and after our prosthesis implantation, comparing them for each specimen. FINDINGS Comparing the intact lumbosacral spine with the L4-L5 prosthesis implanted specimens, we saw statistically significant differences in lateral bending and right rotation but not in the full range of rotation. Analyzing segments, we also noticed statistically significant differences at L4-L5 in flexion-extension and rotation. On the other hand, the L4-L5 discectomy, compared to the baseline spine condition, showed a statistically significant mobility increase in flexion, extension, lateral bending, and axial rotation, with an abnormal instantaneous center of rotation, which destabilizes the segment partly due to anterior annulus surgical removal. Disc prosthesis implantation reversed these changes in instantaneous center of rotation, but the prosthesis failed to restore the initial range of motion due to the destabilization of the ligaments in the operated disc. INTERPRETATION The ADDISC total disc replacement reproduces the intact disc kinematics and Instantaneous Center of Rotation, but the prosthesis fails to restore the initial range of motion due to ligament destabilization. More studies will be necessary to define a technique that restores the damaged ligaments when implanting the prosthesis.
Collapse
Affiliation(s)
| | | | - Amparo Vanaclocha
- Instituto de Biomecánica (IBV), Universitat Politècnica de Valencia, Valencia. Spain
| | - Carlos M Atienza
- Instituto de Biomecánica (IBV), Universitat Politècnica de Valencia, Valencia. Spain
| | | | | | - Carlos Barrios
- Catholic University of Valencia, Saint Vincent Martyr, Valencia, Spain
| | | | - Enrique Medina-Ripoll
- Instituto de Biomecánica (IBV), Universitat Politècnica de Valencia, Valencia. Spain
| | - Leyre Vanaclocha
- Medius Klinik, Ostfildern-Ruit Klinik für Urologie, Hedelfinger Strasse 166, 73760 Ostfildern, Germany
| |
Collapse
|
14
|
Pradeep K, Pal B. Effects of open and minimally invasive Transforaminal Lumbar Interbody Fusion (TLIF) surgical techniques on mechanical behaviour of fused L3-L4 FSU: A comparative finite element study. Med Eng Phys 2024; 123:104084. [PMID: 38365336 DOI: 10.1016/j.medengphy.2023.104084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 02/18/2024]
Abstract
For predicting the biomechanical effects of the fusion procedure, finite element (FE) analysis is widely used as a preclinical tool. Although several FE studies examined the efficacies of various fusion surgical techniques, comparative studies on Open and minimally invasive (MIS) transforaminal lumbar interbody fusion (TLIF) procedures incorporating a follower coordinate system have not been investigated yet. The current FE study evaluates the ranges of motion (ROM) and load distributions of Open-TLIF and MIS-TLIF implanted models, under physiological loading such as compression, flexion, extension and lateral bending. The most noteworthy finding from the investigation is that both the fusion procedures significantly reduced the ROMs of the implanted segment (L3-L4) and full model (L1-L5) by at least 89 % and 44 %, respectively, compared to the intact model. For all loading situations, over 95 % of the implanted models' cancellous bone volume was subjected to von Mises strains ranging from 0.0003 to 0.005. The maximum von Mises strain was observed to be localized on a small amount of cancellous bone volume (<5 %). The likelihood of adjacent segment degeneration is higher in the case of MIS-TLIF due to the higher stress (22-53 MPa) and strain (0.018-0.087) noticed on the upper facet of the L3 vertebra.
Collapse
Affiliation(s)
- Kishore Pradeep
- Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711103, West Bengal, India
| | - Bidyut Pal
- Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711103, West Bengal, India.
| |
Collapse
|
15
|
Hou Z, Wang W, Su S, Chen Y, Chen L, Lu Y, Zhou H. Bibliometric and Visualization Analysis of Biomechanical Research on Lumbar Intervertebral Disc. J Pain Res 2023; 16:3441-3462. [PMID: 37869478 PMCID: PMC10590139 DOI: 10.2147/jpr.s428991] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023] Open
Abstract
Background Biomechanical research on the lumbar intervertebral disc (IVD) provides valuable information for the diagnosis, treatment, and prevention of related diseases, and has received increasing attention. Using bibliometric methods and visualization techniques, this study investigates for the first time the research status and development trends in this field, with the aim of providing guidance and support for subsequent research. Methods The Science Citation Index Expanded (SCI-Expanded) within the Web of Science Core Collection (WoSCC) database was used as the data source to select literature published from 2003 to 2022 related to biomechanical research on lumbar IVD. VOSviewer 1.6.19 and CiteSpace 6.2.R2 visualization software, as well as the online analysis platform of literature metrology, were utilized to generate scientific knowledge maps for visual display and data analysis. Results The United States is the most productive country in this field, with the Ulm University making the largest contribution. Wilke HJ is both the most prolific author and one of the highly cited authors, while Adams MA is the most cited author. Spine, J Biomech, Eur Spine J, Spine J, and Clin Biomech are not only the journals with the highest number of publications, but also highly cited journals. The main research topics in this field include constructing and validating three-dimensional (3D) finite element model (FEM) of lumbar spine, measuring intradiscal pressure, exploring the biomechanical effects and related risk factors of lumbar disc degeneration, studying the mechanical responses to different torque load combinations, and classifying lumbar disc degeneration based on magnetic resonance images (MRI), which are also the hot research themes in recent years. Conclusion This study systematically reviews the knowledge system and development trends in the field of biomechanics of lumbar IVD, providing valuable references for further research.
Collapse
Affiliation(s)
- Zhaomeng Hou
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Department of Orthopedics and Traumatology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, People’s Republic of China
- Department of Orthopedics and Traumatology, Yancheng TCM Hospital, Yancheng, People’s Republic of China
| | - Wei Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Shaoting Su
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Yixin Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Longhao Chen
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Biomechanics and Injury Repair in Traditional Chinese Medicine Orthopedics and Traumatology, Nanning, People’s Republic of China
| | - Yan Lu
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Biomechanics and Injury Repair in Traditional Chinese Medicine Orthopedics and Traumatology, Nanning, People’s Republic of China
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Honghai Zhou
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Biomechanics and Injury Repair in Traditional Chinese Medicine Orthopedics and Traumatology, Nanning, People’s Republic of China
| |
Collapse
|
16
|
Yang Y, Liu J, Qi J, Wang Y, Xu L, Zhang Y, Cheng L. Study of tractor side tilt operation on intervertebral disc injury between L4 and L5 in drivers. Comput Methods Biomech Biomed Engin 2023; 26:1916-1929. [PMID: 36519227 DOI: 10.1080/10255842.2022.2156288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
The tilting of the cab seat when the tractor is in deep ploughing operation changes the sitting position of the driver, which may accelerate lumbar spine injury. This paper adopts the musculoskeletal model and the finite element model of the lumbar L4-L5 segment to predict the maximum Von-Mises stress and maximum strain of the driver's lumbar L4-L5 segment intervertebral disc. In this study, we used 3D motion capture to obtain the driver's spine position spatial data when the tractor tilted at different angles. A tractor-driver musculoskeletal model and a finite element model of the lumbar spine L4-L5 segments were created in AnyBody™ and Abaqus, respectively. The tractor-driver musculoskeletal model was used to calculate the load of the driver's lumbar spine L4-L5 segment at different angles of tractor tilt, which was used as the load condition of the finite element model of the lumbar spine L4-L5 segment, and then the influence of tractor tilt angle and vibration on the driver's lumbar spine L4-L5 disc was studied. The results show that the maximum Von-Mises stress and maximum strain of the driver's lumbar L4-L5 intervertebral disc will increase due to the tilt. The maximum Von-Mises stress occurs in the annulus II, and the maximum strain occurs in the upper end plate of the intervertebral disc. With the occurrence of tilt, the position of the maximum Von-Mises stress changes, which can lead to disc injury to the driver, and vibration may exacerbate this injury.
Collapse
Affiliation(s)
- Yang Yang
- Intelligent Agricultural Equipment Laboratory, Anhui Agricultural University, HeFei, China
- College of Engineering, Anhui Agricultural University, HeFei, China
| | - Jinghui Liu
- Intelligent Agricultural Equipment Laboratory, Anhui Agricultural University, HeFei, China
| | - Jian Qi
- Intelligent Agricultural Equipment Laboratory, Anhui Agricultural University, HeFei, China
| | - Yaping Wang
- School of Mechanical Engineering, Nanjing University of Science and Technology, NanJing, China
| | - Liangyuan Xu
- Intelligent Agricultural Equipment Laboratory, Anhui Agricultural University, HeFei, China
| | | | - Liqing Cheng
- Intelligent Agricultural Equipment Laboratory, Anhui Agricultural University, HeFei, China
| |
Collapse
|
17
|
Panico M, Chande RD, Lindsey DP, Mesiwala A, Polly DW, Villa T, Yerby SA, Brayda-Bruno M, Galbusera F. Stability and Instrumentation Stresses Among Sacropelvic Fixation Techniques With Novel Porous Fusion/Fixation Implants: A Finite Element Study. Int J Spine Surg 2023; 17:598-606. [PMID: 37460239 PMCID: PMC10478686 DOI: 10.14444/8481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Sacropelvic fixation is frequently combined with thoracolumbar instrumentation for correcting spinal deformities. This study aimed to characterize sacropelvic fixation techniques using novel porous fusion/fixation implants (PFFI). METHODS Three T10-pelvis finite element models were created: (1) pedicle screws and rods in T10-S1, PFFI bilaterally in S2 alar-iliac (S2AI) trajectory; (2) fixation in T10-S1, PFFI bilaterally in S2AI trajectory, triangular implants bilaterally above the PFFI in a sacro-alar-iliac trajectory (PFFI-IFSAI); and (3) fixation in T10-S1, PFFI bilaterally in S2AI trajectory, PFFI in sacro-alar-iliac trajectory stacked cephalad to those in S2AI position (2-PFFI). Models were loaded with pure moments of 7.5 Nm in flexion-extension, lateral bending, and axial rotation. Outputs were compared against 2 baseline models: (1) pedicle screws and rods in T10-S1 (PED), and (2) pedicle screws and rods in T10-S1, and S2AI screws. RESULTS PFFI and S2AI resulted in similar L5-S1 motion; adding another PFFI per side (2-PFFI) further reduced this motion. Sacroiliac joint (SIJ) motion was also similar between PFFI and S2AI; PFFI-IFSAI and 2-PFFI demonstrated a further reduction in SIJ motion. Additionally, PFFI reduced max stresses on S1 pedicle screws and on implants in the S2AI position. CONCLUSION The study shows that supplementing a long construct with PFFI increases the stability of the L5-S1 and SIJ and reduces stresses on the S1 pedicle screws and implants in the S2AI position. CLINICAL RELEVANCE The findings suggest a reduced risk of pseudarthrosis at L5-S1 and screw breakage. Clinical studies may be performed to demonstrate applicability to patient outcomes. LEVEL OF EVIDENCE Not applicable (basic science study).
Collapse
Affiliation(s)
- Matteo Panico
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | | | | | - Ali Mesiwala
- DISC Sports and Spine Center, Newport Beach, CA, USA
| | - David W Polly
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Tomaso Villa
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | | | | | | |
Collapse
|
18
|
Lin D, He Z, Weng R, Zhu Y, Lin Z, Deng Y, Yang Y, Tan J, Wang M, Li Y, Huang G, Yu G, Cai D, Huang X, Huang W. Comparison of biomechanical parameters of two Chinese cervical spine rotation manipulations based on motion capture and finite element analysis. Front Bioeng Biotechnol 2023; 11:1195583. [PMID: 37576989 PMCID: PMC10415076 DOI: 10.3389/fbioe.2023.1195583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Objective: The purpose of this study was to obtain the stress-strain of the cervical spine structure during the simulated manipulation of the oblique pulling manipulation and the cervical rotation-traction manipulation in order to compare the mechanical mechanism of the two manipulations. Methods: A motion capture system was used to record the key kinematic parameters of operating the two manipulations. At the same time, a three-dimensional finite element model of the C0-T1 full healthy cervical spine was established, and the key kinematic parameters were loaded onto the finite element model in steps to analyze and simulate the detailed process of the operation of the two manipulations. Results: A detailed finite element model of the whole cervical spine including spinal nerve roots was established, and the validity of this 3D finite element model was verified. During the stepwise simulation of the two cervical spine rotation manipulations to the right, the disc (including the annulus fibrosus and nucleus pulposus) and facet joints stresses and displacements were greater in the oblique pulling manipulation group than in the cervical rotation-traction manipulation group, while the spinal cord and nerve root stresses were greater in the cervical rotation-traction manipulation group than in the oblique pulling manipulation group. The spinal cord and nerve root stresses in the cervical rotation-traction manipulation group were mainly concentrated in the C4/5 and C5/6 segments. Conclusion: The oblique pulling manipulation may be more appropriate for the treatment of cervical spondylotic radiculopathy, while cervical rotation-traction manipulation is more appropriate for the treatment of cervical spondylosis of cervical type. Clinicians should select cervical rotation manipulations for different types of cervical spondylosis according to the patient's symptoms and needs.
Collapse
Affiliation(s)
- Dongxin Lin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zaopeng He
- Center for Orthopaedic Surgery, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Hand and Foot Surgery and Plastic Surgery, Affiliated Shunde Hospital of Guangzhou Medical University, Foshan, China
| | - Rui Weng
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China
| | - Yuhua Zhu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwei Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Yuping Deng
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yang Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinchuan Tan
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mian Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanbin Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Gang Huang
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Guanghao Yu
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Daozhang Cai
- Center for Orthopaedic Surgery, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangzhou, China
| | - Xuecheng Huang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Zhang J, Chen W, Weng R, Liang D, Jiang X, Lin H. Biomechanical effect of endplate defects on the intermediate vertebral bone in consecutive two-level anterior cervical discectomy and fusion: a finite element analysis. BMC Musculoskelet Disord 2023; 24:407. [PMID: 37217909 DOI: 10.1186/s12891-023-06453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/22/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Intermediate vertebral collapse is a newly discovered complication of consecutive two-level anterior cervical discectomy and fusion (ACDF). There have been no analytical studies related to the effects of endplate defects on the biomechanics of the intermediate vertebral bone after ACDF. This study aimed to compare the effects of endplate defects on the intermediate vertebral bone biomechanics in the zero-profile (ZP) and cage-and-plate (CP) methods of consecutive 2-level ACDF and to determine whether collapse of the intermediate vertebra is more likely to occur using ZP. METHODS A three-dimensional finite element (FE) model of the intact cervical spine (C2-T1) was constructed and validated. The intact FE model was then modified to build ACDF models and imitate the situation of endplate injury, establishing two groups of models (ZP, IM-ZP and CP, IM-ZP). We simulated cervical motion, such as flexion, extension, lateral bending and axial rotation, and compared the range of motion (ROM), upper and lower endplate stress, fusion fixation device stress, C5 vertebral body stress, intervertebral disc internal pressure (intradiscal pressure, or IDP) and the ROM of adjacent segments in the models. RESULTS There was no significant difference between the IM-CP model and the CP model in the ROM of the surgical segment, upper and lower endplate stress, fusion fixation device stress, C5 vertebral body stress, IDP, or ROM of the adjacent segments. Compared with the CP model, the endplate stress of the ZP model is significantly higher in the flexion, extension, lateral bending and axial rotation conditions. Compared with the ZP model, endplate stress, screw stress, C5 vertebral stress and IDP in IM-ZP were significantly increased under flexion, extension, lateral bending and axial rotation conditions. CONCLUSIONS Compared to consecutive 2-level ACDF using CP, collapse of the intermediate vertebra is more likely to occur using ZP due to its mechanical characteristics. Intraoperative endplate defects of the anterior lower margin of the middle vertebra are a risk factor leading to collapse of the middle vertebra after consecutive 2-level ACDF using ZP.
Collapse
Affiliation(s)
- Jiarui Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenzhao Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Rui Weng
- Department of Spine Surgery, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - De Liang
- Department of Spine Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spine Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongheng Lin
- Department of Spine Surgery, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, China.
| |
Collapse
|
20
|
Biomechanical and clinical studies on lumbar spine fusion surgery: a review. Med Biol Eng Comput 2023; 61:617-634. [PMID: 36598676 DOI: 10.1007/s11517-022-02750-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
Low back pain is associated with degenerative disc diseases of the spine. Surgical treatment includes fusion and non-fusion types. The gold standard is fusion surgery, wherein the affected vertebral segment is fused. The common complication of fusion surgery is adjacent segment degeneration (ASD). The ASD often leads to revision surgery, calling for a further fusion of adjacent segments. The existing designs of nonfusion type implants are associated with clinical problems such as subsidence, difficulty in implantation, and the requirement of revision surgeries. Various surgical approaches have been adopted by the surgeons to insert the spinal implants into the affected segment. Over the years, extensive biomechanical investigations have been reported on various surgical approaches and prostheses to predict the outcomes of lumbar spine implantations. Computer models have been proven to be very effective in identifying the best prosthesis and surgical procedure. The objective of the study was to review the literature on biomechanical studies for the treatment of lumbar spinal degenerative diseases. A critical review of the clinical and biomechanical studies on fusion spine surgeries was undertaken. The important modeling parameters, challenges, and limitations of the current studies were identified, showing the future research directions.
Collapse
|
21
|
Vanaclocha A, Vanaclocha V, Atienza CM, Jorda-Gomez P, Diaz-Jimenez C, Garcia-Lorente JA, Saiz-Sapena N, Vanaclocha L. ADDISC lumbar disc prosthesis: Analytical and FEA testing of novel implants. Heliyon 2023; 9:e13540. [PMID: 36816293 PMCID: PMC9929472 DOI: 10.1016/j.heliyon.2023.e13540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023] Open
Abstract
The intact intervertebral disc is a six-freedom degree elastic deformation structure with shock absorption. "Ball-and-socket" TDR do not reproduce these properties inducing zygapophyseal joint overload. Elastomeric TDRs reproduce better normal disc kinematics, but repeated core deformation causes its degeneration. We aimed to create a new TDR (ADDISC) reproducing healthy disc features. We designed TDR, analyzed (Finite Element Analysis), and measured every 500,000 cycles for 10 million cycles of the flexion-extension, lateral bending, and axial rotation cyclic compression bench-testing. In the inlay case, we weighted it and measured its deformation. ADDISC has two semi-spherical articular surfaces, one rotation centre for flexion, another for extension, the third for lateral bending, and a polycarbonate urethane inlay providing shock absorption. The first contact is between PCU and metal surfaces. There is no metal-metal contact up to 2000 N, and CoCr28Mo6 absorbs the load. After 10 million cycles at 1.2-2.0 kN loads, wear 140.96 mg (35.50 mm3), but no implant failures. Our TDR has a physiological motion range due to its articular surfaces' shape and the PCU inlay bumpers, minimizing the facet joint overload. ADDISC mimics healthy disc biomechanics and Instantaneous Rotation Center, absorbs shock, reduces wear, and has excellent long-term endurance.
Collapse
Affiliation(s)
- Amparo Vanaclocha
- Escuela de Doctorado, Universitat Politècnica de Valencia, Camí de Vera, s/n, 46022, Valencia, Spain
| | - Vicente Vanaclocha
- University of Valencia, Avenida de Blasco Ibáñez, 15, 46010 Valencia, Spain,Corresponding author.
| | - Carlos M. Atienza
- Instituto de Biomecánica (IBV), Universitat Politècnica de Valencia, Camí de Vera, s/n, 46022 Valencia, Spain,Instituto de Biomecánica de Valencia-CIBER BBN, Grupo de Tecnología Sanitaria (GTS-IBV), Camí de Vera, s/n, 46022 Valencia, Spain
| | - Pablo Jorda-Gomez
- Hospital General Universitario de Castellón, Avenida de Benicàssim, 128, 12004 Castelló de la Plana, Spain
| | - Cristina Diaz-Jimenez
- Industry Association of Navarra, Carretera de Pamplona, 1, 31191 Cordovilla, Navarra, Spain
| | | | - Nieves Saiz-Sapena
- Hospital General Universitario de Valencia, Avenida Tres Cruces 2, Valencia, Spain
| | - Leyre Vanaclocha
- Medius Klinik, Ostfildern-Ruit Klinik für Urologie, Hedelfinger Strasse 166, 73760 Ostfildern, Esslingen, Baden-Wurtemberg, Germany
| |
Collapse
|
22
|
Kassab-Bachi A, Ravikumar N, Wilcox RK, Frangi AF, Taylor ZA. Contribution of Shape Features to Intradiscal Pressure and Facets Contact Pressure in L4/L5 FSUs: An In-Silico Study. Ann Biomed Eng 2023; 51:174-188. [PMID: 36104641 PMCID: PMC9831962 DOI: 10.1007/s10439-022-03072-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/27/2022] [Indexed: 02/01/2023]
Abstract
Finite element models (FEMs) of the spine commonly use a limited number of simplified geometries. Nevertheless, the geometric features of the spine are important in determining its FEM outcomes. The link between a spinal segment's shape and its biomechanical response has been studied, but the co-variances of the shape features have been omitted. We used a principal component (PCA)-based statistical shape modelling (SSM) approach to investigate the contribution of shape features to the intradiscal pressure (IDP) and the facets contact pressure (FCP) in a cohort of synthetic L4/L5 functional spinal units under axial compression. We quantified the uncertainty in the FEM results, and the contribution of individual shape modes to these results. This parameterisation approach is able to capture the variability in the correlated anatomical features in a real population and sample plausible synthetic geometries. The first shape mode ([Formula: see text]) explained 22.6% of the shape variation in the subject-specific cohort used to train the SSM, and had the largest correlation with, and contribution to IDP (17%) and FCP (11%). The largest geometric variation in ([Formula: see text]) was in the annulus-nucleus ratio.
Collapse
Affiliation(s)
- Amin Kassab-Bachi
- grid.9909.90000 0004 1936 8403Institute of Medical and Biological Engineering (iMBE), School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT UK ,grid.9909.90000 0004 1936 8403Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, LS2 9BW UK
| | - Nishant Ravikumar
- grid.9909.90000 0004 1936 8403Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, LS2 9BW UK
| | - Ruth K. Wilcox
- grid.9909.90000 0004 1936 8403Institute of Medical and Biological Engineering (iMBE), School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT UK
| | - Alejandro F. Frangi
- grid.9909.90000 0004 1936 8403Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, LS2 9BW UK ,grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, LS2 9JT UK
| | - Zeike A. Taylor
- grid.9909.90000 0004 1936 8403Institute of Medical and Biological Engineering (iMBE), School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT UK ,grid.9909.90000 0004 1936 8403Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, LS2 9BW UK
| |
Collapse
|
23
|
Knapik GG, Mendel E, Bourekas E, Marras WS. Computational lumbar spine models: A literature review. Clin Biomech (Bristol, Avon) 2022; 100:105816. [PMID: 36435080 DOI: 10.1016/j.clinbiomech.2022.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Computational spine models of various types have been employed to understand spine function, assess the risk that different activities pose to the spine, and evaluate techniques to prevent injury. The areas in which these models are applied has expanded greatly, potentially beyond the appropriate scope of each, given their capabilities. A comprehensive understanding of the components of these models provides insight into their current capabilities and limitations. METHODS The objective of this review was to provide a critical assessment of the different characteristics of model elements employed across the spectrum of lumbar spine modeling and in newer combined methodologies to help better evaluate existing studies and delineate areas for future research and refinement. FINDINGS A total of 155 studies met selection criteria and were included in this review. Most current studies use either highly detailed Finite Element models or simpler Musculoskeletal models driven with in vivo data. Many models feature significant geometric or loading simplifications that limit their realism and validity. Frequently, studies only create a single model and thus can't account for the impact of subject variability. The lack of model representation for certain subject cohorts leaves significant gaps in spine knowledge. Combining features from both types of modeling could result in more accurate and predictive models. INTERPRETATION Development of integrated models combining elements from different model types in a framework that enables the evaluation of larger populations of subjects could address existing voids and enable more realistic representation of the biomechanics of the lumbar spine.
Collapse
Affiliation(s)
- Gregory G Knapik
- Spine Research Institute, The Ohio State University, 210 Baker Systems, 1971 Neil Avenue, Columbus, OH 43210, USA.
| | - Ehud Mendel
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Eric Bourekas
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA
| | - William S Marras
- Spine Research Institute, The Ohio State University, 210 Baker Systems, 1971 Neil Avenue, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Wang Q, Gao Z, Guo K, Wang F, Wu D. Effect of sagittal screw angle and distance of screw apex to superior endplate on adjacent segment disease after posterolateral lumbar fusion: a retrospective study. J Orthop Surg Res 2022; 17:486. [DOI: 10.1186/s13018-022-03383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Numerous complications of lumbar fusion surgery have been reported, with adjacent segment disease (ASD) being one of the most important. Few studies describe the effect of sagittal, horizontal screw angles and distance of pedicle screw apex to superior endplate on the incidence of ASD in lumbar spine. The purpose of this retrospective study is to evaluate the hypothesis that unsatisfactory pedicle screw insertion positions would increase the likelihood of ASD.
Methods
Outpatients with lumbar spinal stenosis underwent posterolateral lumbar fusion at L4-S1 with a least 2-year follow-up were studied. ASD at L3–L4 was defined as a condition in which intervertebral disk narrowing, posterior vertebral opening, and vertebral slippage progress at the last follow-up in comparison with the postoperative. Independent t test was performed to compare data between two groups; Spearman analysis was performed to analyze the relationship between two continuous variables. Multivariate binary logistic models were performed to identify the independent risk factors of ASD. The receiver operating characteristic (ROC) curve was performed to measure model discrimination and Hosmer–Lemeshow (H–L) test was used to measure calibration. ROC curve evaluated the discrimination ability of sagittal screw angle and distance in predicting incidence of ASD.
Results
Patients in ASD group exhibit higher incidence of osteoporosis, higher Visual analogue scale (VAS), Oswestry disability index (ODI), bigger sagittal screw angle, shorter distance of pedicle screw apex to superior endplate than those in non-ASD group (p < 0.05). VAS, ODI at the last follow-up were positively correlated with Pfirrmann grade of L3–4 disk and sagittal screw angle, while negatively correlated with distance of screw apex to superior endplate (p < 0.05). Multivariate binary logistic model indicated that follow-up time (odds ratio [OR] 1.637, 95% confidence interval [CI] 1.186–2.260), distance of screw apex to superior endplate (OR 0.150, 95% CI 0.067–0.336), sagittal screw angle (OR 2.404, 95% CI 1.608–3.594) were statistically significant. The models showed great discrimination and calibration. The area under the curve of ASD identified by sagittal angle and distance was 0.895 and the cut-off values were 5.500° and 6.250 mm, respectively.
Conclusion
Sagittal screw angle and distance of screw apex to superior endplate were significantly associated with the risk of ASD.
Collapse
|
25
|
Pan A, Ding H, Wang J, Zhang Z, Zhang H, Liu Y, Hai Y. The application of finite element analysis to determine the optimal UIV of growing-rod treatment in early-onset scoliosis. Front Bioeng Biotechnol 2022; 10:978554. [PMID: 36118572 PMCID: PMC9478657 DOI: 10.3389/fbioe.2022.978554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Objectives: To analyze the stress distribution in the proximal vertebral body and soft tissue of dual growing-rod (GR) with different upper instrumented vertebra (UIV) to determine the optimal UIV. Methods: A ten-year-old male EOS case treated with GR was selected. Based on spiral computed tomography (CT) scanning performed in 0.6 mm thick slices, a finite element model (FEM) of the preoperative state (M0, the original spine state) of the patient was created. Subsequently, four models with different UIV fixations were numerically analyzed by FEM, including M1 (UIV = T1, i.e., the upper-end vertebrae (UEV) of the upper thoracic curve), M2 (UIV = T2), M3 (UIV = T3) and M4 (UIV = T4, i.e., the lower end vertebrae (LEV) of the upper thoracic curve). Displacement and maximum stress in the proximal vertebral body and soft tissue were measured and compared among the five models. Results: The spine model was fixed with the sacrum, and the gravity conditions were imposed on each vertebral body according to the research of Clin and Pearsall. The results are as follows:M4 model has the largest overall displacement, while M1 has the least displacement among the four models. Except M2, the maximum normalized stress of UIV increases with the downward movement of UIV. M1 has the lowerest annulus fibrosus stress and highest joint capsule stress, which is characterized by the vertebrae backward leaning, while M4 is the opposite. The supraspinous ligament stress of M3 and M4 is significantly higher than that of M1 and M2. This suggests that UIV downshift increases the tendency of the proximal vertebral bodies to bend forward, thereby increasing the tension of the posterior ligaments (PL). Conclusion: The UIV of the GR is recommended to be close to the UEV of the upper thoracic curve, which can reduce the stress of the proximal PL, thereby reducing the occurrence of proximal junctional kyphosis (PJK).
Collapse
Affiliation(s)
- Aixing Pan
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongtao Ding
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Junjie Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhuo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuzeng Liu
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yong Hai, ; Yuzeng Liu,
| | - Yong Hai
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yong Hai, ; Yuzeng Liu,
| |
Collapse
|
26
|
Patient-Specific Finite Element Modeling of the Whole Lumbar Spine Using Clinical Routine Multi-Detector Computed Tomography (MDCT) Data-A Pilot Study. Biomedicines 2022; 10:biomedicines10071567. [PMID: 35884872 PMCID: PMC9312902 DOI: 10.3390/biomedicines10071567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
(1) Background: To study the feasibility of developing finite element (FE) models of the whole lumbar spine using clinical routine multi-detector computed tomography (MDCT) scans to predict failure load (FL) and range of motion (ROM) parameters. (2) Methods: MDCT scans of 12 subjects (6 healthy controls (HC), mean age ± standard deviation (SD): 62.16 ± 10.24 years, and 6 osteoporotic patients (OP), mean age ± SD: 65.83 ± 11.19 years) were included in the current study. Comprehensive FE models of the lumbar spine (5 vertebrae + 4 intervertebral discs (IVDs) + ligaments) were generated (L1−L5) and simulated. The coefficients of correlation (ρ) were calculated to investigate the relationship between FE-based FL and ROM parameters and bone mineral density (BMD) values of L1−L3 derived from MDCT (BMDQCT-L1-3). Finally, Mann−Whitney U tests were performed to analyze differences in FL and ROM parameters between HC and OP cohorts. (3) Results: Mean FE-based FL value of the HC cohort was significantly higher than that of the OP cohort (1471.50 ± 275.69 N (HC) vs. 763.33 ± 166.70 N (OP), p < 0.01). A strong correlation of 0.8 (p < 0.01) was observed between FE-based FL and BMDQCT-L1-L3 values. However, no significant differences were observed between ROM parameters of HC and OP cohorts (p = 0.69 for flexion; p = 0.69 for extension; p = 0.47 for lateral bending; p = 0.13 for twisting). In addition, no statistically significant correlations were observed between ROM parameters and BMDQCT- L1-3. (4) Conclusions: Clinical routine MDCT data can be used for patient-specific FE modeling of the whole lumbar spine. ROM parameters do not seem to be significantly altered between HC and OP. In contrast, FE-derived FL may help identify patients with increased osteoporotic fracture risk in the future.
Collapse
|
27
|
Huang S, Min S, Wang S, Jin A. Biomechanical effects of an oblique lumbar interbody fusion combined with posterior augmentation: a finite element analysis. BMC Musculoskelet Disord 2022; 23:611. [PMID: 35761228 PMCID: PMC9235194 DOI: 10.1186/s12891-022-05553-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background Oblique lateral interbody fusion (OLIF) is widely used to treat lumbar degenerative disc disease. This study aimed to evaluate the biomechanical stability of OLIF, OLIF including posterior pedicle screw and rod (PSR), and OLIF including cortical screw and rod (CSR) instrumentation through finite element analysis. Methods A complete L2-L5 finite element model of the lumbar spine was constructed. Surgical models of OLIF, such as stand-alone, OLIF combined with PSR, and OLIF combined with CSR were created in the L3-L4 surgical segments. Range of motion (ROM), end plate stress, and internal fixation peak stress were compared between different models under the same loading conditions. Results Compared to the intact model, ROM was reduced in the OLIF model under all loading conditions. The surgical models in order of increasing ROM were PSR, CSR, and stand-alone; however, the difference in ROM between BPS and CSR was less than 0.4° and was not significant under any loading conditions. The stand-alone model had the highest stress on the superior L4 vertebral body endplate under all loading conditions, whereas the end plate stress was relatively low in the BPS and CSR models. The CSR model had the highest internal fixation stress, concentrated primarily at the end of the screw. Conclusions OLIF alone significantly reduces ROM but does not provide sufficient stability. Addition of posterior PSR or CSR internal fixation instrumentation to OLIF surgery can significantly improve biomechanical stability of the segment undergoing surgery.
Collapse
|
28
|
Balasubramanian S, D'Andrea C, Viraraghavan G, Cahill PJ. Development of a Finite Element Model of the Pediatric Thoracic and Lumbar Spine, Ribcage, and Pelvis with Orthotropic Region-Specific Vertebral Growth. J Biomech Eng 2022; 144:1140398. [PMID: 35466381 DOI: 10.1115/1.4054410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 11/08/2022]
Abstract
Finite element (FE) modeling of the spine has increasingly been applied in orthopedic precision-medicine approaches. Previously published FE models of the pediatric spine growth have made simplifications in geometry of anatomical structures, material properties, and representation of vertebral growth. To address those limitations, a comprehensive FE model of a pediatric (10-year-old) osteo-ligamentous thoracic and lumbar spine (T1-L5 with intervertebral discs (IVDs) and ligaments), ribcage, and pelvis with age- and level-specific ligament properties and orthotropic region-specific vertebral growth was developed and validated. Range of motion (ROM) measures, namely lateral bending, flexion-extension, and axial rotation, of the current 10 YO FE model were generally within reported ranges of scaled in vitro adult ROM data. Changes in T1-L5 spine height, as well as kyphosis (T2-T12) and lordosis (L1-L5) angles in the current FE model for two years of growth (from ages 10 to 12 years) were within ranges reported from corresponding pediatric clinical data. The use of such comprehensive pediatric FE models can provide clinically relevant insights into normative and pathological biomechanical responses of the spine, and also contribute to the development and optimization of clinical interventions for spine deformities.
Collapse
Affiliation(s)
- Sriram Balasubramanian
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Christian D'Andrea
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Girish Viraraghavan
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Patrick J Cahill
- Division of Orthopaedics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Heo M, Yun J, Kim H, Lee SS, Park S. Optimization of a lumbar interspinous fixation device for the lumbar spine with degenerative disc disease. PLoS One 2022; 17:e0265926. [PMID: 35390024 PMCID: PMC8989208 DOI: 10.1371/journal.pone.0265926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/10/2022] [Indexed: 11/19/2022] Open
Abstract
Interspinous spacer devices used in interspinous fixation surgery remove soft tissues in the lumbar spine, such as ligaments and muscles and may cause degenerative diseases in adjacent segments its stiffness is higher than that of the lumbar spine. Therefore, this study aimed to structurally and kinematically optimize a lumbar interspinous fixation device (LIFD) using a full lumbar finite element model that allows for minimally invasive surgery, after which the normal behavior of the lumbar spine is not affected. The proposed healthy and degenerative lumbar spine models reflect the physiological characteristics of the lumbar spine in the human body. The optimum number of spring turns and spring wire diameter in the LIFD were selected as 3 mm and 2 turns, respectively—from a dynamic range of motion (ROM) perspective rather than a structural maximum stress perspective—by applying a 7.5 N∙m extension moment and 500 N follower load to the LIFD-inserted lumbar spine model. As the spring wire diameter in the LIFD increased, the maximum stress generated in the LIFD increased, and the ROM decreased. Further, as the number of spring turns decreased, both the maximum stress and ROM of the LIFD increased. When the optimized LIFD was inserted into a degenerative lumbar spine model with a degenerative disc, the facet joint force of the L3-L4 lumbar segment was reduced by 56%–98% in extension, lateral bending, and axial rotation. These results suggest that the optimized device can strengthen the stability of the lumbar spine that has undergone interspinous fixation surgery and reduce the risk of degenerative diseases at the adjacent lumbar segments.
Collapse
Affiliation(s)
- Minhyeok Heo
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea (South Korea)
| | - Jihwan Yun
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea (South Korea)
| | - Hanjong Kim
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea (South Korea)
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea (South Korea)
| | - Seonghun Park
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea (South Korea)
- * E-mail:
| |
Collapse
|
30
|
Biswas JK, Malas A, Majumdar S, Rana M. A comparative finite element analysis of artificial intervertebral disc replacement and pedicle screw fixation of the lumbar spine. Comput Methods Biomech Biomed Engin 2022; 25:1812-1820. [PMID: 35152795 DOI: 10.1080/10255842.2022.2039130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Titanium alloy-based Pedicle screw-rod fusion is a very common technique to provide higher fusion regularity than other methods. In recent times, Carbon-fibre-reinforced (CFR)-PEEK rod is used to better reduce the fusion rate. Alternatively, total disc replacement (TDR) is also very common for the non-fusion treatment method for degenerative disc disease (DDD). This study aims to investigate flexibility (ROM), stability, stress condition in implant, implant adjacent bone of the implanted lumbar spine during different physiological movements and loading environments. The finite element (FE) intact model of the lumbar spine (L2-L5) with two-level pedicle screw-rod fusion at L3-L4-L5 and two-level artificial disc replacement was developed. CFR-PEEK was taken for rod for semi-rigid fusion. UHMWPE was taken as core part of the artificial disc. The FE models were simulated under 6, 8 and 10 Nm moments in left right lateral bending, flexion and extension movements. The total ROM was reduced for two-level pedicle screw fixation and increased for the artificial disc replacement model during flexion extension compared to the intact spine. The total ROM was reduced by around 54% and 25% for two-level fixation and increased by 30% and 19.5% for artificial disc replacement spine, under flexion-extension and left-right lateral bending respectively. For screw fixation, the ROM increased by 15% and 18% reduced by 4.5% and 14% for disc replacement at the adjacent segments for flexion-extension and left-right lateral bending.
Collapse
Affiliation(s)
- Jayanta Kumar Biswas
- Department of Mechanical Engineering, National Institute of Technology, Patna, Bihar, India
| | - Anindya Malas
- Department of Mechanical Engineering, National Institute of Technology, Patna, Bihar, India
| | - Sourav Majumdar
- Department of Applied Science & Humanities, Guru Nanak Institute of Technology, Kolkata, West Bengal, India
| | - Masud Rana
- Department of Aerospace Engineering & Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, India
| |
Collapse
|
31
|
Low-Modulus PMMA Has the Potential to Reduce Stresses on Endplates after Cement Discoplasty. J Funct Biomater 2022; 13:jfb13010018. [PMID: 35225981 PMCID: PMC8883899 DOI: 10.3390/jfb13010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Cement discoplasty has been developed to treat patients with advanced intervertebral disc degeneration. In discoplasty, poly(methylmethacrylate) (PMMA) bone cement is injected into the disc, leading to reduced pain and certain spinal alignment correction. Standard PMMA-cements have much higher elastic modulus than the surrounding vertebral bone, which may lead to a propensity for adjacent fractures. A PMMA-cement with lower modulus might be biomechanically beneficial. In this study, PMMA-cements with lower modulus were obtained using previously established methods. A commercial PMMA-cement (V-steady®, G21 srl) was used as control, and as base cement. The low-modulus PMMA-cements were modified by 12 vol% (LA12), 16 vol% (LA16) and 20 vol% (LA20) linoleic acid (LA). After storage in 37 °C PBS from 24 h up to 8 weeks, specimens were tested in compression to obtain the material properties. A lower E-modulus was obtained with increasing amount of LA. However, with storage time, the E-modulus increased. Standard and low-modulus PMMA discoplasty were compared in a previously developed and validated computational lumbar spine model. All discoplasty models showed the same trend, namely a substantial reduction in range of motion (ROM), compared to the healthy model. The V-steady model had the largest ROM-reduction (77%), and the LA20 model had the smallest (45%). The average stress at the endplate was higher for all discoplasty models than for the healthy model, but the stresses were reduced for cements with higher amounts of LA. The study indicates that low-modulus PMMA is promising for discoplasty from a mechanical viewpoint. However, validation experiments are needed, and the clinical setting needs to be further considered.
Collapse
|
32
|
Investigation of Reaction Forces in the Thoracolumbar Fascia during Different Activities: A Mechanistic Numerical Study. Life (Basel) 2021; 11:life11080779. [PMID: 34440523 PMCID: PMC8400736 DOI: 10.3390/life11080779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022] Open
Abstract
Spinal instability remains a complex phenomenon to study while the cause of low back pain continues to challenge researchers. The role of fascia in biomechanics adds to the complexity of spine biomechanics but offers a new window from which to investigate our spines. Specifically, the thoracolumbar fascia may have an important role in spine biomechanics, and thus the purpose of this study was to access the mechanical influence of the thoracolumbar fascia on spine biomechanics during different simulated activities. A numerical finite element model of the lumbar spine inclusive of the intra-abdominal and intra-muscular regions as well as the thoracolumbar fascia was constructed and validated. Four different loading scenarios were simulated while deformation, stress, pressure, and reaction forces between the thoracolumbar fascia and spine were measured. Model validation was accomplished through comparison to in vivo and ex vivo published studies. Force transmission between the thoracolumbar fascia and the spine increased 40% comparing kyphotic and squatting lifting patterns. Further, the importance of reciprocating paraspinal and intra-abdominal pressures was demonstrated. It was also found that tension in the thoracolumbar fascia remains even in a simulated prone position. This numerical analysis allowed for an objective interpretation of the loads conveyed through the thoracolumbar fascia in different positional or lifting scenarios. Based on validation studies, it would appear to be a viable experimental platform from which insight can be derived. The loads in the thoracolumbar fascia vary considerably based on simulated tasks and are linked to the pressures in the paraspinal and intra-abdominal regions.
Collapse
|
33
|
Li J, Xu C, Zhang X, Xi Z, Liu M, Fang Z, Wang N, Xie L, Song Y. TELD with limited foraminoplasty has potential biomechanical advantages over TELD with large annuloplasty: an in-silico study. BMC Musculoskelet Disord 2021; 22:616. [PMID: 34246272 PMCID: PMC8272903 DOI: 10.1186/s12891-021-04504-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background Facetectomy, an important procedure in the in–out and out–in techniques of transforaminal endoscopic lumbar discectomy (TELD), is related to the deterioration of the postoperative biomechanical environment and poor prognosis. Facetectomy may be avoided in TELD with large annuloplasty, but iatrogenic injury of the annulus and a high grade of nucleotomy have been reported as risk factors influencing poor prognosis. These risk factors may be alleviated in TELD with limited foraminoplasty, and the grade of facetectomy in this surgery can be reduced by using an endoscopic dynamic drill. Methods An intact lumbo-sacral finite element (FE) model and the corresponding model with adjacent segment degeneration were constructed and validated to evaluate the risk of biomechanical deterioration and related postoperative complications of TELD with large annuloplasty and TELD with limited foraminoplasty. Changes in various biomechanical indicators were then computed to evaluate the risk of postoperative complications in the surgical segment. Results Compared with the intact FE models, the model of TELD with limited foraminoplasty demonstrated slight biomechanical deterioration, whereas the model of TELD with large annuloplasty revealed obvious biomechanical deterioration. Degenerative changes in adjacent segments magnified, rather than altered, the overall trends of biomechanical change. Conclusions TELD with limited foraminoplasty presents potential biomechanical advantages over TELD with large annuloplasty. Iatrogenic injury of the annulus and a high grade of nucleotomy are risk factors for postoperative biomechanical deterioration and complications of the surgical segment.
Collapse
Affiliation(s)
- Jingchi Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital/West China School of Medicine for Sichuan University, 37# Wuhou Guoxue road, Chengdu, Sichuan Province, 610041, P.R. China
| | - Chen Xu
- Department of Spine Surgery, Changzheng Hospital Affiliated to the Naval Medical University, Shanghai, 200041, China
| | - Xiaoyu Zhang
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine for Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, P.R. China
| | - Zhipeng Xi
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine for Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, P.R. China
| | - Mengnan Liu
- Macau University of Science and Technology, Macau, 999078, China
| | - Zhongxin Fang
- Fluid and Power Machinery Key Laboratory of Ministry of Education, Xihua University, Chengdu, 610039, China
| | - Nan Wang
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine for Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, P.R. China
| | - Lin Xie
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine for Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, P.R. China.
| | - Yueming Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital/West China School of Medicine for Sichuan University, 37# Wuhou Guoxue road, Chengdu, Sichuan Province, 610041, P.R. China.
| |
Collapse
|
34
|
Du Y, Tavana S, Rahman T, Baxan N, Hansen UN, Newell N. Sensitivity of Intervertebral Disc Finite Element Models to Internal Geometric and Non-geometric Parameters. Front Bioeng Biotechnol 2021; 9:660013. [PMID: 34222211 PMCID: PMC8247778 DOI: 10.3389/fbioe.2021.660013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Finite element models are useful for investigating internal intervertebral disc (IVD) behaviours without using disruptive experimental techniques. Simplified geometries are commonly used to reduce computational time or because internal geometries cannot be acquired from CT scans. This study aimed to (1) investigate the effect of altered geometries both at endplates and the nucleus-anulus boundary on model response, and (2) to investigate model sensitivity to material and geometric inputs, and different modelling approaches (graduated or consistent fibre bundle angles and glued or cohesive inter-lamellar contact). Six models were developed from 9.4 T MRIs of bovine IVDs. Models had two variations of endplate geometry (a simple curved profile from the centre of the disc to the periphery, and precise geometry segmented from MRIs), and three variations of NP-AF boundary (linear, curved, and segmented). Models were subjected to axial compressive loading (to 0.86 mm at a strain rate of 0.1/s) and the effect on stiffness and strain distributions, and the sensitivity to modelling approaches was investigated. The model with the most complex geometry (segmented endplates, curved NP-AF boundary) was 3.1 times stiffer than the model with the simplest geometry (curved endplates, linear NP-AF boundary), although this difference may be exaggerated since segmenting the endplates in the complex geometry models resulted in a shorter average disc height. Peak strains were close to the endplates at locations of high curvature in the segmented endplate models which were not captured in the curved endplate models. Differences were also seen in sensitivity to material properties, graduated fibre angles, cohesive rather than glued inter-lamellar contact, and NP:AF ratios. These results show that FE modellers must take care to ensure geometries are realistic so that load is distributed and passes through IVDs accurately.
Collapse
Affiliation(s)
- Yuekang Du
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Saman Tavana
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Tamanna Rahman
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Nicoleta Baxan
- Biological Imaging Centre, Central Biomedical Services, Imperial College London, London, United Kingdom
| | - Ulrich N. Hansen
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Nicolas Newell
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
35
|
Wang W, Zhou C, Guo R, Cha T, Li G. Prediction of biomechanical responses of human lumbar discs - a stochastic finite element model analysis. Comput Methods Biomech Biomed Engin 2021; 24:1730-1741. [PMID: 34121532 DOI: 10.1080/10255842.2021.1914023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Accurate biomechanical investigation of human intervertebral discs (IVDs) is difficult because of their complicated structural and material features. AIM To investigate probabilistic distributions of the biomechanical responses of the IVD by considering varying nonlinear structural and material properties using a stochastic finite element (FE) model. METHODS A FE model of a L3-4 disc was reconstructed, including the nucleus pulposus (NP), annular matrix and fibers. A Monte Carlo method was used to randomly generate 500 sets of the nonlinear material properties and fiber orientations of the disc that were implemented into the FE model. The FE model was analyzed under seven loading conditions: a 500 N compressive force, a 7.5Nm moment simulating flexion, extension, left-right lateral bending, and left-right axial rotation, respectively. The distributions of the ranges of motion (ROMs), intradiscal pressures (IDP), fiber stresses and matrix strains of the disc were analyzed. RESULTS Under the compressive load, the displacement varied between 0.29 mm and 0.76 mm. Under the 7.5Nm moment, the ROMs varied between 3.0° and 6.0° in primary rotations. The IDPs varied within 0.3 MPa under all the loading conditions. The maximal fiber stress (3.22 ± 0.64 MPa) and matrix strain (0.27 ± 0.12%) were observed under the flexion and extension moments, respectively. CONCLUSION The IVD biomechanics could be dramatically affected by the structural and material parameters used to construct the FE model. The stochastic FE model that includes the probabilistic distributions of the structural and material parameters provides a useful approach to analyze the statistical ranges of the biomechanical responses of the IVDs.
Collapse
Affiliation(s)
- Wei Wang
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chaochao Zhou
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Runsheng Guo
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Thomas Cha
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guoan Li
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA
| |
Collapse
|
36
|
Lu Y, Cheng L, Zhu H. Influence of nucleotomy on the load sharing in the spinal facet joint under the loading scenarios of different human postures. Med Eng Phys 2021; 93:35-41. [PMID: 34154773 DOI: 10.1016/j.medengphy.2021.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 03/02/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
One-in-five people suffer from chronic low back pain (LBP). The incidence of this disease has doubled since 1950s and affects not only the elderly, but also the young population. However, the mechanism of LBP is still unknown. A possible location where the LBP may develop is the facet joint and it has been revealed that the intervertebral disc (IVD) nucleotomy may be a trigger for LBP. The aim of the present study was to investigate the influence of IVD nucleotomy on the load sharing in the spinal facet joint under the loading scenarios of different postures. Finite element (FE) models of the intact and nucleotomised L4 - L5 spinal segments were generated from the clinical CT images. Seven human postures, including upright, 5° extension, 5° flexion, ± 6° lateral bending and ± 2° axial rotation, were simulated. The resultant forces in the fact joint were compared between the intact and the nucleotomised cases. It was revealed that the IVD nucleotomy significantly increased the forces in the facet joints under the loading scenarios of upright, 5° extension and 5° flexion. The IVD nucleotomy increased the force in the ipsilateral facet joint but decreased the force on the contralateral side under the loading scenarios of ± 2° axial rotation. However, the IVD nucleotomy made little influence on the resultant forces in both facet joints in the postures of ± 6° lateral bending. In conclusion, the IVD nucleotomy can cause an increase in the overall force in the facet joint, and thus may serve as a possible explanation for the LBP and a main contributing factor for the pain complaints.
Collapse
Affiliation(s)
- Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China; State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China; DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China.
| | - LiangLiang Cheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China.
| | - Hanxing Zhu
- School of Engineering, Cardiff University, Queen's Buildings, the Parade, CF24 3AA Cardiff, UK
| |
Collapse
|
37
|
Remus R, Lipphaus A, Neumann M, Bender B. Calibration and validation of a novel hybrid model of the lumbosacral spine in ArtiSynth-The passive structures. PLoS One 2021; 16:e0250456. [PMID: 33901222 PMCID: PMC8075237 DOI: 10.1371/journal.pone.0250456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/07/2021] [Indexed: 12/04/2022] Open
Abstract
In computational biomechanics, two separate types of models have been used predominantly to enhance the understanding of the mechanisms of action of the lumbosacral spine (LSS): Finite element (FE) and musculoskeletal multibody (MB) models. To combine advantages of both models, hybrid FE-MB models are an increasingly used alternative. The aim of this paper is to develop, calibrate, and validate a novel passive hybrid FE-MB open-access simulation model of a ligamentous LSS using ArtiSynth. Based on anatomical data from the Male Visible Human Project, the LSS model is constructed from the L1-S1 rigid vertebrae interconnected with hyperelastic fiber-reinforced FE intervertebral discs, ligaments, and facet joints. A mesh convergence study, sensitivity analyses, and systematic calibration were conducted with the hybrid functional spinal unit (FSU) L4/5. The predicted mechanical responses of the FSU L4/5, the lumbar spine (L1-L5), and the LSS were validated against literature data from in vivo and in vitro measurements and in silico models. Spinal mechanical responses considered when loaded with pure moments and combined loading modes were total and intervertebral range of motions, instantaneous axes and centers of rotation, facet joint contact forces, intradiscal pressures, disc bulges, and stiffnesses. Undesirable correlations with the FE mesh were minimized, the number of crisscrossed collagen fiber rings was reduced to five, and the individual influences of specific anatomical structures were adjusted to in vitro range of motions. Including intervertebral motion couplings for axial rotation and nonlinear stiffening under increasing axial compression, the predicted kinematic and structural mechanics responses were consistent with the comparative data. The results demonstrate that the hybrid simulation model is robust and efficient in reproducing valid mechanical responses to provide a starting point for upcoming optimizations and extensions, such as with active skeletal muscles.
Collapse
Affiliation(s)
- Robin Remus
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| | - Andreas Lipphaus
- Biomechanics Research Group, Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Marc Neumann
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Beate Bender
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
38
|
Talukdar RG, Mukhopadhyay KK, Dhara S, Gupta S. Numerical analysis of the mechanical behaviour of intact and implanted lumbar functional spinal units: Effects of loading and boundary conditions. Proc Inst Mech Eng H 2021; 235:792-804. [PMID: 33832355 DOI: 10.1177/09544119211008343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this study was to develop an improved finite element (FE) model of a lumbar functional spinal unit (FSU) and to subsequently analyse the deviations in load transfer owing to implantation. The effects of loading and boundary conditions on load transfer in intact and implanted FSUs and its relationship with the potential risk of vertebral fracture were investigated. The FE models of L1-L5 and L3-L4 FSUs, intact and implanted, were developed using patient-specific CT-scan dataset and segmentation of cortical and cancellous bone regions. The effect of submodelling technique, as compared to artificial boundary conditions, on the elastic behaviour of lumbar spine was examined. Applied forces and moments, corresponding to physiologic movements, were used as loading conditions. Results indicated that the loading and boundary conditions considerably affect stress-strain distributions within a FSU. This study, based on an improved FE model of a vertebra, highlights the importance of using the submodelling technique to adequately evaluate the mechanical behaviour of a FSU. In the intact FSU, strains of 200-400 µε were observed in the cancellous bone of vertebral body and pedicles. High equivalent stresses of 10-25 MPa and 1-5 MPa were generated around the pars interarticularis for cortical and cancellous regions, respectively. Implantation caused reductions of 85%-92% in the range of motion for all movements. Insertion of the intervertebral cage resulted in major deviations in load transfer across a FSU for all movements. The cancellous bone around cage experienced pronounced increase in stresses of 10-15 MPa, which indicated potential risk of failure initiation in the vertebra.
Collapse
Affiliation(s)
- Rahul Gautam Talukdar
- Advanced Technology and Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | | | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Sanjay Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
39
|
Biswas JK, Rana M, Malas A, Roy S, Chatterjee S, Choudhury S. Effect of single and multilevel artificial inter-vertebral disc replacement in lumbar spine: A finite element study. Int J Artif Organs 2021; 45:193-199. [PMID: 33706581 DOI: 10.1177/03913988211001875] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Degenerative disc disease (DDD) in lumbar spine is one of the major musculoskeletal disorders that cause low back pain (LBP). The intervertebral disc structure and dynamics of the lumbar spine are significantly affected by lumbar DDD, leading to a reduced range of motion (ROM), muscle weakness and gradual degradation. Spinal fusion and inter-vertebral disc replacement prostheses are two major surgical methods used for treating lumbar DDD. The aim of this present study is to examine biomechanical impacts of single level (L3-L4 and L4-L5) and multi level (L3-L4-L5) inter-vertebral disc replacement in lumbar spine (L2-L5) and to compare the performance with intact spine. Finite element (FE) analysis has been used to compare the mobility and stress distribution of all the models for four physiological movements, namely flexion, extension, left and right lateral bending under 6, 8 and 10 Nm moments. Spinal fusion implants completely restrict the motion of the implanted segment and increase disc stress at the adjacent levels. In contrast to that, the results single level ADR models showed closer ROM and disc stress to natural model. At the spinal segments adjacent to the implantation, single level ADR shows lower chance of disc degeneration. However, significantly increased ROM was observed in case of double level ADR.
Collapse
Affiliation(s)
- Jayanta Kumar Biswas
- Department of Mechanical Engineering, National Institute of Technology, Patna, India
| | - Masud Rana
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Anindya Malas
- Department of Mechanical Engineering, National Institute of Technology, Patna, India
| | - Sandipan Roy
- Department of Mechanical Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Subhomoy Chatterjee
- Department of Sports Biomechanics, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sandeep Choudhury
- Department of Mechanical Engineering, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
40
|
Spina NT, Moreno GS, Brodke DS, Finley SM, Ellis BJ. Biomechanical effects of laminectomies in the human lumbar spine: a finite element study. Spine J 2021; 21:150-159. [PMID: 32768656 DOI: 10.1016/j.spinee.2020.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Previous studies have analyzed the effect of laminectomy on intervertebral disc (IVD), facet-joint-forces (FJF), and range of motion (ROM), while only two have specifically reported stresses at the pars interarticularis (PI) with posterior element resection. These studies have been performed utilizing a single subject, questioning their applications to a broader population. PURPOSE We investigate the effect of graded PI resection in a three-dimensional manner on PI stress to provide surgical guidelines for avoidance of iatrogenic instability following lumbar laminectomy. Additionally, quantified FJF and IVD stresses can provide further insight into the development of adjacent segment disease. STUDY DESIGN Biomechanical finite element (FE) method investigation of the lumbar spine. METHODS FE models of the lumbar spine of three subjects were created using the open-source finite element software, FEBio. Single-level laminectomy, two-level laminectomy, and ventral-to-dorsal PI resection simulations were performed with varying degrees of PI resection from 0% to 75% of the native PI. These models were taken through cardinal ROM under standard loading conditions and PI stresses, FJF, IVD stresses, and ROM were analyzed. RESULTS The three types of laminectomy simulated in this study showed a nonlinear increase in PI stress with increased bone resection. Axial rotation generated the most stress at the PI followed by flexion, extension and lateral bending. At 75% bone resection all three types of laminectomy produced PI stresses that were near the ultimate strength of human cortical bone during axial rotation. FJF decreased with increased bone resection for the three laminectomies simulated. This was most notable in axial rotation followed by extension and lateral bending. IVD stresses varied greatly between the nonsurgical models and likewise the effect of laminectomy on IVD stresses varied between subjects. ROM was mostly unaffected by the laminectomies performed in this study. CONCLUSIONS Regarding the risk of iatrogenic spondylolisthesis, the combined results are sufficient evidence to suggest surgeons should be particularly cautious when PI resection exceeds 50% bone resection for all laminectomies included in this study. Lastly, the effects seen in FJF and IVD stresses indicate the degree to which the remainder of the spine must experience compensatory biomechanical changes as a result of the surgical intervention.
Collapse
Affiliation(s)
- Nicholas T Spina
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT 84108, USA
| | - Genesis S Moreno
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, SMBB 3100, Salt Lake City, UT 84112, USA; Scientific Computing and Imaging Institute, University of Utah, 72 South Central Campus Drive, Rm. 3750, Salt Lake City, UT 84112, USA
| | - Darrel S Brodke
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT 84108, USA
| | - Sean M Finley
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, SMBB 3100, Salt Lake City, UT 84112, USA
| | - Benjamin J Ellis
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, SMBB 3100, Salt Lake City, UT 84112, USA; Scientific Computing and Imaging Institute, University of Utah, 72 South Central Campus Drive, Rm. 3750, Salt Lake City, UT 84112, USA.
| |
Collapse
|
41
|
El Bojairami I, El-Monajjed K, Driscoll M. Development and validation of a timely and representative finite element human spine model for biomechanical simulations. Sci Rep 2020; 10:21519. [PMID: 33298988 PMCID: PMC7725813 DOI: 10.1038/s41598-020-77469-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/11/2020] [Indexed: 01/31/2023] Open
Abstract
Numerous spine Finite Element (FE) models have been developed to assess spinal tolerances, spinal loadings and low back pain-related issues. However, justified simplifications, in terms of tissue decomposition and inclusion, for such a complex system may overlook crucial information. Thus, the purpose of this research was to develop and validate a comprehensive and representative spine FE model inclusive of an accurate representation of all major torso elements. A comprehensive model comprised of 273 tissues was developed via a novel FE meshing method to enhance computational feasibility. A comprehensive set of indirect validation tests were carried out to validate every aspect of the model. Under an increasing angular displacement of 24°-41°, the lumbar spine recorded an increasing moment from 5.5 to 9.3 Nm with an increase in IVD pressures from 0.41 to 0.66 MPa. Under forward flexion, vertical vertebral displacements simulated a 6% and 13% maximum discrepancy for intra-abdominal and intramuscular pressure results, all closely resembling previously documented in silico measured values. The developed state-of-the-art model includes most physiological tissues known to contribute to spinal loadings. Given the simulation's accuracy, confirmed by its validation tests, the developed model may serve as a reliable spinal assessment tool.
Collapse
Affiliation(s)
- Ibrahim El Bojairami
- Musculoskeletal Biomechanics Research Laboratory, Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Macdonald Eng. Bldg. Office #153, Montreal, QC, H3A 0C3, Canada
| | - Khaled El-Monajjed
- Musculoskeletal Biomechanics Research Laboratory, Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Macdonald Eng. Bldg. Office #153, Montreal, QC, H3A 0C3, Canada
| | - Mark Driscoll
- Musculoskeletal Biomechanics Research Laboratory, Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Macdonald Eng. Bldg. Office #153, Montreal, QC, H3A 0C3, Canada.
| |
Collapse
|
42
|
Yin JY, Guo LX. Biomechanical analysis of lumbar spine with interbody fusion surgery and U-shaped lumbar interspinous spacers. Comput Methods Biomech Biomed Engin 2020; 24:1-11. [PMID: 33241697 DOI: 10.1080/10255842.2020.1851368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/11/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Previous research indicates whole-body vibration may lead to low back pain. The aim of this study is assessing the dynamic characteristics of a lumbar spine with Coflex and Coflex-F (commercial implants used as lumbar interspinous spacers) and effect of lumbar interbody fusion surgery. A transient dynamic analysis is performed on three numerical lumbar spine models under the loading condition of a vertical sinusoidal force of ±40 N with a compressive follower preload of 400 N. Also, Coflex-F model with and without interbody fusion surgery is analyzed under the same loading condition. The results show that the maximum value and vibration amplitude of von Mises stress in annulus ground substance (AGS) and intradiscal pressure (IDP) at implanted segment decrease from healthy model to Coflex model, and Coflex-F model. By contrast, for adjacent segments the maximum value of implanted models are larger than that of healthy model. The maximum value of endplates with and without cage are 2.44 MPa and 1.73 MPa (L4 inferior endplate), 1.94 MPa and 1.42 MPa (L5 superior endplate), respectively. The vibration amplitude of Coflex-F model with fusion surgery is smaller than that without fusion surgery. Coflex and Coflex-F not only protect implanted segment but also have a negative effect on adjacent segments. Inserting cage for Coflex-F model can absorb vibration energy at adjacent segments.
Collapse
Affiliation(s)
- Jia-Yu Yin
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Li-Xin Guo
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| |
Collapse
|
43
|
Biomechanical modelling of the facet joints: a review of methods and validation processes in finite element analysis. Biomech Model Mechanobiol 2020; 20:389-401. [PMID: 33221991 PMCID: PMC7979651 DOI: 10.1007/s10237-020-01403-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
There is an increased interest in studying the biomechanics of the facet joints. For in silico studies, it is therefore important to understand the level of reliability of models for outputs of interest related to the facet joints. In this work, a systematic review of finite element models of multi-level spinal section with facet joints output of interest was performed. The review focused on the methodology used to model the facet joints and its associated validation. From the 110 papers analysed, 18 presented some validation of the facet joints outputs. Validation was done by comparing outputs to literature data, either computational or experimental values; with the major drawback that, when comparing to computational values, the baseline data was rarely validated. Analysis of the modelling methodology showed that there seems to be a compromise made between accuracy of the geometry and nonlinearity of the cartilage behaviour in compression. Most models either used a soft contact representation of the cartilage layer at the joint or included a cartilage layer which was linear elastic. Most concerning, soft contact models usually did not contain much information on the pressure-overclosure law. This review shows that to increase the reliability of in silico model of the spine for facet joints outputs, more needs to be done regarding the description of the methods used to model the facet joints, and the validation for specific outputs of interest needs to be more thorough, with recommendation to systematically share input and output data of validation studies.
Collapse
|
44
|
Jain A R Tony B, Alphin MS, Sri Krishnan G. Simulation of L-4 lumbar spine model of motorist exposed to vibration from speed hump. J Orthop 2020; 22:390-396. [PMID: 32968339 DOI: 10.1016/j.jor.2020.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/23/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND The motorcycle is often used in recurring travel between locations, dense traffic, poor conditioned roads and thus the repetitive loading on the musculoskeletal system of the rider leads to risk factors associated with musculoskeletal disorders. This study was aimed to examine the biomechanical response of the L-4 lumbar spine while riding the motorcycle on the speed hump at 20 km/h. METHODS Three-dimensional (3D) model of the L-4 lumbar spine was reconstructed based on the CT scan data obtained from the subjects. Material properties of the L-4 lumbar spine were assumed to be isotropic and homogenous. Mesh convergence and sensitivity analyses were performed and validated before simulation. Static and dynamic analyses were accomplished using quasi-static and steady-state dynamic analyses. RESULTS Static analysis results show that the highest stress concentrations were found around the pedicle and spinal canal. It is an expected commonplace for injuries because of loading. The dynamic simulation results showed the major resonance of the L-4 lumbar spine model is about 8-40 Hz. The stress, displacement, velocity, and acceleration value declines beyond 40 Hz as the frequency increases. CONCLUSIONS The simulation specifies the symmetric and unsymmetrical distributions of vibration magnitude regions of the lumbar spine. This study provides the modelling of the lumbar spine (L-4) and validated the effect of overloading failure as well as identified the biomechanical behaviour.
Collapse
Affiliation(s)
- B Jain A R Tony
- Malla Reddy College of Engineering and Technology, Secunderabad, India
| | - M S Alphin
- SSN College of Engineering, Chennai, India
| | | |
Collapse
|
45
|
Development of a multiscale model of the human lumbar spine for investigation of tissue loads in people with and without a transtibial amputation during sit-to-stand. Biomech Model Mechanobiol 2020; 20:339-358. [PMID: 33026565 DOI: 10.1007/s10237-020-01389-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/19/2020] [Indexed: 01/14/2023]
Abstract
Quantification of lumbar spine load transfer is important for understanding low back pain, especially among persons with a lower limb amputation. Computational modeling provides a helpful solution for obtaining estimates of in vivo loads. A multiscale model was constructed by combining musculoskeletal and finite element (FE) models of the lumbar spine to determine tissue loading during daily activities. Three-dimensional kinematic and ground reaction force data were collected from participants with ([Formula: see text]) and without ([Formula: see text]) a unilateral transtibial amputation (TTA) during 5 sit-to-stand trials. We estimated tissue-level load transfer from the multiscale model by controlling the FE model with intervertebral kinematics and muscle forces predicted by the musculoskeletal model. Annulus fibrosis stress, intradiscal pressure (IDP), and facet contact forces were calculated using the FE model. Differences in whole-body kinematics, muscle forces, and tissue-level loads were found between participant groups. Notably, participants with TTA had greater axial rotation toward their intact limb ([Formula: see text]), greater abdominal muscle activity ([Formula: see text]), and greater overall tissue loading throughout sit-to-stand ([Formula: see text]) compared to able-bodied participants. Both normalized (to upright standing) and absolute estimates of L4-L5 IDP were close to in vivo values reported in the literature. The multiscale model can be used to estimate the distribution of loads within different lumbar spine tissue structures and can be adapted for use with different activities, populations, and spinal geometries.
Collapse
|
46
|
Panico M, Chande RD, Lindsey DP, Mesiwala A, Villa TMT, Yerby SA, Brayda-Bruno M, Galbusera F. The use of triangular implants to enhance sacropelvic fixation: a finite element investigation. Spine J 2020; 20:1717-1724. [PMID: 32502655 DOI: 10.1016/j.spinee.2020.05.552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Long thoracolumbar fixation and fusion have become a consolidated treatment for severe spinal disorders. Concomitant sacropelvic fixation with S2 alar-iliac (S2AI) screws is frequently performed to limit instrumentation failure and pseudarthrosis at the lumbosacral junction. PURPOSE This study explored the use of triangular titanium implants in different configurations in which the implants supplemented standard sacropelvic fixation with S2AI screws in order to further increase the stability of S2AI fixation. STUDY DESIGN Finite element study. METHODS Four T10-pelvis instrumented models were built: pedicle screws and rods in T10-S1 (PED); pedicle screws and rods in T10-S1, and bilateral S2 alar-iliac screws (S2AI); pedicle screws and rods in T10-S1, bilateral S2AI screws, and triangular implants inserted bilaterally in a sacral alar-iliac trajectory (Tri-SAI); pedicle screws and rods in T10-S1, bilateral S2AI screws and two bilateral triangular titanium implants inserted in a lateral trajectory (Tri-Lat). The models were tested under pure moments of 7.5 Nm in flexion-extension, lateral bending and axial rotation. RESULTS SIJ motion was reduced by 50% to 66% after S2AI fixation; the addition of triangular titanium implants in either a SAI or a lateral trajectory further reduced it. S2AI, Tri-SAI, and Tri-Lat resulted in significantly lower stresses in S1 pedicle screws when compared to PED. Triangular implants had a protective effect on the maximal stresses in S2AI screws, especially when placed in the SAI trajectory. Sacropelvic fixation did not have any protective effect on the posterior rods. CONCLUSIONS Supplementing S2AI screws with triangular implants had a protective effect on the S2AI screws themselves, as well as the S1 pedicle screws, in the tested model. CLINICAL SIGNIFICANCE Triangular implants can substantially reduce the residual flexibility of the SIJ with respect to S2AI fixation alone, suggesting a possible role in patients needing reinforced fixation. In vivo investigation is needed to determine if these in vitro effects translate into clinically important differences.
Collapse
Affiliation(s)
- Matteo Panico
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | | | - Ali Mesiwala
- Southern California Center for Neuroscience and Spine, Pomona, CA, USA
| | - Tomaso Maria Tobia Villa
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | | | | | | |
Collapse
|
47
|
The biomechanical effects of graded upper articular process arthroplasty on lumbar spine: A finite element study. J Orthop Sci 2020; 25:793-799. [PMID: 31759836 DOI: 10.1016/j.jos.2019.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/20/2019] [Accepted: 10/22/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Superior articular process arthroplasty is important for intervertebral foramen microscopy but may lead to spinal instability. Currently, there has been no relevant study in relation to the biomechanical analysis of superior articular process arthroplasty. Hence, this study is intended to verify biomechanical effects after unilateral S1 superior articular process arthroplasty. METHODS Eight finite element (FE) models of lumbosacral vertebrae (L4-S) were constructed, and the superior articular process formation was simulated with the help of Geomagic studio. Then, the models were imported into Nastran software after optimization. Normal load and appropriate torque were applied to simulate forward flexion, back extension, lateral flexion and lateral rotation. In the end, changes of lumbar range of motion (ROM) and structural stress were compared with those of normal model. RESULTS Compared with the normal model, formed from ventral to dorsal (Longitudinal), the larger motion of lumbar spine and the greater larger stress of articular process showed statistical significance (P < 0.05) in most of directions when the forming range was greater than 3/5. Formed from the apex to the base (transverse), the larger motion of lumbar spine and the greater stress of articular process showed statistical significance (P < 0.05) in most of directions when the forming range was great than 1/5. CONCLUSION When conducting unilateral S1 articular process arthroplasty from ventral to dorsal, the forming range is recommended to be less than 3/5 of the superior articular process. Notably, it is not advisable to form from the apex to the base.
Collapse
|
48
|
Vanaclocha-Saiz A, Atienza CM, Vanaclocha V, Belloch V, Santabarbara JM, Jordá-Gómez P, Vanaclocha L. ICR in human cadaveric specimens: An essential parameter to consider in a new lumbar disc prosthesis design. NORTH AMERICAN SPINE SOCIETY JOURNAL 2020; 2:100016. [PMID: 35141586 PMCID: PMC8820058 DOI: 10.1016/j.xnsj.2020.100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 06/14/2023]
Abstract
STUDY DESIGN Biomechanical study in cadaveric specimens. BACKGROUND The commercially available lumbar disc prostheses do not reproduce the intact disc's Instantaneous centre of Rotation (ICR), thus inducing an overload on adjacent anatomical structures, promoting secondary degeneration. AIM To examine biomechanical testing of cadaveric lumbar spine specimens in order to evaluate and define the ICR of intact lumbar discs. MATERIAL AND METHODS Twelve cold preserved fresh human cadaveric lumbosacral spine specimens were subjected to computerized tomography (CT), magnetic resonance imaging (MRI) and biomechanical testing. Kinematic studies were performed to analyse range of movements in order to determine ICR. RESULTS Flexoextension and lateral bending tests showed a positive linear correlation between the angle rotated and the displacement of the ICR in different axes. DISCUSSION ICR has not been taken into account in any of the available literature regarding lumbar disc prosthesis. Considering our results, neither the actual ball-and-socket nor the withdrawn elastomeric nucleus models fit the biomechanics of the lumbar spine, which could at least in part explain the failure rates of the implants in terms of postoperative failed back syndrome (low back pain). It is reasonable to consider then that an implant should also adapt the equations of the movement of the intact ICR of the joint to the post-surgical ICR. CONCLUSIONS This is the first cadaveric study on the ICR of the human lumbar spine. We have shown that it is feasible to calculate and consider this parameter in order to design future prosthesis with improved clinical and biomechanical characteristics.
Collapse
Affiliation(s)
| | - Carlos M Atienza
- Instituto de Biomecánica (IBV) Universitat Politècnica de Valencia, Valencia, Spain
- Instituto de Biomecánica de Valencia-CIBER BBN, Grupo de Tecnología Sanitaria (GTS-IBV), Valencia, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Biomechanical Comparison of Lumbar Fixed-Point Oblique Pulling Manipulation and Traditional Oblique Pulling Manipulation in Treating Lumbar Intervertebral Disk Protrusion. J Manipulative Physiol Ther 2020; 43:446-456. [DOI: 10.1016/j.jmpt.2019.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/07/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
|
50
|
Zhou C, Willing R. Sensitivities of lumbar segmental kinematics and functional tissue loads in sagittal bending to design parameters of a ball-in-socket total disc arthroplasty prosthesis. Comput Methods Biomech Biomed Engin 2020; 23:536-547. [DOI: 10.1080/10255842.2020.1745783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chaochao Zhou
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY, USA
| | - Ryan Willing
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY, USA
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| |
Collapse
|