1
|
Chen KT, Wu TM, Ho CH, Huang CM, Wong KW. Endoscopic Interlaminar Standalone Decompression for Lumbar Lateral Recess Stenosis With Subligamentous Disc Herniation: A Disc-Preserving Alternative to Discectomy. Orthop Surg 2025. [PMID: 40448447 DOI: 10.1111/os.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/27/2025] [Accepted: 05/19/2025] [Indexed: 06/02/2025] Open
Abstract
OBJECTIVE Lumbar lateral recess stenosis (LRS) with subligamentous disc herniation often causes debilitating radicular pain. While discectomy is commonly performed, it risks disc degeneration and spinal instability. This study aimed to evaluate the clinical and radiographic outcomes of full-endoscopic interlaminar standalone decompression as a minimally invasive, disc-preserving alternative to discectomy for treating single-level LRS with subligamentous disc herniation. METHODS We retrospectively reviewed 55 patients with single-level lumbar LRS and subligamentous disc herniation who underwent full-endoscopic interlaminar standalone decompression between 2013 and 2021. Inclusion criteria required radicular pain refractory to conservative treatment and magnetic resonance imaging (MRI) confirmation of subligamentous herniation. Clinical outcomes were assessed using the Visual Analog Scale (VAS) for leg and back pain, Oswestry Disability Index (ODI), and Short Form-12 Physical and Mental Component Scores (SF-12 PCS/MCS). Radiographic evaluations included disc height index (DHI) measurements and Bartynski grading for lateral recess stenosis. Pre- and postoperative data were compared using the Wilcoxon signed-rank test. RESULTS At the 2-year follow-up, leg and back pain VAS scores improved significantly from 8.8 and 8.5 preoperatively to 1.0 and 0.9, respectively. ODI scores declined from 66.9 to 10.6, while SF-12 PCS and MCS improved from 30.1 to 42.5 and 26.3 to 42.6, respectively. According to the modified MacNab criteria, 96.3% of patients achieved "good" or "excellent" outcomes. Postoperative DHI remained stable, and no reoperations were required during follow-up. CONCLUSIONS Full-endoscopic interlaminar standalone decompression offers substantial symptom relief and functional improvement for single-level lumbar LRS with subligamentous disc herniation. By preserving disc integrity, this minimally invasive technique avoids the risks associated with discectomy, such as disc degeneration and instability. These findings suggest a paradigm shift in treating LRS, supporting the use of this disc-preserving approach as a viable alternative to conventional surgical methods in properly selected patients. Further research with larger cohorts and longer follow-up is warranted to validate these results.
Collapse
Affiliation(s)
- Kuan-Ting Chen
- Department of Orthopedics, Chi-Mei Medical Center, Tainan, Taiwan, China
| | - Tsung-Mu Wu
- Department of Orthopedics, Chi-Mei Medical Center, Tainan, Taiwan, China
| | - Chung-Han Ho
- Department of Information Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan, China
| | - Chi-Ming Huang
- Department of Leisure and Sports Management, Far-East University, Tainan, Taiwan, China
| | - Kin Weng Wong
- Department of Orthopedics, Chi-Mei Medical Center, Tainan, Taiwan, China
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, China
| |
Collapse
|
2
|
Liang H, Yang S, Huang Y, Zhu Y, Wu Q, Wu Z, Li S, Shi Y, Chen Z, Jin H, Wang X. PTPN22 as a therapeutic target in intervertebral disc degeneration: Modulating mitophagy and pyroptosis through the PI3K/AKT/mTOR axis. J Adv Res 2025:S2090-1232(25)00311-X. [PMID: 40349959 DOI: 10.1016/j.jare.2025.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/20/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
INTRODUCTION Intervertebral disc degeneration (IDD) is a predominant risk factor for low back pain (LBP). However, the mechanisms underlying IDD progression remain unclear. OBJECTIVES The protein tyrosine phosphatase non-receptor type 22 (PTPN22) is associated with various chronic inflammatory and autoimmune conditions. However, its role in the progression of IDD remains obscure. This investigation delves into the function of PTPN22 within IDD and examines its molecular mechanisms. METHODS The expression levels of PTPN22 in human and rat degenerative nucleus pulposus (NP) cells were analyzed using Western blot and immunohistochemistry. Following PTPN22 knockdown via lentiviral transfection, pyroptosis, extracellular matrix (ECM) degradation, mitophagy, and mitochondrial function were assessed using Western blot, immunofluorescence, Calcein-AM/PI staining, qPCR, Seahorse, JC-1, and MitoSOX assays. The roles of autophagy and the PI3K/AKT/mTOR pathway were further investigated using the autophagy inhibitor 3-MA, Baf-A1, and the PI3K agonist 740Y-P. A puncture-induced rat model was established, and the effects of LV-shPTPN22 on IDD were evaluated through imaging and histological analyses. RESULTS We noted an upregulation of PTPN22 in degenerative NP cells. A deficiency in PTPN22 was found to enhance mitophagy, thereby alleviating hydrogen peroxide (H2O2)-induced mitochondrial dysfunction and consequently mitigating NP cell pyroptosis and ECM degradation. Inhibition of the PI3K/AKT/mTOR pathway appears to play a pivotal role in the protective effects of PTPN22 deficiency against IDD. Experiments conducted in vivo revealed that PTPN22 knockdown significantly curtails the progression of IDD. CONCLUSION In summary, PTPN22 knockdown alleviates IDD progression by reducing pyroptosis and ECM degradation through enhanced mitophagy. This highlights PTPN22 as a critical contributor to IDD and a promising therapeutic target.
Collapse
Affiliation(s)
- Haibo Liang
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shu Yang
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yeheng Huang
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxuan Zhu
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qihang Wu
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhouwei Wu
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sunlong Li
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenya Chen
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haiming Jin
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Xiangyang Wang
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Wu Y, Wu S, Chen Z, Yang E, Yu H, Zhang G, Lian X, Xu J. Machine learning and single-cell analysis identify the mitophagy-associated gene TOMM22 as a potential diagnostic biomarker for intervertebral disc degeneration. Heliyon 2024; 10:e37378. [PMID: 39296040 PMCID: PMC11407931 DOI: 10.1016/j.heliyon.2024.e37378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Mitophagy selectively eliminates potentially cytotoxic and damaged mitochondria and effectively prevents excessive cytotoxicity from damaged mitochondria, thereby attenuating inflammatory and oxidative responses. However, the potential role of mitophagy in intervertebral disc degeneration remains to be elucidated. Methods The GSVA method, two machine learning methods (SVM-RFE algorithm and random forest), the CIBERSORT and MCPcounter methods, as well as the consensus clustering method and the WGCNA algorithm were used to analyze the involvement of mitophagy in intervertebral disc degeneration, the diagnostic value of mitophagy-associated genes in intervertebral disc degeneration, and the infiltration of immune cells, and identify the gene modules that were closely related to mitophagy. Single-cell analysis was used to detect mitophagy scores and TOMM22 expression, and pseudo-temporal analysis was used to explore the function of TOMM22 in nucleus pulposus cells. In addition, TOMM22 expression was compared between human normal and degenerated intervertebral disc tissue samples by immunohistochemistry and PCR. Results This study identified that the mitophagy pathway score was elevated in intervertebral disc degeneration compared with the normal condition. A strong link was present between mitophagy genes and immune cells, which may be used to typify intervertebral disc degeneration. The single-cell level showed that mitophagy-associated gene TOMM22 was highly expressed in medullary cells of the disease group. Further investigations indicated the upregulation of TOMM22 expression in late-stage nucleus pulposus cells and its role in cellular communication. In addition, human intervertebral disc tissue samples established that TOMM22 levels were higher in disc degeneration samples than in normal samples. Conclusions Our findings revealed that mitophagy may be used in the diagnosis of intervertebral disc degeneration and its typing, and TOMM22 is a molecule in this regard and may act as a potential diagnostic marker in intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yinghao Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Shengting Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Zhiheng Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Erzhu Yang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Haiyue Yu
- Bengbu Medical University, Anhui, 233030, PR China
| | - Guowang Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - XiaoFeng Lian
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - JianGuang Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| |
Collapse
|
4
|
Jansen JU, Teixeira GQ, Vernengo A, Grad S, Neidlinger-Wilke C, Wilke HJ. Papain Injection Creates a Nucleotomy-like Cavity for Testing Gels in Intervertebral Discs. Gels 2024; 10:571. [PMID: 39330173 PMCID: PMC11430882 DOI: 10.3390/gels10090571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Biomaterials, such as hydrogels, have an increasingly important role in the development of regenerative approaches for the intervertebral disc. Since animal models usually resist biomaterial injection due to high intradiscal pressure, preclinical testing of the biomechanical performance of biomaterials after implantation remains difficult. Papain reduces the intradiscal pressure, creates cavities within the disc, and allows for biomaterial injections. But papain digestion needs time, and cadaver experiments that are limited to 24 h for measuring range of motion (ROM) cannot not be combined with papain digestion just yet. In this study, we successfully demonstrate a new organ culture approach, facilitating papain digestion to create cavities in the disc and the testing of ROM, neutral zone (NZ), and disc height. Papain treatment increased the ROM by up to 109.5%, extended NZ by up to 210.9%, and decreased disc height by 1.96 ± 0.74 mm. A median volume of 0.73 mL hydrogel could be injected after papain treatment, and histology revealed a strong loss of proteoglycans in the remaining nucleus tissue. Papain has the same biomechanical effects as known from nucleotomies or herniations and thus creates a disc model to study such pathologies in vitro. This new model can now be used to test the performance of biomaterials.
Collapse
Affiliation(s)
- Jan Ulrich Jansen
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University, 89081 Ulm, Germany
| | - Graciosa Quelhas Teixeira
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University, 89081 Ulm, Germany
| | | | - Sybille Grad
- AO Research Institute Davos, 7270 Davos, Switzerland
| | - Cornelia Neidlinger-Wilke
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University, 89081 Ulm, Germany
| | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
5
|
Xu T, Jin F, Yu Y, He J, Yang R, Lv T, Yan Z. Association between waist circumference and chronic pain: insights from observational study and two-sample Mendelian randomization. Front Nutr 2024; 11:1415208. [PMID: 39131735 PMCID: PMC11310123 DOI: 10.3389/fnut.2024.1415208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background Current research offers limited clarity on the correlation between waist circumference and chronic pain prevalence. Objective This investigation seeks to elucidate the potential relationship between waist circumference and chronic pain and their causal association. Methods An observational study was conducted, leveraging data from the National Health and Nutrition Examination Survey (NHANES) collected between 2001 and 2004. The multivariable logistic regression was used to assess the relationship between waist circumference and chronic pain. Furthermore, a meta-analysis of Mendelian Randomization (MR) was applied to explore a causal relationship between waist circumference and pain. Results The observational study, post multivariable adjustment, indicated that an increase in waist circumference by 1 dm (decimeter) correlates with a 14% elevation in chronic pain risk (Odds Ratio [OR] = 1.14, 95% Confidence Interval [CI]: 1.04-1.24, p = 0.01). Moreover, the meta-analysis of MR demonstrated that an increased waist circumference was associated with a genetic predisposition to pain risk (OR = 1.14, 95%CI: 1.06-1.23, p = 0.0007). Conclusion Observational analysis confirmed a significant relationship between increased waist circumference and the incidence of chronic pain, and results based on MR Study identified increased waist circumference as potentially causal for pain.
Collapse
Affiliation(s)
- Ting Xu
- Department of Anesthesiology, Traditional Chinese Medical Hospital of Zhuji, Zhuji, China
| | - Fan Jin
- Department of Anesthesiology, Zhuji People's Hospital, Shaoxing University, Zhuji, China
| | - Yeting Yu
- Department of Anesthesiology, Traditional Chinese Medical Hospital of Zhuji, Zhuji, China
| | - Jie He
- Department of Anesthesiology, Zhuji People's Hospital, Shaoxing University, Zhuji, China
| | - Ren Yang
- Department of Anesthesiology, Zhuji People's Hospital, Shaoxing University, Zhuji, China
| | - Tian Lv
- Department of Neurology, Zhuji People's Hospital, Shaoxing University, Zhuji, China
| | - Zhangjun Yan
- Department of Anesthesiology, Zhuji People's Hospital, Shaoxing University, Zhuji, China
| |
Collapse
|
6
|
Smit TH. On growth and scoliosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:2439-2450. [PMID: 38705903 DOI: 10.1007/s00586-024-08276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE To describe the physiology of spinal growth in patients with adolescent idiopathic scoliosis (AIS). METHODS Narrative review of the literature with a focus on mechanisms of growth. RESULTS In his landmark publication On Growth and Form, D'Arcy Thompson wrote that the anatomy of an organism reflects the forces it is subjected to. This means that mechanical forces underlie the shape of tissues, organs and organisms, whether healthy or diseased. AIS is called idiopathic because the underlying cause of the deformation is unknown, although many factors are associated. Eventually, however, any deformity is due to mechanical forces. It has long been shown that the typical curvature and rotation of the scoliotic spine could result from vertebrae and intervertebral discs growing faster than the ligaments attached to them. This raises the question why in AIS the ligaments do not keep up with the speed of spinal growth. The spine of an AIS patient deviates from healthy spines in various ways. Growth is later but faster, resulting in higher vertebrae and intervertebral discs. Vertebral bone density is lower, which suggests less spinal compression. This also preserves the notochordal cells and the swelling pressure in the nucleus pulposus. Less spinal compression is due to limited muscular activity, and low muscle mass indeed underlies the lower body mass index (BMI) in AIS patients. Thus, AIS spines grow faster because there is less spinal compression that counteracts the force of growth (Hueter-Volkmann Law). Ligaments consist of collagen fibres that grow by tension, fibrillar sliding and the remodelling of cross-links. Growth and remodelling are enhanced by dynamic loading and by hormones like estrogen. However, they are opposed by static loading. CONCLUSION Increased spinal elongation and reduced ligamental growth result in differential strain and a vicious circle of scoliotic deformation. Recognising the physical and biological cues that contribute to differential growth allows earlier diagnosis of AIS and prevention in children at risk.
Collapse
Affiliation(s)
- Theodoor H Smit
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam University Medical Centres, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
- Department of Medical Biology, Amsterdam University Medical Centres, Meibergdreef 9, Room K2-140, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Rieger F, Rothenfluh DA, Ferguson SJ, Ignasiak D. Comprehensive assessment of global spinal sagittal alignment and related normal spinal loads in a healthy population. J Biomech 2024; 170:112127. [PMID: 38781798 DOI: 10.1016/j.jbiomech.2024.112127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/12/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Abnormal postoperative global sagittal alignment (GSA) is associated with an increased risk of mechanical complications after spinal surgery. Typical assessment of sagittal alignment relies on a few selected measures, disregarding global complexity and variability of the sagittal curvature. The normative range of spinal loads associated with GSA has not yet been considered in clinical evaluation. The study objectives were to develop a new GSA assessment method that holistically describes the inherent relationships within GSA and to estimate the related spinal loads. Vertebral endplates were annotated on radiographs of 85 non-pathological subjects. A Principal Component Analysis (PCA) was performed to derive a Statistical Shape Model (SSM). Associations between identified GSA variability modes and conventional alignment measures were assessed. Simulations of respective Shape Modes (SMs) were performed using an established musculoskeletal AnyBody model to estimate normal variation in cervico-thoraco-lumbar loads. The first six principal components explained 97.96% of GSA variance. The SSM provides the normative range of GSA and a visual representation of the main variability modes. Normal variation relative to the population mean in identified alignment features was found to influence spinal loads, e.g. the lower bound of the second shape mode (SM2-2σ) corresponds to an increase in L4L5-compression by 378.64 N (67.86%). Six unique alignment features were sufficient to describe GSA almost entirely, demonstrating the value of the proposed method for an objective and comprehensive analysis of GSA. The influence of these features on spinal loads provides a normative biomechanical reference, eventually guiding surgical planning of deformity correction in the future.
Collapse
Affiliation(s)
- Florian Rieger
- Institute for Biomechanics, LOT, ETH Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
8
|
Tang J, Luo Y, Wang Q, Wu J, Wei Y. Stimuli-Responsive Delivery Systems for Intervertebral Disc Degeneration. Int J Nanomedicine 2024; 19:4735-4757. [PMID: 38813390 PMCID: PMC11135562 DOI: 10.2147/ijn.s463939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
As a major cause of low back pain, intervertebral disc degeneration is an increasingly prevalent chronic disease worldwide that leads to huge annual financial losses. The intervertebral disc consists of the inner nucleus pulposus, outer annulus fibrosus, and sandwiched cartilage endplates. All these factors collectively participate in maintaining the structure and physiological functions of the disc. During the unavoidable degeneration stage, the degenerated discs are surrounded by a harsh microenvironment characterized by acidic, oxidative, inflammatory, and chaotic cytokine expression. Loss of stem cell markers, imbalance of the extracellular matrix, increase in inflammation, sensory hyperinnervation, and vascularization have been considered as the reasons for the progression of intervertebral disc degeneration. The current treatment approaches include conservative therapy and surgery, both of which have drawbacks. Novel stimuli-responsive delivery systems are more promising future therapeutic options than traditional treatments. By combining bioactive agents with specially designed hydrogels, scaffolds, microspheres, and nanoparticles, novel stimuli-responsive delivery systems can realize the targeted and sustained release of drugs, which can both reduce systematic adverse effects and maximize therapeutic efficacy. Trigger factors are categorized into internal (pH, reactive oxygen species, enzymes, etc.) and external stimuli (photo, ultrasound, magnetic, etc.) based on their intrinsic properties. This review systematically summarizes novel stimuli-responsive delivery systems for intervertebral disc degeneration, shedding new light on intervertebral disc therapy.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yuexin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qirui Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Juntao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yulong Wei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
9
|
Liu R, He T, Wu X, Tan W, Yan Z, Deng Y. Biomechanical response of decompression alone in lower grade lumbar degenerative spondylolisthesis--A finite element analysis. J Orthop Surg Res 2024; 19:209. [PMID: 38561837 PMCID: PMC10983632 DOI: 10.1186/s13018-024-04681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Previous studies have demonstrated the clinical efficacy of decompression alone in lower-grade spondylolisthesis. A higher rate of surgical revision and a lower rate of back pain relief was also observed. However, there is a lack of relevant biomechanical evidence after decompression alone for lower-grade spondylolisthesis. PURPOSE Evaluating the biomechanical characteristics of total laminectomy, hemilaminectomy, and facetectomy for lower-grade spondylolisthesis by analyzing the range of motion (ROM), intradiscal pressure (IDP), annulus fibrosus stress (AFS), facet joints contact force (FJCF), and isthmus stress (IS). METHODS Firstly, we utilized finite element tools to develop a normal lumbar model and subsequently constructed a spondylolisthesis model based on the normal model. We then performed total laminectomy, hemilaminectomy, and one-third facetectomy in the normal model and spondylolisthesis model, respectively. Finally, we analyzed parameters, such as ROM, IDP, AFS, FJCF, and IS, for all the models under the same concentrate force and moment. RESULTS The intact spondylolisthesis model showed a significant increase in the relative parameters, including ROM, AFS, FJCF, and IS, compared to the intact normal lumbar model. Hemilaminectomy and one-third facetectomy in both spondylolisthesis and normal lumbar models did not result in an obvious change in ROM, IDP, AFS, FJCF, and IS compared to the pre-operative state. Moreover, there was no significant difference in the degree of parameter changes between the spondylolisthesis and normal lumbar models after undergoing the same surgical procedures. However, total laminectomy significantly increased ROM, AFS, and IS and decreased the FJCF in both normal lumbar models and spondylolisthesis models. CONCLUSION Hemilaminectomy and one-third facetectomy did not have a significant impact on the segment stability of lower-grade spondylolisthesis; however, patients with LDS undergoing hemilaminectomy and one-third facetectomy may experience higher isthmus stress on the surgical side during rotation. In addition, total laminectomy changes the biomechanics in both normal lumbar models and spondylolisthesis models.
Collapse
Affiliation(s)
- Renfeng Liu
- Department of Spine Surgery, Central South University Third Xiangya Hospital, Changsha, China
| | - Tao He
- Department of Spine Surgery, Central South University Third Xiangya Hospital, Changsha, China
| | - Xin Wu
- Department of Spine Surgery, Central South University Third Xiangya Hospital, Changsha, China
| | - Wei Tan
- Department of Spine Surgery, Central South University Third Xiangya Hospital, Changsha, China
| | - Zuyun Yan
- Department of Spine Surgery, Central South University Third Xiangya Hospital, Changsha, China
| | - Youwen Deng
- Department of Spine Surgery, Central South University Third Xiangya Hospital, Changsha, China.
| |
Collapse
|
10
|
Song C, Hu P, Peng R, Li F, Fang Z, Xu Y. Bioenergetic dysfunction in the pathogenesis of intervertebral disc degeneration. Pharmacol Res 2024; 202:107119. [PMID: 38417775 DOI: 10.1016/j.phrs.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Intervertebral disc (IVD) degeneration is a frequent cause of low back pain and is the most common cause of disability. Treatments for symptomatic IVD degeneration, including conservative treatments such as analgesics, physical therapy, anti-inflammatories and surgeries, are aimed at alleviating neurological symptoms. However, there are no effective treatments to prevent or delay IVD degeneration. Previous studies have identified risk factors for IVD degeneration such as aging, inflammation, genetic factors, mechanical overload, nutrient deprivation and smoking, but metabolic dysfunction has not been highlighted. IVDs are the largest avascular structures in the human body and determine the hypoxic and glycolytic features of nucleus pulposus (NP) cells. Accumulating evidence has demonstrated that intracellular metabolic dysfunction is associated with IVD degeneration, but a comprehensive review is lacking. Here, by reviewing the physiological features of IVDs, pathological processes and metabolic changes associated with IVD degeneration and the functions of metabolic genes in IVDs, we highlight that glycolytic pathway and intact mitochondrial function are essential for IVD homeostasis. In degenerated NPs, glycolysis and mitochondrial function are downregulated. Boosting glycolysis such as HIF1α overexpression protects against IVD degeneration. Moreover, the correlations between metabolic diseases such as diabetes, obesity and IVD degeneration and their underlying molecular mechanisms are discussed. Hyperglycemia in diabetic diseases leads to cell senescence, the senescence-associated phenotype (SASP), apoptosis and catabolism of extracellualr matrix in IVDs. Correcting the global metabolic disorders such as insulin or GLP-1 receptor agonist administration is beneficial for diabetes associated IVD degeneration. Overall, we summarized the recent progress of investigations on metabolic contributions to IVD degeneration and provide a new perspective that correcting metabolic dysfunction may be beneficial for treating IVD degeneration.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Peixuan Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Renpeng Peng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Zhong Fang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yong Xu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
11
|
Rivera Tapia ED, Meakin JR, Holsgrove TP. A novel in-vitro model of intervertebral disc degeneration using hyperphysiological loading. J Biomech 2024; 167:112068. [PMID: 38582004 DOI: 10.1016/j.jbiomech.2024.112068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Intervertebral disc (IVD) degeneration includes changes in tissue biomechanics, physical attributes, biochemical composition, disc microstructure, and cellularity, which can all affect the normal function of the IVD, and ultimately may lead to pain. The purpose of this research was to develop an in-vitro model of degeneration that includes the evaluation of physical, biomechanical, and structural parameters, and that does so over several load/recovery periods. Hyperphysiological loading was used as the degenerative initiator with three experimental groups employed using bovine coccygeal IVD specimens: Control; Single-Overload; and Double-Overload. An equilibrium stage comprising a static load followed by two load/recovery periods was followed by six further load/recovery periods. In the Control group all load/recovery periods were the same, comprising physiological cyclic loading. The overload groups differed in that hyperphysiological loading was applied during the 4th loading period (Single-Overload), or the 4th and 5th loading period (Double-Overload). Overloading led to a significant reduction in disc height compared to the Control group, which was not recovered in subsequent physiological load/recovery periods. However, there were no significant changes in stiffness. Overloading also led to significantly more microstructural damage compared to the Control group. Taking all outcome measures into account, the overload groups were evaluated as replicating clinically relevant aspects of moderate IVD degeneration. Further research into a potential dose-effect, and how more severe degeneration can be replicated would provide a model with the potential to evaluate new treatments and interventions for different stages of IVD degeneration.
Collapse
Affiliation(s)
- E D Rivera Tapia
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - J R Meakin
- Department of Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - T P Holsgrove
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
12
|
Snuggs JW, Emanuel KS, Rustenburg C, Janani R, Partridge S, Sammon C, Smit TH, Le Maitre CL. Injectable biomaterial induces regeneration of the intervertebral disc in a caprine loaded disc culture model. Biomater Sci 2023; 11:4630-4643. [PMID: 37204288 PMCID: PMC10294806 DOI: 10.1039/d3bm00150d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Back pain is the leading cause of disability with half of cases attributed to intervertebral disc (IVD) degeneration, yet currently no therapies target this cause. We previously reported an ex vivo caprine loaded disc culture system (LDCS) that accurately represents the cellular phenotype and biomechanical environment of human IVD degeneration. Here, the efficacy of an injectable hydrogel system (LAPONITE® crosslinked pNIPAM-co-DMAc, (NPgel)) to halt or reverse the catabolic processes of IVD degeneration was investigated within the LDCS. Following enzymatic induction of degeneration using 1 mg mL-1 collagenase and 2 U mL-1 chondroitinase ABC within the LDCS for 7 days, IVDs were injected with NPgel alone or with encapsulated human bone marrow progenitor cells (BMPCs). Un-injected caprine discs served as degenerate controls. IVDs were cultured for a further 21 days within the LDCS. Tissues were then processed for histology and immunohistochemistry. No extrusion of NPgel was observed during culture. A significant decrease in histological grade of degeneration was seen in both IVDs injected with NPgel alone and NPgel seeded with BMPCs, compared to un-injected controls. Fissures within degenerate tissue were filled by NPgel and there was evidence of native cell migration into injected NPgel. The expression of healthy NP matrix markers (collagen type II and aggrecan) was increased, whereas the expression of catabolic proteins (MMP3, ADAMTS4, IL-1β and IL-8) was decreased in NPgel (±BMPCs) injected discs, compared to degenerate controls. This demonstrates that NPgel promotes new matrix production at the same time as halting the degenerative cascade within a physiologically relevant testing platform. This highlights the potential of NPgel as a future therapy for IVD degeneration.
Collapse
Affiliation(s)
- Joseph W Snuggs
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Sheffield, UK.
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Kaj S Emanuel
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Christine Rustenburg
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Ronak Janani
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Simon Partridge
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Christopher Sammon
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Theo H Smit
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Christine L Le Maitre
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Sheffield, UK.
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
13
|
Guo S, Wang C, Xiao C, Gu Q, Long L, Wang X, Xu H, Li S. Role of the mechanosensitive piezo1 channel in intervertebral disc degeneration. Clin Physiol Funct Imaging 2023; 43:59-70. [PMID: 36400723 DOI: 10.1111/cpf.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
Intervertebral disc degeneration (IDD) is a multifactorial skeletal disease involving mechanical, genetic, systemic, and biological factors, and it is characterized by apoptosis of the nucleus pulposus cells and breakdown of the extracellular matrix (ECM), which will impair the structure and function of the intervertebral disc (IVD), and cause low back pain. Recently, the piezo1 is recognized as a critical mechanically activated ion channel of IDD. Numerous studies have reported that the piezo1 ion channel was aberrantly activated in the degenerated disc tissues and deeply participated in the pathogenesis of IDD. Inactivating or interfering with the piezo1 channel could effectively prevent the progression of IDD under the experimental conditions. It may be a promising target for the prevention and treatment of the disabling disease. Therefore, we have to make a comprehensive investigation and understanding of the mechanisms and functions of the piezo1 in the biomechanics of the spine. This study mainly elucidates the role of the piezo1 channel in IDD, which may facilitate the development of therapeutic targets for this disease.
Collapse
Affiliation(s)
- Sheng Guo
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chenglong Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Changming Xiao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qinwen Gu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Longhai Long
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqiang Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Houping Xu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sen Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Lin M, Hu Y, An H, Guo T, Gao Y, Peng K, Zhao M, Zhang X, Zhou H. Silk fibroin-based biomaterials for disc tissue engineering. Biomater Sci 2023; 11:749-776. [PMID: 36537344 DOI: 10.1039/d2bm01343f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low back pain is the major cause of disability worldwide, and intervertebral disc degeneration (IVDD) is one of the most important causes of low back pain. Currently, there is no method to treat IVDD that can reverse or regenerate intervertebral disc (IVD) tissue, but the recent development of disc tissue engineering (DTE) offers a new means of addressing these disadvantages. Among numerous biomaterials for tissue engineering, silk fibroin (SF) is widely used due to its easy availability and excellent physical/chemical properties. SF is usually used in combination with other materials to construct biological scaffolds or bioactive substance delivery systems, or it can be used alone. The present article first briefly outlines the anatomical and physiological features of IVD, the associated etiology and current treatment modalities of IVDD, and the current status of DTE. Then, it highlights the characteristics of SF biomaterials and their latest research advances in DTE and discusses the prospects and challenges in the application of SF in DTE, with a view to facilitating the clinical process of developing interventions related to IVD-derived low back pain caused by IVDD.
Collapse
Affiliation(s)
- Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Haiying An
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430000, Hubei, China
| | - Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Kaichen Peng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Meiling Zhao
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China.
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| |
Collapse
|
15
|
Hechavarria ME, Richard SA. Elucidating the Focal Immunomodulatory Clues Influencing Mesenchymal Stem Cells in the Milieu of Intervertebral Disc Degeneration. Curr Stem Cell Res Ther 2023; 18:62-75. [PMID: 35450531 DOI: 10.2174/1574888x17666220420134619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
The intervertebral discs (IVDs) are a relatively mobile joint that interconnects vertebrae of the spine. Intervertebral disc degeneration (IVDD) is one of the leading causes of low back pain, which is most often related to patient morbidity as well as high medical costs. Patients with chronic IVDD often need surgery that may sometimes lead to biomechanical complications as well as augmented degeneration of the adjacent segments. Moreover, treatment modalities like rigid intervertebral fusion, dynamic instrumentation, as well as other surgical interventions are still controversial. Mesenchymal stem cells (MSCs) have exhibited to have immunomodulatory functions and the ability to differentiate into cartilage, making these cells possibly an epitome for IVD regeneration. Transplanted MSCs were able to repair IVDD back to the normal disc milieu via the activation of the generation of extracellular matrix (ECM) proteins such as aggrecan, proteoglycans and collagen types I and II. IVD milieu clues like, periostin, cluster of differentiation, tumor necrosis factor alpha, interleukins, chemokines, transforming growth factor beta, reactive oxygen species, toll-like receptors, tyrosine protein kinase receptor and disialoganglioside, exosomes are capable of influencing the MSCs during treatment of IVDD. ECM microenvironment clues above have potentials as biomarkers as well as accurate molecular targets for therapeutic intervention in IVDD.
Collapse
Affiliation(s)
| | - Seidu A Richard
- Department of Medicine, Princefield University, P. O. Box MA 128, Ho-Volta Region, Ghana, West Africa
| |
Collapse
|
16
|
Brenneis M, Jenei-Lanzl Z, Kupka J, Braun S, Junker M, Zaucke F, Rickert M, Meurer A. Correlation between Adrenoceptor Expression and Clinical Parameters in Degenerated Lumbar Intervertebral Discs. Int J Mol Sci 2022; 23:ijms232315358. [PMID: 36499685 PMCID: PMC9739018 DOI: 10.3390/ijms232315358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Despite advanced knowledge of the cellular and biomechanical processes of intervertebral disc degeneration (IVDD), the trigger and underlying mechanisms remain unclear. Since the sympathetic nervous system (SNS) has been shown to exhibit catabolic effects in osteoarthritis pathogenesis, it is attractive to speculate that it also influences IVDD. Therefore, we explored the adrenoceptor (AR) expression profile in human IVDs and correlated it with clinical parameters of patients. IVD samples were collected from n = 43 patients undergoing lumbar spinal fusion surgery. AR gene expression was analyzed by semi-quantitative polymerase chain reaction. Clinical parameters as well as radiological Pfirrmann and Modic classification were collected and correlated with AR expression levels. In total human IVD homogenates α1A-, α1B-, α2A-, α2B-, α2C-, β1- and β2-AR genes were expressed. Expression of α1A- (r = 0.439), α2A- (r = 0.346) and β2-AR (r = 0.409) showed a positive and significant correlation with Pfirrmann grade. α1A-AR expression was significantly decreased in IVD tissue of patients with adjacent segment disease (p = 0.041). The results of this study indicate that a relationship between IVDD and AR expression exists. Thus, the SNS and its neurotransmitters might play a role in IVDD pathogenesis. The knowledge of differential AR expression in different etiologies could contribute to the development of new therapeutic approaches for IVDD.
Collapse
Affiliation(s)
- Marco Brenneis
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
- Correspondence: or
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Johannes Kupka
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Sebastian Braun
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Marius Junker
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Marcus Rickert
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Andrea Meurer
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| |
Collapse
|
17
|
Zehr JD, Barrett JM, Callaghan JP. Cyclic loading history alters the joint compression tolerance and regional indentation responses in the cartilaginous endplate. J Mech Behav Biomed Mater 2022; 136:105542. [PMID: 36327666 DOI: 10.1016/j.jmbbm.2022.105542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
This study quantified the effect of subthreshold loading histories that differed by joint posture (neutral, flexed), peak loading variation (10%, 20%, 40%), and loading duration (1000, 3000, 5000 cycles) on the post-loading Ultimate Compressive Tolerance (UCT), yield force, and regional Cartilaginous End Plate (CEP) indentation responses (loading stiffness and creep displacement). One hundred and fourteen porcine spinal units were included. Following conditioning and cyclic compression exposures, spinal units were transected and one endplate from each vertebra underwent subsequent UCT or microindentation testing. UCT testing was conducted by compressing a single vertebra at a rate of 3 kN/s using an indenter fabricated to a representative intervertebral disc size and shape. Force and actuator position were sampled at 100 Hz. Non-destructive uniaxial CEP indentation was performed at five surface locations (central, anterior, posterior, right, left) using a Motoman robot and aluminum indenter (3 mm hemisphere). Force and end-effector position were sampled at 10 Hz. A significant three-way interaction was observed for UCT (p = 0.038). Compared to neutral, the UCT was, on average, 1.9 kN less following each flexed loading duration. No effect of variation was observed in flexion; however, 40% variation caused the UCT to decrease by an average of 2.13 kN and 2.06 kN following 3000 and 5000 cycles, respectively. The indentation stiffness in the central CEP mimicked the UCT response. These results demonstrate a profound effect of posture on post-loading UCT and CEP behaviour. Control of peak compression exposures became particularly relevant only when a neutral posture was maintained and beyond the midpoint of the predicated lifespan.
Collapse
Affiliation(s)
- Jackie D Zehr
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jeff M Barrett
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jack P Callaghan
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
18
|
Liu Z, Fu C. Application of single and cooperative different delivery systems for the treatment of intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1058251. [PMID: 36452213 PMCID: PMC9702580 DOI: 10.3389/fbioe.2022.1058251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the most universal pathogenesis of low back pain (LBP), a prevalent and costly medical problem across the world. Persistent low back pain can seriously affect a patient's quality of life and even lead to disability. Furthermore, the corresponding medical expenses create a serious economic burden to both individuals and society. Intervertebral disc degeneration is commonly thought to be related to age, injury, obesity, genetic susceptibility, and other risk factors. Nonetheless, its specific pathological process has not been completely elucidated; the current mainstream view considers that this condition arises from the interaction of multiple mechanisms. With the development of medical concepts and technology, clinicians and scientists tend to intervene in the early or middle stages of intervertebral disc degeneration to avoid further aggravation. However, with the aid of modern delivery systems, it is now possible to intervene in the process of intervertebral disc at the cellular and molecular levels. This review aims to provide an overview of the main mechanisms associated with intervertebral disc degeneration and the delivery systems that can help us to improve the efficacy of intervertebral disc degeneration treatment.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Bermudez-Lekerika P, Crump KB, Tseranidou S, Nüesch A, Kanelis E, Alminnawi A, Baumgartner L, Muñoz-Moya E, Compte R, Gualdi F, Alexopoulos LG, Geris L, Wuertz-Kozak K, Le Maitre CL, Noailly J, Gantenbein B. Immuno-Modulatory Effects of Intervertebral Disc Cells. Front Cell Dev Biol 2022; 10:924692. [PMID: 35846355 PMCID: PMC9277224 DOI: 10.3389/fcell.2022.924692] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Katherine B Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | | | - Andrea Nüesch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Exarchos Kanelis
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | - Roger Compte
- Twin Research and Genetic Epidemiology, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Francesco Gualdi
- Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Leonidas G Alexopoulos
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, KU Leuven, Leuven, Belgium
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States.,Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), Munich, Germany
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Yang M, Xiang D, Wang S, Liu W. In Vitro Studies for Investigating Creep of Intervertebral Discs under Axial Compression: A Review of Testing Environment and Results. MATERIALS 2022; 15:ma15072500. [PMID: 35407833 PMCID: PMC9000064 DOI: 10.3390/ma15072500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 01/06/2023]
Abstract
Creep responses of intervertebral discs (IVDs) are essential for spinal biomechanics clarification. Yet, there still lacks a well-recognized investigation protocol for this phenomenon. Current work aims at providing researchers with an overview of the in vitro creep tests reported by previous studies, specifically specimen species, testing environment, loading regimes and major results, based on which a preliminary consensus that may guide future creep studies is proposed. Specimens used in creep studies can be simplified as a “bone–disc–bone” structure where three mathematical models can be adopted for describing IVDs’ responses. The preload of 10–50 N for 30 min or three cycles followed by 4 h-creep under constant compression is recommended for ex vivo simulation of physiological condition of long-time sitting or lying. It is worth noticing that species of specimens, environment temperature and humidity all have influences on biomechanical behaviors, and thus are summarized and compared through the literature review. All factors should be carefully set according to a guideline before tests are conducted to urge comparable results across studies. To this end, this review also provides a guideline, as mentioned before, and specific steps that might facilitate the community of biomechanics to obtain more repeatable and comparable results from both natural specimens and novel biomaterials.
Collapse
Affiliation(s)
- Mengying Yang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Dingding Xiang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Song Wang
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (S.W.); (W.L.)
| | - Weiqiang Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (S.W.); (W.L.)
| |
Collapse
|
21
|
Marshall SL, Jacobsen TD, Emsbo E, Murali A, Anton K, Liu JZ, Lu HH, Chahine NO. Three-Dimensional-Printed Flexible Scaffolds Have Tunable Biomimetic Mechanical Properties for Intervertebral Disc Tissue Engineering. ACS Biomater Sci Eng 2021; 7:5836-5849. [PMID: 34843224 DOI: 10.1021/acsbiomaterials.1c01326] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The intervertebral disc (IVD) exhibits complex structure and biomechanical function, which supports the weight of the body and permits motion. Surgical treatments for IVD degeneration (e.g., lumbar fusion, disc replacement) often disrupt the mechanical environment of the spine which lead to adjacent segment disease. Alternatively, disc tissue engineering strategies, where cell-seeded hydrogels or fibrous biomaterials are cultured in vitro to promote matrix deposition, do not recapitulate the complex IVD mechanical properties. In this study, we use 3D printing of flexible polylactic acid (FPLA) to fabricate a viscoelastic scaffold with tunable biomimetic mechanics for whole spine motion segment applications. We optimized the mechanical properties of the scaffolds for equilibrium and dynamic moduli in compression and tension by varying fiber spacing or porosity, generating scaffolds with de novo mechanical properties within the physiological range of spine motion segments. The biodegradation analysis of the 3D printed scaffolds showed that FPLA exhibits lower degradation rate and thus has longer mechanical stability than standard PLA. FPLA scaffolds were biocompatible, supporting viability of nucleus pulposus (NP) cells in 2D and in FPLA+hydrogel composites. Composite scaffolds cultured with NP cells maintained baseline physiological mechanical properties and promoted matrix deposition up to 8 weeks in culture. Mesenchymal stromal cells (MSCs) cultured on FPLA adhered to the scaffold and exhibited fibrocartilaginous differentiation. These results demonstrate for the first time that 3D printed FPLA scaffolds have de novo viscoelastic mechanical properties that match the native IVD motion segment in both tension and compression and have the potential to be used as a mechanically stable and biocompatible biomaterial for engineered disc replacement.
Collapse
Affiliation(s)
- Samantha L Marshall
- Department of Orthopedic Surgery, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| | - Timothy D Jacobsen
- Department of Orthopedic Surgery, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States.,Department of Biomedical Engineering, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| | - Erik Emsbo
- Department of Biomedical Engineering, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| | - Archana Murali
- Department of Biomedical Engineering, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| | - Kevin Anton
- Department of Biomedical Engineering, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| | - Jessica Z Liu
- Department of Biomedical Engineering, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| | - Helen H Lu
- Department of Biomedical Engineering, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| | - Nadeen O Chahine
- Department of Orthopedic Surgery, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States.,Department of Biomedical Engineering, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| |
Collapse
|
22
|
Knell SC, Park B, Voumard B, Pozzi A. Ex vivo study of the intradiskal pressure in the C6-7 intervertebral disk after experimental destabilization and distraction-fusion of the C5-C6 vertebrae in canine cadaveric specimens. Am J Vet Res 2021; 82:1003-1012. [PMID: 34714770 DOI: 10.2460/ajvr.20.12.0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate intradiskal pressure (IDP) in the C6-7 intervertebral disk (IVD) after destabilization and distraction-fusion of the C5-C6 vertebrae. SAMPLE 7 cadaveric C4-T1 vertebral specimens with no evidence of IVD disease from large-breed dogs. PROCEDURES Specimens were mounted in a custom-made 6 degrees of freedom spinal loading simulator so the C5-C6 and C6-C7 segments remained mobile. One specimen remained untreated and was used to assess the repeatability of the IDP measurement protocol. Six specimens underwent 3 sequential configurations (untreated, partial diskectomy of the C5-6 IVD, and distraction-fusion of the C5-C6 vertebrae). Each construct was biomechanically tested under neutral, flexion, extension, and right-lateral bending loads. The IDP was measured with a pressure transducer inserted into the C6-7 IVD and compared between the nucleus pulposus and annulus fibrosus and across all 3 constructs and 4 loads. RESULTS Compared with untreated constructs, partial diskectomy and distraction-fusion of C5-C6 decreased the mean ± SD IDP in the C6-7 IVD by 1.3 ± 1.3% and 0.8 ± 1.3%, respectively. During motion, the IDP remained fairly constant in the annulus fibrosus and increased by 3.8 ± 3.0% in the nucleus pulposus. The increase in IDP within the nucleus pulposus was numerically greatest during flexion but did not differ significantly among loading conditions. CONCLUSIONS AND CLINICAL RELEVANCE Distraction-fusion of C5-C6 did not significantly alter the IDP of healthy C6-7 IVDs. Effects of vertebral distraction-fusion on the IDP of adjacent IVDs with degenerative changes, such as those in dogs with caudal cervical spondylomyelopathy, warrant investigation.
Collapse
Affiliation(s)
- Sebastian C Knell
- From the Clinic for Small Animal Surgery, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Brian Park
- From the Clinic for Small Animal Surgery, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Benjamin Voumard
- Musculoskeletal Biomechanics, ARTORG Center for Biomedical Engineering Research, University of Bern, CH-3010 Bern, Switzerland
| | - Antonio Pozzi
- From the Clinic for Small Animal Surgery, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
23
|
Waist circumference, waist-hip ratio, body fat rate, total body fat mass and risk of low back pain: a systematic review and meta-analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 31:123-135. [PMID: 34561729 DOI: 10.1007/s00586-021-06994-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/08/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To identify the associations between waist circumference (WC), waist-hip ratio (WHR), body fat rate (BFR), total body fat mass (BFM), and the risk of low back pain (LBP). METHODS We have searched PubMed through October 2020 for observational studies investigating the associations between WC, WHR, BFR, or total BFM and the risk of LBP. Random-effect models were used to calculate the summary risk estimates and corresponding 95% confidence intervals (95% CIs). RESULTS A total of fifteen studies with 92,936 participants were included, of which ten were related to WC, five were related to WHR, four were related to BFR, and four were related to total BFM. Pooled results indicated that high WC (odds ratio (OR) = 1.30, 95% CI 1.10-1.54) and WHR (OR = 1.33, 95% CI 1.00-1.76) were associated with an increased risk of chronic low back pain (c-LBP). High WC (OR = 1.18, 95% CI 1.03-1.34) was also associated with an increased risk of non-c-LBP. The risk of non-c-LBP increased by 23% (OR = 1.23, 95% CI 1.01-1.50) for every 10% increase in BFR, and for every 10 kg increase in total BFM, the risk of non-c-LBP increased by 24% (OR = 1.24, 95% CI 1.10-1.39). CONCLUSION Observational epidemiological evidence suggested that individuals with increased WC, WHR, BFR, or total BFM tended to have an increased risk of LBP, regardless of whether their body mass indexes were normal. Excessive fat mass was the essence of the process.
Collapse
|
24
|
Yabe Y, Hagiwara Y, Sekiguchi T, Momma H, Tsuchiya M, Kanazawa K, Yoshida S, Sogi Y, Onoki T, Suzuki K, Takahashi T, Itoi E, Nagatomi R. Low Back Pain in Young Sports Players: A Cross-sectional Study in Japan. Spine (Phila Pa 1976) 2021; 46:1154-1159. [PMID: 34384092 DOI: 10.1097/brs.0000000000003978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A cross-sectional study. OBJECTIVE The purpose of this large cohort study was to assess the prevalence of low back pain (LBP) among young players participating in several types of sports. SUMMARY OF BACKGROUND DATA LBP is a significant problem among young sports players. Sport discipline among young players is thought to be associated with LBP. However, similar previous studies did not specifically analyze LBP by age and sex. METHODS A cross-sectional study was conducted with young sports players (ages 6-15 years, n = 7277) using a self-reported questionnaire. The prevalence of LBP was assessed using the variables of age, sex, and sport discipline. RESULTS The point prevalence of LBP among young sports players was 5.0%. The participants between 6 and 8 years' old had the lowest prevalence of LBP (0.4%-1.3%), which increased with aging and reached the highest proportion of 13.5% to 14.8% at 13 to 14 years. Furthermore, female players had significantly higher proportions of LBP than male players (8.1% vs. 3.7%). Regarding sport discipline, the prevalence of LBP was higher in basketball, handball, and volleyball. CONCLUSION The prevalence of LBP among young sports players was different for age, sex, and sport discipline. Further studies are needed to clarify the association of sport-specific movements to LBP in each sport discipline. This may assist in developing programs or strategies for preventing LBP among young sports players.Level of Evidence: 3.
Collapse
Affiliation(s)
- Yutaka Yabe
- Department of Orthopedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Takuya Sekiguchi
- Department of Orthopedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Haruki Momma
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Masahiro Tsuchiya
- Department of Nursing, Faculty of Health Science, Tohoku Fukushi University, Aoba-ku, Sendai, Japan
| | - Kenji Kanazawa
- Department of Orthopedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Shinichirou Yoshida
- Department of Orthopedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Yasuhito Sogi
- Department of Orthopedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Takahiro Onoki
- Department of Orthopedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Kazuaki Suzuki
- Department of Orthopedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Tadahisa Takahashi
- Department of Orthopedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Aoba-ku, Sendai, Japan
| |
Collapse
|
25
|
Lee NN, Salzer E, Bach FC, Bonilla AF, Cook JL, Gazit Z, Grad S, Ito K, Smith LJ, Vernengo A, Wilke H, Engiles JB, Tryfonidou MA. A comprehensive tool box for large animal studies of intervertebral disc degeneration. JOR Spine 2021; 4:e1162. [PMID: 34337336 PMCID: PMC8313180 DOI: 10.1002/jsp2.1162] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical studies involving large animal models aim to recapitulate the clinical situation as much as possible and bridge the gap from benchtop to bedside. To date, studies investigating intervertebral disc (IVD) degeneration and regeneration in large animal models have utilized a wide spectrum of methodologies for outcome evaluation. This paper aims to consolidate available knowledge, expertise, and experience in large animal preclinical models of IVD degeneration to create a comprehensive tool box of anatomical and functional outcomes. Herein, we present a Large Animal IVD Scoring Algorithm based on three scales: macroscopic (gross morphology, imaging, and biomechanics), microscopic (histological, biochemical, and biomolecular analyses), and clinical (neurologic state, mobility, and pain). The proposed algorithm encompasses a stepwise evaluation on all three scales, including spinal pain assessment, and relevant structural and functional components of IVD health and disease. This comprehensive tool box was designed for four commonly used preclinical large animal models (dog, pig, goat, and sheep) in order to facilitate standardization and applicability. Furthermore, it is intended to facilitate comparison across studies while discerning relevant differences between species within the context of outcomes with the goal to enhance veterinary clinical relevance as well. Current major challenges in pre-clinical large animal models for IVD regeneration are highlighted and insights into future directions that may improve the understanding of the underlying pathologies are discussed. As such, the IVD research community can deepen its exploration of the molecular, cellular, structural, and biomechanical changes that occur with IVD degeneration and regeneration, paving the path for clinically relevant therapeutic strategies.
Collapse
Affiliation(s)
- Naomi N. Lee
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Elias Salzer
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Andres F. Bonilla
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityColoradoUSA
| | - James L. Cook
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Zulma Gazit
- Department of SurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Lachlan J. Smith
- Departments of Neurosurgery and Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrea Vernengo
- AO Research Institute DavosDavosSwitzerland
- Department of Chemical EngineeringRowan UniversityGlassboroNew JerseyUSA
| | - Hans‐Joachim Wilke
- Institute of Orthopaedic Research and BiomechanicsUniversity Hospital UlmUlmGermany
| | - Julie B. Engiles
- Department of Pathobiology, New Bolton Center, School of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
26
|
McMorran JG, Gregory DE. The effect of compressive loading rate on annulus fibrosus strength following endplate fracture. Med Eng Phys 2021; 93:17-26. [PMID: 34154771 DOI: 10.1016/j.medengphy.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 04/14/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration poses a considerable healthcare challenge, although the process is not well understood. Endplate fracture marks severe biomechanical compromise in a segment and may be correlated with degeneration of the disc. The purpose of this experiment was to investigate the relationship between endplate fracture velocity and damage to the annulus fibrosus. Following overnight-thawing, 27 frozen porcine cervical spines were dissected into motion segments (vertebra-disc-vertebra) and compressed until fracture at one of three loading rates (fast=15 mm/s, medium=1.5 mm/s, and slow=0.15 mm/s), or remained unfractured (control). Two annular samples were extracted and mechanically tested from each segment: 1) Bilayer samples underwent uniaxial tension to a stretch-ratio of 1.5; 2) Multilayer samples were delaminated with a 180° peel test configuration. All three rates of compression resulted in specimen fracture observed in the endplate and/or vertebra with varying degree of severity. Significant differences were detected in compressive strength and stiffness of motion segments when loaded at different rates of compression; interestingly these differences were not observed in the mechanical properties of the annulus fibrosus suggesting that at slow rates of loading, fracture of the endplate precedes destruction of the annulus fibrosus. In corroboration of these findings, gross and histological analysis reported no signs of annular disruption, strengthening assertions that annular damage did not occur.
Collapse
Affiliation(s)
- John G McMorran
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Ave West, Waterloo N2L3C5, ON Canada
| | - Diane E Gregory
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Ave West, Waterloo N2L3C5, ON Canada; Department of Health Sciences, Wilfrid Laurier University, 75 University Ave West, Waterloo N2L3C5, Ontario, Canada.
| |
Collapse
|
27
|
Azadi A, Arjmand N. A comprehensive approach for the validation of lumbar spine finite element models investigating post-fusion adjacent segment effects. J Biomech 2021; 121:110430. [PMID: 33873115 DOI: 10.1016/j.jbiomech.2021.110430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 11/15/2022]
Abstract
Spinal fusion surgery is usually followed by accelerated degenerative changes in the unfused segments above and below the treated segment(s), i.e., adjacent segment disease (ASD). While a number of risk factors for ASD have been suggested, its exact pathogenesis remains to be identified. Finite element (FE) models are indispensable tools to investigate mechanical effects of fusion surgeries on post-fusion changes in the adjacent segment kinematics and kinetics. Existing modeling studies validate only their intact FE model against in vitro data and subsequently simulate post-fusion in vivo conditions. The present study provides a novel approach for the comprehensive validation of a lumbar (T12-S1) FE model in post-fusion conditions. Sixteen simulated fusion surgeries, performed on cadaveric specimens using various testing and loading conditions, were modeled by this FE model. Predictions for adjacent segment range of motion (RoM) and intradiscal pressure (IDP) were compared with those obtained from the corresponding in vitro tests. Overall, 70% of the predicted adjacent segment RoMs were within the range of in vitro data for both intact and post-fusion conditions. Correlation (r) values between model and in vitro findings for the adjacent segment RoMs were positive and greater than 0.84. Most of the predicted IDPs were, however, out of the narrow range of in vitro IDPs at the adjacent segments but with great positive correlations (r ≥ 0.89). FE modeling studies investigating the effect of fusion surgery on in vivo adjacent segment biomechanics are encouraged to use post-surgery in vitro data to validate their FE model.
Collapse
Affiliation(s)
- A Azadi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - N Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
28
|
Rajaee MA, Arjmand N, Shirazi-Adl A. A novel coupled musculoskeletal finite element model of the spine - Critical evaluation of trunk models in some tasks. J Biomech 2021; 119:110331. [PMID: 33631665 DOI: 10.1016/j.jbiomech.2021.110331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 11/18/2022]
Abstract
Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R2 ≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (~38%), segmental (~44%) and disc (~22%) compression forces but larger segmental (~9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations.
Collapse
Affiliation(s)
- M A Rajaee
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - N Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - A Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique, Montréal, Québec, Canada
| |
Collapse
|
29
|
Wang C, Shi Z. [Research progress in creep characteristics of lumbar intervertebral disc]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1624-1629. [PMID: 33319547 DOI: 10.7507/1002-1892.202002167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To summarize the research progress in creep characteristics of lumbar intervertebral disc. Methods The relevant literature at home and abroad was systematically searched. Then, the concept and structural basis of lumbar disc creep, the description of creep characteristics, and the latest progress of its influencing factors were summarized and analyzed. Results The intervertebral disc is viscoelastic. After loading, the deformation increases with time. However, the degree of increase is not linear with time. That is creep, which plays an important role in buffering the load generated by human activities and absorbing energy in order to maintain stable movement of the spine. Both experimental and simulation studies can well describe the creep behavior of intervertebral disc. Various models including standard linear solid model and corresponding constitutive equations can quantify and compare the creep characteristics, which can be obviously changed by the degeneration of intervertebral disc and the mode of loading stress. Conclusion Creep is an important mechanical properties of intervertebral discs, and an in-depth understanding of the creep characteristics of lumbar intervertebral discs is of great guiding significance for the intervention and treatment of low back pain.
Collapse
Affiliation(s)
- Chao Wang
- Department of Spine Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai, 200433, P.R.China
| | - Zhicai Shi
- Department of Spine Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai, 200433, P.R.China
| |
Collapse
|
30
|
Smit TH. Adolescent idiopathic scoliosis: The mechanobiology of differential growth. JOR Spine 2020; 3:e1115. [PMID: 33392452 PMCID: PMC7770204 DOI: 10.1002/jsp2.1115] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) has been linked to neurological, genetic, hormonal, microbial, and environmental cues. Physically, however, AIS is a structural deformation, hence an adequate theory of etiology must provide an explanation for the forces involved. Earlier, we proposed differential growth as a possible mechanism for the slow, three-dimensional deformations observed in AIS. In the current perspective paper, the underlying mechanobiology of cells and tissues is explored. The musculoskeletal system is presented as a tensegrity-like structure, in which the skeletal compressive elements are stabilized by tensile muscles, ligaments, and fasciae. The upright posture of the human spine requires minimal muscular energy, resulting in less compression, and stability than in quadrupeds. Following Hueter-Volkmann Law, less compression allows for faster growth of vertebrae and intervertebral discs. The substantially larger intervertebral disc height observed in AIS patients suggests high intradiscal pressure, a condition favorable for notochordal cells; this promotes the production of proteoglycans and thereby osmotic pressure. Intradiscal pressure overstrains annulus fibrosus and longitudinal ligaments, which are then no longer able to remodel and grow, and consequently induce differential growth. Intradiscal pressure thus is proposed as the driver of AIS and may therefore be a promising target for prevention and treatment.
Collapse
Affiliation(s)
- Theodoor H. Smit
- Department of Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam University Medical CentresAmsterdamNetherlands
- Department of Medical BiologyAmsterdam University Medical CentresAmsterdamNetherlands
| |
Collapse
|
31
|
Li K, Zhang SJ, Du CF, Zhao JZ, Liu Q, Zhang CQ, Sun YF. Effect of Strain Rates on Failure of Mechanical Properties of Lumbar Intervertebral Disc Under Flexion. Orthop Surg 2020; 12:1980-1989. [PMID: 33200562 PMCID: PMC7767776 DOI: 10.1111/os.12847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Objective To evaluate the strain‐rate‐dependent viscoelastic properties of the intervertebral disc by in vitro experiments. Method The biomechanical experiments were conducted from September 2019 to December 2019. The lumbar spines of sheep were purchased within 4–6 hours from the local slaughterhouse, and the intervertebral disc samples were divided into three groups. In rupture group, the samples were used to test the mechanical behavior of the intervertebral disc rupture at different strain rates. In fatigue injury group, the samples were used to test the mechanical behavior of fatigue injury on the intervertebral disc under different strain rates. In internal displacement group, the samples were used to test the internal displacement distribution of the intervertebral disc at different strain rates by applying an optimized digital image correlation (DIC) technique. Results Both the yielding and cracking phenomenon occurs at fast and medium loading rates, while only the yielding phenomenon occurs at a slow loading rate. The yield stress, compressive strength, and elastic modulus all increase with the increase of the strain rate, while the yield strain decreases with the increase of the strain rate. The logarithm of the elastic modulus in the intervertebral disc is approximately linear with the logarithm of the strain rate under different strain rates. Both before and after fatigue loading, the stiffness in the loading and unloading curves of the intervertebral disc is inconsistent, forming a hysteresis loop, which is caused by the viscoelastic effect. The strain rate has no significant effect on the internal displacement distribution of the intervertebral disc. Based on the experimental data, the constitutive relationship of the intervertebral disc at different strain rates is obtained. The fitting curves are well coupled with the experimental data, while the fitting parameters are approximately linear with the logarithm of the strain rate. Conclusions These experiments indicate that the strain rate has a significant effect on the mechanical behavior of the intervertebral disc rupture and fatigue injury, while the constitutive equation can predict the rate‐dependent mechanical behavior of lumbar intervertebral disc under flexion very well. These results have important theoretical guiding significance for preventing lumbar disc herniation in daily life.
Collapse
Affiliation(s)
- Kun Li
- Tianjin Key Laboratory of Film Electronic and Communication Device, Tianjin University of Technology, Tianjin, China
| | - Shi-Jie Zhang
- Tianjin Key Laboratory of Film Electronic and Communication Device, Tianjin University of Technology, Tianjin, China
| | - Cheng-Fei Du
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Ji-Zhe Zhao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Qing Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Chun-Qiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Yan-Fang Sun
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
32
|
Feki F, Taktak R, Kandil K, Derrouiche A, Moulart M, Haddar N, Zaïri F, Zaïri F. How Osmoviscoelastic Coupling Affects Recovery of Cyclically Compressed Intervertebral Disc. Spine (Phila Pa 1976) 2020; 45:E1376-E1385. [PMID: 33031252 DOI: 10.1097/brs.0000000000003593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Osmoviscoelastic behavior of cyclically loaded cervical intervertebral disc. OBJECTIVE The aim of this study was to evaluate in vitro the effects of physiologic compressive cyclic loading on the viscoelastic properties of cervical intervertebral disc and, examine how the osmoviscoelastic coupling affects time-dependent recovery of these properties following a long period of unloading. SUMMARY OF BACKGROUND DATA The human neck supports repetitive loadings during daily activities and recovery of disc mechanics is essential for normal mechanical function. However, the response of cervical intervertebral disc to cyclic loading is still not very well defined. Moreover, how loading history conditions could affect the time-dependent recovery is still unclear. METHODS Ten thousand cycles of compressive loading, with different magnitudes and saline concentrations of the surrounding fluid bath, are applied to 8 motion segments (composed by 2 adjacent vertebrae and the intervening disc) extracted from the cervical spines of mature sheep. Subsequently, specimens are hydrated during 18 hours of unloading. The viscoelastic disc responses, after cyclic loading and recovery phase, are characterized by relaxation tests. RESULTS Viscoelastic behaviors are significantly altered following large number of cyclic loads. Moreover, after 18-hour recovery period in saline solution at reference concentration (0.15 mol/L), relaxation behaviors were fully restored. Nonetheless, full recovery is not obtained whether the concentration of the surrounding fluid, that is, hypo-, iso-, or hyper-osmotic conditions. CONCLUSION Cyclic loading effects and full recovery of viscoelastic behavior after hydration at iso-osmotic condition (0.15 mol/L) are governed by osmotic attraction of fluid content in the disc due to imbalance between the external load and the swelling pressure of the disc. After removal of the load, the disc recovers its viscoelastic properties following period of rest. Nevertheless, the viscoelastic recovery is a chemically activated process and its dependency on saline concentration is governed by fluid flow due to imbalance of ions between the disc tissues and the surrounding fluid. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- Faten Feki
- ENIS, Materials Engineering and Environment Laboratory (LGME), Sfax, Tunisia
| | - Rym Taktak
- ENIS, Materials Engineering and Environment Laboratory (LGME), Sfax, Tunisia
| | - Karim Kandil
- Lille University, Civil Engineering and geo-Environmental Laboratory (ULR 4515 LGCgE), Lille, France
| | - Amil Derrouiche
- Lille University, Civil Engineering and geo-Environmental Laboratory (ULR 4515 LGCgE), Lille, France
| | | | - Nader Haddar
- ENIS, Materials Engineering and Environment Laboratory (LGME), Sfax, Tunisia
| | - Fahmi Zaïri
- Lille University, Civil Engineering and geo-Environmental Laboratory (ULR 4515 LGCgE), Lille, France
| | - Fahed Zaïri
- Ramsay Générale de Santé, Hôpital privé Le Bois, Lille, France
| |
Collapse
|
33
|
Duclos SE, Denning SK, Towler C, Michalek AJ. Level-wise differences in in vivo lateral bending moment are associated with microstructural alterations in bovine caudal intervertebral discs. J Exp Biol 2020; 223:jeb229971. [PMID: 32958522 DOI: 10.1242/jeb.229971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022]
Abstract
Despite its common use as a laboratory model, little is known about the in vivo forces and moments applied to the bovine caudal intervertebral disc. Such aspects are crucial, as intervertebral disc tissue is known to remodel in response to repeated loading. We hypothesized that the magnitude of loading from muscle contraction during a typical lateral bending motion varies between caudal levels and is accompanied by variations in tissue microstructure. This hypothesis was tested by estimating level-wise forces and bending moments using two independent approaches: a dynamic analytical model of the motion and analysis of muscle cross-sections obtained via computed tomography. Microstructure was assessed by measuring the collagen fiber crimp period in the annulus fibrosus, and composition was assessed via quantitative histology. Both the analytical model and muscle cross-sections indicated peak bending moments of over 3 N m and peak compressive force of over 125 N at the c1c2 level, decreasing distally. There was a significant downward trend from proximal to distal in the outer annulus fibrosus collagen crimp period in the anterior and posterior regions only, suggesting remodeling in response to the highest lateral bending moments. There were no observed trends in composition. Our results suggest that although the proximal discs in the bovine tail are subjected to forces and moments from muscle contraction that are comparable (relative to disc size) to those acting on human lumbar discs, the distal discs are not. The resulting pattern of microstructural alterations suggests that level-wise differences should be considered when using bovine discs as a research model.
Collapse
Affiliation(s)
- Sarah E Duclos
- Department of Mechanical & Aeronautical Engineering, Clarkson University, Potsdam, NY 13699, USA
| | - Samantha K Denning
- Department of Mechanical & Aeronautical Engineering, Clarkson University, Potsdam, NY 13699, USA
| | - Christopher Towler
- Department of Physical Therapy, Clarkson University, Potsdam, NY 13699, USA
| | - Arthur J Michalek
- Department of Mechanical & Aeronautical Engineering, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
34
|
Bezci SE, Torres K, Carraro C, Chiavacci D, Werbner B, Lim S, O'Connell GD. Transient swelling behavior of the bovine caudal disc. J Mech Behav Biomed Mater 2020; 112:104089. [PMID: 32998075 DOI: 10.1016/j.jmbbm.2020.104089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022]
Abstract
The intervertebral disc is an avascular composite structure, comprised of the nucleus pulposus (NP) and the annulus fibrosus (AF). Previous tissue-level experiments either examined relative differences in swelling capacity of the two disc regions at a single time point or tested explant structures that did not replicate in situ boundary conditions. Previous joint-level studies that investigated time-dependent fluid flow into the disc provided limited information about swelling-induced intradiscal strains with respect to time and boundary constraints. Therefore, the objective of this study was to investigate time-dependent swelling behavior of the intervertebral disc ex situ. The first study investigated time-dependent free-swelling response of the whole disc and the disc's subcomponents separately (i.e., NP and AF). Findings from this study showed that the swelling rate and swelling capacity of NP explants under free-swelling conditions were greater than AF explants. The second study evaluated the effect of boundary conditions on in-plane strain distributions of intact discs and AF rings. Swelling-induced strain was highly heterogeneous in AF rings, where negative circumferential strains were observed in the inner AF and tensile circumferential strains were observed in the outer AF. Radial strains in AF rings were an order of magnitude greater than circumferential strains. Restricting fluid flow only to the outer AF periphery reduced the swelling of the inner AF. Swelling of intact discs affected both NP and AF swelling behaviors, where NP hydration decreased by 60%. Furthermore, the presence of the NP reduced peak radial strains in the AF and resulted in uniform strain distribution throughout the AF. In conclusion, these studies highlight that tissue hydration and swelling-induced strains largely depend on regional biochemical composition and geometric boundary constraints.
Collapse
Affiliation(s)
- Semih E Bezci
- Department of Mechanical Engineering University of California, Berkeley, United States
| | - Kyelo Torres
- Department of Mechanical Engineering University of California, Berkeley, United States
| | - Carlo Carraro
- Department of Chemical and Biomolecular Engineering University of California, Berkeley, United States
| | - Dominic Chiavacci
- Department of Mechanical Engineering University of California, Berkeley, United States
| | - Ben Werbner
- Department of Mechanical Engineering University of California, Berkeley, United States
| | - Shiyin Lim
- Department of Mechanical Engineering University of California, Berkeley, United States
| | - Grace D O'Connell
- Department of Mechanical Engineering University of California, Berkeley, United States; Department of Orthopaedic Surgery University of California, San Francisco, United States.
| |
Collapse
|
35
|
Nonlinear stress-dependent recovery behavior of the intervertebral disc. J Mech Behav Biomed Mater 2020; 110:103881. [PMID: 32957189 DOI: 10.1016/j.jmbbm.2020.103881] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/22/2020] [Accepted: 05/23/2020] [Indexed: 12/17/2022]
Abstract
The intervertebral disc exhibits complex mechanics due to its heterogeneous structure, inherent viscoelasticity, and interstitial fluid-matrix interactions. Sufficient fluid flow into the disc during low loading periods is important for maintaining mechanics and nutrient transport. However, there is a lack of knowledge on the effect of loading magnitude on time-dependent recovery behavior and the relative contribution of multiple recovery mechanisms during recovery. In most studies that have evaluated disc recovery behavior, a single load condition has been considered, making it difficult to compare findings across studies. Hence, the objective of this study was to quantify unloaded disc recovery behavior after compressive creep loading under a wide range of physiologically relevant stresses (0.2-2 MPa). First, the repeatability of disc recovery behavior was assessed. Once repeatable recovery behavior was confirmed, each motion segment was subject to three cycles of creep-recovery loading, where each cycle consisted of a 24-h creep at a pre-assigned load (100, 200, 300, 600, 900, or 1200 N), followed by an 18-h recovery period at a nominal load (10 N). Results showed that disc recovery behavior was strongly influenced by the magnitude of loading. The magnitude of instantaneous and time-dependent recovery deformations increased nonlinearly with an increase in compressive stress during creep. In conclusion, this study highlights that elastic deformation, intrinsic viscoelasticity, and poroelasticity all have substantial contributions to disc height recovery during low loading periods. However, their relative contributions to disc height recovery largely depend on the magnitude of loading. While loading history does not influence the contribution of the short-term recovery, the contribution of long-term recovery is highly sensitive to loading magnitude.
Collapse
|
36
|
Chen Y, Tang L. Stem Cell Senescence: the Obstacle of the Treatment of Degenerative Disk Disease. Curr Stem Cell Res Ther 2020; 14:654-668. [PMID: 31490764 DOI: 10.2174/1574888x14666190906163253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/05/2019] [Accepted: 06/01/2019] [Indexed: 12/14/2022]
Abstract
Intervertebral disc (IVD) has a pivotal role in the maintenance of flexible motion. IVD degeneration is one of the primary causes of low back pain and disability, which seriously influences patients' health, and increases the family and social economic burden. Recently, stem cell therapy has been proven to be more effective on IVD degeneration disease. However, stem cell senescence is the limiting factor in the IVD degeneration treatment. Senescent stem cells have a negative effect on the self-repair on IVD degeneration. In this review, we delineate that the factors such as telomerase shortening, DNA damage, oxidative stress, microenvironment and exosomes will induce stem cell aging. Recent studies tried to delay the aging of stem cells by regulating the expression of aging-related genes and proteins, changing the activity of telomerase, improving the survival microenvironment of stem cells and drug treatment. Understanding the mechanism of stem cell aging and exploring new approaches to delay or reverse stem cell aging asks for research on the repair of the degenerated disc.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University, Chongqing 400044, China
| |
Collapse
|
37
|
Lin J, Zhuge J, Zheng X, Wu Y, Zhang Z, Xu T, Meftah Z, Xu H, Wu Y, Tian N, Gao W, Zhou Y, Zhang X, Wang X. Urolithin A-induced mitophagy suppresses apoptosis and attenuates intervertebral disc degeneration via the AMPK signaling pathway. Free Radic Biol Med 2020; 150:109-119. [PMID: 32105828 DOI: 10.1016/j.freeradbiomed.2020.02.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), and effective therapies are still lacking. Previous studies reported that mitochondrial dysfunction contributes to apoptosis, and urolithin A (UA) specifically induces mitophagy. Herein, we aimed to investigate the protective effect of UA-induced mitophagy on tert-butyl hydroperoxide (TBHP)-induced apoptosis in nucleus pulposus (NP) cells in vitro and a rat model of IDD in vivo. Mitochondrial function, apoptosis, and mitophagy were measured in UA-treated NP cells by western blotting and immunofluorescence; the therapeutic effects of UA on IDD were assessed in rats with puncture-induced IDD. The results showed that UA could activate mitophagy in primary NP cells, and UA treatment inhibited TBHP-induced mitochondrial dysfunction and the intrinsic apoptosis pathway. Mechanistically, we revealed that UA promoted mitophagy by activating AMPK signaling in TBHP-induced NP cells. In vivo, UA was shown to effectively alleviate the progression of puncture-induced IDD in rats. Taken together, our results suggest that UA could be a novel and effective therapeutic strategy for IDD.
Collapse
Affiliation(s)
- Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jinru Zhuge
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xuanqi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuhao Wu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zengjie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tianzhen Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zaher Meftah
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongming Xu
- Department of Orthopaedic Surgery, Affiliated Cixi Hospital of Wenzhou Medical University, Ningbo, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang Province, China.
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
38
|
Zhang C, Zhang T, Gao L, Du C, Liu Q, Liu H, Wang X. Ratcheting Behavior of Intervertebral Discs Under Cyclic Compression: Experiment and Prediction. Orthop Surg 2019; 11:895-902. [PMID: 31663289 PMCID: PMC6819191 DOI: 10.1111/os.12530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To evaluate the ratcheting behavior of intervertebral discs (IVD) by experiments and theoretical study. METHOD The lumbar spines of sheep were obtained at a local slaughterhouse, and the IVD was processed with upper and lower vertebral bodies (about 5 mm) to ensure the mechanical state of the IVD in situ. The ratcheting tests of uniaxial cyclic compression loading for disc samples is carried out using the Electronic Universal Fatigue Testing System at room temperature. The effects of different stress variations, stress rates, as well as different segments on ratcheting behavior of discs were investigated. RESULTS The ratcheting strain evolution of lumbar IVD include stages of sharp increase and asymptotic stability. Both the ratcheting strain and ratcheting strain rate increase with an increase of stress variation (R = 0.962, P = 0.004) but decrease with an increase of the stress rate (R = -0.876, P = 0.019 ). Compression stiffness increases with an increase of the stress rate (R = 0.964, P = 0.004 ) or stress variation (R = 0.838, P = 0.037). Compared with L5 - 6 , the L6 - 7 disc showed less ratcheting strain (P = 0.04 ), indicating that the disc at this segment was more resistant to the impact of the ratcheting cycle. In addition, ratcheting strain evolution was predicted using a ratcheting evolution constitutive equation, and the predicted results were in good agreement with experimental data. CONCLUSIONS The ratcheting behavior occurs in IVD, and this cumulative deformation is consistent with the general ratcheting behavior. The constitutive equation can predict the ratcheting strain evolution of IVD very well. These results are of great significance for the analysis of defects and the development of repair in IVD.
Collapse
Affiliation(s)
- Chun‐qiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical EngineeringTianjin University of TechnologyTianjinChina,National Demonstration Center for Experimental Mechanical and Electrical EngineeringTianjinChina
| | - Tao Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical EngineeringTianjin University of TechnologyTianjinChina,National Demonstration Center for Experimental Mechanical and Electrical EngineeringTianjinChina
| | - Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical EngineeringTianjin University of TechnologyTianjinChina,National Demonstration Center for Experimental Mechanical and Electrical EngineeringTianjinChina
| | - Cheng‐fei Du
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical EngineeringTianjin University of TechnologyTianjinChina,National Demonstration Center for Experimental Mechanical and Electrical EngineeringTianjinChina
| | - Qing Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical EngineeringTianjin University of TechnologyTianjinChina,National Demonstration Center for Experimental Mechanical and Electrical EngineeringTianjinChina
| | - Hai‐ying Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical EngineeringTianjin University of TechnologyTianjinChina,National Demonstration Center for Experimental Mechanical and Electrical EngineeringTianjinChina
| | - Xin Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical EngineeringTianjin University of TechnologyTianjinChina,National Demonstration Center for Experimental Mechanical and Electrical EngineeringTianjinChina
| |
Collapse
|
39
|
Endo T, Abe T, Akai K, Kijima T, Takeda M, Yamasaki M, Isomura M, Nabika T, Yano S. Height loss but not body composition is related to low back pain in community-dwelling elderlies: Shimane CoHRE study. BMC Musculoskelet Disord 2019; 20:207. [PMID: 31077175 PMCID: PMC6511157 DOI: 10.1186/s12891-019-2580-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background Low back pain (LBP) is a common complaint in the elderly Japanese population. Although previous studies showed that height loss was associated with LBP, it remains unclear whether LBP is associated with body composition. The objective of the present study was to investigate whether body composition and physical characteristics, including height loss, were associated with LBP. Methods The present study is retrospectively registered, and the participants were 2212 community-dwelling Japanese people aged over 60 years who participated in the Shimane CoHRE study in 2016. We investigated the presence of LBP, body composition parameters (muscle, fat, body weight, and bone mass), physical characteristics (body height and height loss), chronic diseases, history of fall, smoking, and drinking habits. We examined the relationships of body composition parameters and physical characteristics with point prevalence of LBP using multivariate logistic regression. Results The point prevalence of LBP was 43.2% in women and 39.5% in men. Logistic regression models showed that body height and body composition were not significantly associated with LBP; however, height loss was associated significantly with LBP in women and men (OR: 1.14, 95% CI: 1.08–1.20 and OR: 1.13, 95% CI: 1.06–1.21, respectively). Hypertension (OR: 1.32, 9 5% CI: 1.04–1.69) and chronic heart disease (OR: 1.57, 95% CI: 1.01–2.43) in women and history of fall (OR: 1.70, 95% CI: 1.13–2.56) and cerebrovascular disease (OR: 1.88, 95% CI: 1.05–3.34) in men were significantly associated with LBP. However, body composition was not associated with LBP in either gender. Conclusions The present study demonstrated that height loss, but not body composition, was related to LBP in community-dwelling elderly people. To elucidate the cause of LBP, it is important to consider the relationship with height loss. Electronic supplementary material The online version of this article (10.1186/s12891-019-2580-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takeshi Endo
- Division of Internal Medicine, Unnan City Hospital, Unnan-city, Shimane, Japan.,Center for Community-Based Healthcare Research and Education (CoHRE), Shimane University, Matsue-city, Shimane, Japan
| | - Takafumi Abe
- Center for Community-Based Healthcare Research and Education (CoHRE), Shimane University, Matsue-city, Shimane, Japan
| | - Kenju Akai
- Center for Community-Based Healthcare Research and Education (CoHRE), Shimane University, Matsue-city, Shimane, Japan
| | - Tsunetaka Kijima
- Center for Community-Based Healthcare Research and Education (CoHRE), Shimane University, Matsue-city, Shimane, Japan.,Department of General Medicine, Shimane University Faculty of Medicine, Izumo-city, Shimane, Japan
| | - Miwako Takeda
- Center for Community-Based Healthcare Research and Education (CoHRE), Shimane University, Matsue-city, Shimane, Japan
| | - Masayuki Yamasaki
- Center for Community-Based Healthcare Research and Education (CoHRE), Shimane University, Matsue-city, Shimane, Japan.,Shimane University Faculty of Human Sciences, Matsue-city, Shimane, Japan
| | - Minoru Isomura
- Center for Community-Based Healthcare Research and Education (CoHRE), Shimane University, Matsue-city, Shimane, Japan.,Shimane University Faculty of Human Sciences, Matsue-city, Shimane, Japan
| | - Toru Nabika
- Center for Community-Based Healthcare Research and Education (CoHRE), Shimane University, Matsue-city, Shimane, Japan.,Department of Functional Pathology, Shimane University Faculty of Medicine, Izumo-city, Shimane, Japan
| | - Shozo Yano
- Center for Community-Based Healthcare Research and Education (CoHRE), Shimane University, Matsue-city, Shimane, Japan. .,Department of Laboratory Medicine, Shimane University Faculty of Medicine, Izumo-city, Shimane, Japan.
| |
Collapse
|
40
|
Mizuno S, Kashiwa K, Kang JD. Molecular and histological characteristics of bovine caudal nucleus pulposus by combined changes in hydrostatic and osmotic pressures in vitro. J Orthop Res 2019; 37:466-476. [PMID: 30480329 PMCID: PMC6590145 DOI: 10.1002/jor.24188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/30/2018] [Indexed: 02/04/2023]
Abstract
Intervertebral disc degeneration is ubiquitous among aging patients, and altered matrix homeostasis is one of the key features of this condition. Physicochemical stresses have a significant impact on matrix homeostasis as they lead to progressive degeneration and may be associated with spinal pain and dysfunction. Thus, it is important to understand the cellular and matrix characteristics of nucleus pulposus in response to these stresses, which include hydrostatic and osmotic pressures during alternate loading conditions. We hypothesized that a combination of changes in hydrostatic pressure and in osmotic pressure that mimic normal, daily spinal stress would stimulate anabolic function, whereas a non-realistic combination of those stresses would stimulate catabolic function in nucleus pulposus cells. We examined the effects of these combined stresses, represented by 12 systematic conditions, on the metabolic activities of enzymatically isolated bovine caudal nucleus pulposus in vitro. We measured the gene expression of extracellular matrix (ECM) molecules and proliferating cell nuclear antigen (PCNA) and evaluated the quality of the matrix and the capability of cell proliferation immunohistologically. Combined cyclic hydrostatic pressure at 0.5 MPa, 0.5 Hz, and high osmotic pressure at 450 mOsm upregulated the aggrecan core protein and collagen type-II gene expression significantly (p < 0.05), and showed trends of upregulation of chondroitin sulfate N-acetylgalactosaminyltransferase 1, matrix metalloproteinase-13, and PCNA. ECM, however, contained empty spaces at a high osmotic pressure with and without hydrostatic pressure. Since ECM has highly specialized physicochemical properties, homeostasis should involve not only phenotypic cellular behavior but also turnover of ECM. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:466-476, 2019.
Collapse
Affiliation(s)
- Shuichi Mizuno
- Department of Orthopedic SurgeryBrigham and Women's Hospital and Harvard Medical School75 Francis StreetBostonMassachusetts02115
| | - Kaori Kashiwa
- Department of Orthopedic SurgeryBrigham and Women's Hospital and Harvard Medical School75 Francis StreetBostonMassachusetts02115
| | - James D. Kang
- Department of Orthopedic SurgeryBrigham and Women's Hospital and Harvard Medical School75 Francis StreetBostonMassachusetts02115
| |
Collapse
|
41
|
Paul CPL, Emanuel KS, Kingma I, van der Veen AJ, Holewijn RM, Vergroesen PPA, van de Ven PM, Mullender MG, Helder MN, Smit TH. Changes in Intervertebral Disk Mechanical Behavior During Early Degeneration. J Biomech Eng 2018; 140:2678255. [PMID: 29801164 DOI: 10.1115/1.4039890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 11/08/2022]
Abstract
Intervertebral disk (IVD) degeneration is commonly described by loss of height and hydration. However, in the first stage of IVD degeneration, this loss has not yet occurred. In the current study, we use an ex vivo degeneration model to analyze the changes in IVDs mechanical behavior in the first phase of degeneration. We characterize these changes by stretched-exponential fitting, and suggest the fitted parameters as markers for early degeneration. Enzymatic degeneration of healthy lumbar caprine IVDs was induced by injecting 100 μL of Chondroïtinase ABC (Cabc) into the nucleus. A no-intervention and phosphate buffered saline (PBS) injected group were used as controls. IVDs were cultured in a bioreactor for 20 days under diurnal, simulated-physiological loading (SPL) conditions. Disk deformation was continuously monitored. Changes in disk height recovery behavior were quantified using stretched-exponential fitting. Disk height, histological sections, and water- and glycosaminoglycan (GAG)-content measurements were used as gold standards for the degenerative state. Cabc injection caused significant GAG loss from the nucleus and had detrimental effects on poro-elastic mechanical properties of the IVDs. These were progressive over time, with a propensity toward more linear recovery behavior. On histological sections, both PBS and Cabc injected IVDs showed moderate degeneration. A small GAG loss yields changes in IVD recovery behavior, which can be quantified with stretched-exponential fitting. Parameters changed significantly compared to control. Studies on disk degeneration and biomaterial engineering for degenerative disk disease (DDD) could benefit from focusing on IVD biomechanical behavior rather than height and water-content, as a marker for early disk degeneration.
Collapse
Affiliation(s)
- Cornelis P L Paul
- Department of Orthopedic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam 1105 AZ, The Netherlands
| | - Kaj S Emanuel
- Department of Orthopedic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam 1105 AZ, The Netherlands
| | - Idsart Kingma
- Department of Human Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam 1081 BT, The Netherlands
| | - Albert J van der Veen
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Roderick M Holewijn
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Pieter-Paul A Vergroesen
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Peter M van de Ven
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam 1081 BT, The Netherlands
| | - Margriet G Mullender
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Marco N Helder
- Department of Oral and Maxillofacial Surgery, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Theodoor H Smit
- Department of Orthopedic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam 1105 AZ, The Netherlands.,Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands e-mail:
| |
Collapse
|
42
|
Abstract
STUDY DESIGN Disc recovery behavior under hypo- and hyperosmotic pressure. OBJECTIVE To evaluate the effect of osmotic pressure on the unloaded recovery response of healthy discs. SUMMARY OF BACKGROUND DATA The intervertebral disc is a poroviscoelastic material that experiences large fluctuations in water composition throughout a diurnal loading cycle. Fluid flow out of the disc occurs through mechanical loading, whereas fluid flow into the disc occurs through passive diffusion because of an imbalance of ions between the disc and its surrounding environment. Osmotic pressure has been used to alter water uptake and tissue hydration. METHODS Motion segments were prepared from the caudal spine sections of the skeletally mature bovines. A 300-N compressive load was applied for 2 hours before unloaded recovery for 12 hours. Hypo- and hyperosmotic pressure was used to alter the rate of water uptake and disc height recovery during unloaded recovery. A 5-parameter rheological model was used to describe the disc's time-dependent recovery behavior. RESULTS The elastic response was not altered by changes in osmotic pressure; however, viscoelastic recovery was highly dependent on saline osmolarity and recovery time. The fast response of viscoelastic recovery was not dependent on osmotic pressure. The time constant for the slow response decreased whereas the slow response stiffness increased as osmotic pressure increased. CONCLUSION The fast response of viscoelastic recovery is governed by flow-independent recovery, whereas the slow response is related to flow-dependent recovery. The rate and magnitude of flow-dependent recovery are highly sensitive to changes in osmotic pressure of the saline bath. There is an osmotic pressure that reduces disc recovery behavior to an elastic response or flow-independent recovery. LEVEL OF EVIDENCE N/A.
Collapse
|
43
|
Velísková P, Bashkuev M, Shirazi-Adl A, Schmidt H. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions. J Biomech 2018; 70:16-25. [DOI: 10.1016/j.jbiomech.2017.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
44
|
Beekmans SV, Emanuel KS, Smit TH, Iannuzzi D. Stiffening of the nucleus pulposus upon axial loading of the intervertebral disc: An experimental in situ study. JOR Spine 2018; 1:e1005. [PMID: 31463437 PMCID: PMC6686818 DOI: 10.1002/jsp2.1005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/30/2018] [Accepted: 02/12/2018] [Indexed: 01/07/2023] Open
Abstract
Mechanical loading is inherently related to the function and degeneration of the intervertebral disc. We present a series of experiments aimed at measuring the effect of a loading/unloading cycle of the intervertebral disc on the mechanical properties of the nucleus pulposus. The study relies on our new minimally invasive microindenter, which allows us to quantify the storage and loss moduli of the nucleus pulposus by inserting an optomechanical probe in an intact (resected) intervertebral disk through the annulus fibrosis via a small needle. Our results indicate that, under the influence of compressive loading, the nucleus pulposus exhibits a more solid-like behavior.
Collapse
Affiliation(s)
- Steven V. Beekmans
- Department of Physics and AstronomyVrije Universiteit AmsterdamAmsterdamNetherlands
- LaserLab AmsterdamVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Kaj S. Emanuel
- Department of Orthopaedic SurgeryVU University Medical Center (VUmc)AmsterdamNetherlands
- Amsterdam Movement SciencesVU University Medical Center (VUmc)AmsterdamNetherlands
| | - Theodoor H. Smit
- Department of Medical BiologyAcademic Medical Center (AMC)AmsterdamNetherlands
- Department of Orthopedic SurgeryAcademic Medical Center (AMC)AmsterdamNetherlands
| | - Davide Iannuzzi
- Department of Physics and AstronomyVrije Universiteit AmsterdamAmsterdamNetherlands
- LaserLab AmsterdamVrije Universiteit AmsterdamAmsterdamNetherlands
| |
Collapse
|
45
|
Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: A caprine in vitro study. J Biomech 2018; 70:10-15. [DOI: 10.1016/j.jbiomech.2017.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/07/2017] [Accepted: 10/15/2017] [Indexed: 01/08/2023]
|
46
|
Chu G, Shi C, Lin J, Wang S, Wang H, Liu T, Yang H, Li B. Biomechanics in Annulus Fibrosus Degeneration and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:409-420. [PMID: 30357635 DOI: 10.1007/978-981-13-0950-2_21] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Degenerative disc degeneration (DDD) is the major cause of low back pain, which seriously affects the life of patients. Current surgical and conservative treatments only relieve the pain temporarily, yet fail to restore the normal biomechanics and functions of healthy spine. Indeed, high recurrence of disc herniation commonly happens after discectomy. Degenerative changes in biomechanical and structural properties of the intervertebral disc (IVD), including fissures in annulus fibrosus (AF) and volume loss of nucleus pulposus (NP), mainly contribute to DDD development. AF plays a critical role in the biomechanical properties of IVD as it structural integrity is essential to confine NP and maintain physiological intradiscal pressure under loading. Maintaining the homeostasis of AF and NP, and thereby IVD, requires regulation of their biomechanics, which is also involved in the onset and subsequent development of AF degeneration. Therefore, it is essential to understand the biomechanical changes of AF during degeneration, which can also provide valuable insights into the repair and regeneration of AF. In this review, we focus on the biomechanical properties of AF tissue associated with its homeostasis and degeneration, and discuss the biomechanical stimulus required for regeneration of AF. We also provide an overview of recent strategies to target and modulate cell mechanics toward AF regeneration.
Collapse
Affiliation(s)
- Genglei Chu
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Chen Shi
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Jun Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Shenghao Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Tao Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China. .,Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China. .,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China.
| |
Collapse
|
47
|
Vergroesen PPA, Emanuel KS, Peeters M, Kingma I, Smit TH. Are axial intervertebral disc biomechanics determined by osmosis? J Biomech 2017; 70:4-9. [PMID: 28579261 DOI: 10.1016/j.jbiomech.2017.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/23/2017] [Accepted: 04/24/2017] [Indexed: 12/25/2022]
Abstract
The intervertebral disc faces high compressive forces during daily activities. Axial compression induces creeping fluid loss and reduction in disc height. With degeneration, disc fluids and height are progressively lost, altering biomechanics. It is assumed that this reduction of fluids is caused by a decline of osmolality within the disc due to proteoglycan depletion. Here we investigate the isolated effect of a reduction in osmosis on the biomechanical properties of the intervertebral disc. Continuous diurnal loading was applied to healthy caprine intervertebral discs in a loaded disc culture system for a total of 6days. We increased testing bath osmolality with two doses of polyethylene-glycol (PEG), thereby reducing the osmotic gradient between the disc and the surrounding fluid. This way we could study the isolated effect of reduced osmosis on axial creep, without damaging the disc. We evaluated: daily creep and recovery, recovery time-constants and compressive stiffness. Additionally, we investigated water content. There was a strong dose-dependent effect of PEG concentration on water content and axial creep behaviour: disc height, amplitude and rate of creep and recovery were all significantly reduced. Axial compressive stiffness of the disc was not affected. Reduction of water content and amplitude of creep and recovery showed similarity to degenerative disc biomechanics. However, the time-constants increased, indicating that the hydraulic permeability was reduced, in contrast to what happens with degeneration. This suggests that besides the osmotic gradient, the permeability of the tissues determines healthy intervertebral disc biomechanics.
Collapse
Affiliation(s)
- Pieter-Paul A Vergroesen
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam, The Netherlands; Department of Orthopedic Surgery, Noord-West Ziekenhuizen, Alkmaar, The Netherlands; MOVE Research Institute Amsterdam, Amsterdam, The Netherlands; Amsterdam Movement Sciences Institute, Amsterdam, The Netherlands.
| | - Kaj S Emanuel
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam, The Netherlands; MOVE Research Institute Amsterdam, Amsterdam, The Netherlands; Amsterdam Movement Sciences Institute, Amsterdam, The Netherlands.
| | - Mirte Peeters
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam, The Netherlands; MOVE Research Institute Amsterdam, Amsterdam, The Netherlands; Amsterdam Movement Sciences Institute, Amsterdam, The Netherlands.
| | - Idsart Kingma
- Faculty of Behavioral and Movement Sciences, VU University, Amsterdam, The Netherlands; MOVE Research Institute Amsterdam, Amsterdam, The Netherlands; Amsterdam Movement Sciences Institute, Amsterdam, The Netherlands.
| | - Theodoor H Smit
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam, The Netherlands; Dept. of Medical Biology, Academisch Medisch Centrum, Amsterdam, The Netherlands; MOVE Research Institute Amsterdam, Amsterdam, The Netherlands; Amsterdam Movement Sciences Institute, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Chen S, Fu P, Wu H, Pei M. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res 2017; 370:53-70. [PMID: 28413859 DOI: 10.1007/s00441-017-2613-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/17/2017] [Indexed: 01/07/2023]
Abstract
The degradation of cartilage in the human body is impacted by aging, disease, genetic predisposition and continued insults resulting from daily activity. The burden of cartilage defects (osteoarthritis, rheumatoid arthritis, intervertebral disc damage, knee replacement surgeries, etc.) is daunting in light of substantial economic and social stresses. This review strives to broaden the scope of regenerative medicine and tissue engineering approaches used for cartilage repair by comparing and contrasting the anatomical and functional nature of the meniscus, articular cartilage (AC) and nucleus pulposus (NP). Many review papers have provided detailed evaluations of these cartilages and cartilage-like tissues individually but none have comprehensively examined the parallels and inconsistencies in signaling, genetic expression and extracellular matrix composition between tissues. For the first time, this review outlines the importance of understanding these three tissues as unique entities, providing a comparative analysis of anatomy, ultrastructure, biochemistry and function for each tissue. This novel approach highlights the similarities and differences between tissues, progressing research toward an understanding of what defines each tissue as distinctive. The goal of this paper is to provide researchers with the fundamental knowledge to correctly engineer the meniscus, AC and NP without inadvertently developing the wrong tissue function or biochemistry.
Collapse
Affiliation(s)
- Song Chen
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, One Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Peiliang Fu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Haishan Wu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, One Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
| |
Collapse
|
49
|
Paul CPL, de Graaf M, Bisschop A, Holewijn RM, van de Ven PM, van Royen BJ, Mullender MG, Smit TH, Helder MN. Static axial overloading primes lumbar caprine intervertebral discs for posterior herniation. PLoS One 2017; 12:e0174278. [PMID: 28384266 PMCID: PMC5383039 DOI: 10.1371/journal.pone.0174278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/05/2017] [Indexed: 11/25/2022] Open
Abstract
Introduction Lumbar hernias occur mostly in the posterolateral region of IVDs and mechanical loading is an important risk factor. Studies show that dynamic and static overloading affect the nucleus and annulus of the IVD differently. We hypothesize there is also variance in the effect of overloading on the IVD’s anterior, lateral and posterior annulus, which could explain the predilection of herniations in the posterolateral region. We assessed the regional mechanical and cellular responses of lumbar caprine discs to dynamic and static overloading. Material and methods IVDs (n = 125) were cultured in a bioreactor and subjected to simulated-physiological loading (SPL), high dynamic (HD), or high static (HS) overloading. The effect of loading was determined in five disc regions: nucleus, inner-annulus and anterior, lateral and posterior outer-annulus. IVD height loss and external pressure transfer during loading were measured, cell viability was mapped and quantified, and matrix integrity was assessed. Results During culture, overloaded IVDs lost a significant amount of height, yet the distribution of axial pressure remained unchanged. HD loading caused cell death and disruption of matrix in all IVD regions, whereas HS loading particularly affected cell viability and matrix integrity in the posterior region of the outer annulus. Conclusion Axial overloading is detrimental to the lumbar IVD. Static overloading affects the posterior annulus more strongly, while the nucleus is relatively spared. Hence, static overloading predisposes the disc for posterior herniation. These findings could have implications for working conditions, in particular of sedentary occupations, and the design of interventions aimed at prevention and treatment of early intervertebral disc degeneration.
Collapse
Affiliation(s)
- Cornelis P. L. Paul
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam Movement Sciences, The Netherlands
- * E-mail:
| | - Magda de Graaf
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam Movement Sciences, The Netherlands
| | - Arno Bisschop
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam Movement Sciences, The Netherlands
| | - Roderick M. Holewijn
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam Movement Sciences, The Netherlands
| | - Peter M. van de Ven
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Barend J. van Royen
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam Movement Sciences, The Netherlands
| | - Margriet G. Mullender
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam Movement Sciences, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Theodoor H. Smit
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam Movement Sciences, The Netherlands
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marco N. Helder
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam Movement Sciences, The Netherlands
- Department of Oral and Maxillofacial Surgery, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Tuan Dao T. Hybrid Rigid-Deformable Model for Prediction of Neighboring Intervertebral Disk Loads During Flexion Movement After Lumbar Interbody Fusion at L3-4 Level. J Biomech Eng 2017; 139:2594573. [PMID: 27996077 DOI: 10.1115/1.4035483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 11/08/2022]
Abstract
Knowledge of spinal loads in neighboring disks after interbody fusion plays an important role in the clinical decision of this treatment as well as in the elucidation of its effect. However, controversial findings are still noted in the literature. Moreover, there are no existing models for efficient prediction of intervertebral disk stresses within annulus fibrosus (AF) and nucleus pulposus (NP) regions. In this present study, a new hybrid rigid-deformable modeling workflow was established to quantify the mechanical stress behaviors within AF and NP regions of the L1-2, L2-3, and L4-5 disks after interbody fusion at L3-4 level. The changes in spinal loads were compared with results of the intact model without interbody fusion. The fusion outcomes revealed maximal stress changes (10%) in AF region of L1-2 disk and in NP region of L2-3 disk. The minimal stress change (1%) is noted at the NP region of the L1-2 disk. The validation of simulation outcomes of fused and intact lumbar spine models against those of other computational models and in vivo measurements showed good agreements. Thus, this present study may be used as a novel design guideline for a specific implant and surgical scenario of the lumbar spine disorders.
Collapse
Affiliation(s)
- Tien Tuan Dao
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne CS 60 319, France e-mail:
| |
Collapse
|