1
|
Bian Z, Zhai Y, Zhang Y, Wang T, Li H, Ouyang J, Liu C, Wang S, Hu Z, Chang X, Zhang C, Liu M, Li C. Senescent cartilage endplate stem cells-derived exosomes induce oxidative stress injury in nucleus pulposus cells and aggravate intervertebral disc degeneration by regulating FOXO3. Free Radic Biol Med 2025; 233:39-54. [PMID: 40118349 DOI: 10.1016/j.freeradbiomed.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Intervertebral disc degeneration (IVDD) is the leading cause of low back pain and associated disability worldwide. The cartilage endplate (CEP) is a critical structure in maintaining the homeostasis of the intervertebral disc, by exosomes (Exos)-mediated intracellular communication between cartilage endplate stem cells (CESCs) and nucleus pulposus cells (NPCs). However, whether the senescence of CESCs influences the functionality of CESCs-derived Exos (CESCs-Exos) and participates in the progress of IVDD remains unclear. In this study, we explored the role and mechanism of the Exos-based intracellular communication between senescent CESCs and NPCs in IVDD. CESCs isolated from aged individuals (S-CESCs) exhibited high levels of senescence compared with CESCs isolated from young individuals (Y-CESCs). Exos from Y-CESCs (Y-Exos) and from S-CESCs (S-Exos) were extracted and identified. Surprisingly, we found that S-Exos lost the therapeutic effects as the Y-Exos exhibited in mitigating IVDD, and even aggravated IVDD by inducing oxidative stress injury in NPCs. MicroRNA-sequencing revealed significant upregulation of miR-29b-3p expression in S-Exos. Through microRNA target prediction, dual luciferase assays, RNA-sequencing, lentivirus-mediated overexpression and suppression, we demonstrated that miR-29b-3p regulates the expression of FOXO3 and downstream antioxidant enzymes to induce oxidative stress injury in NPCs. In vivo experiments further verified that countering miR-29b-3p by antagomir reversed the detrimental effects of S-Exos in exacerbating IVDD. This work elucidates the role and mechanism of senescent CESCs in disrupting redox homeostasis in the nucleus pulposus and exacerbating IVDD by Exos-mediated intracellular communication and offers an experimental foundation for the selection of proper CESCs-Exos to obtain better therapeutic effects in IVDD.
Collapse
Affiliation(s)
- Zhiqun Bian
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China.
| | - Yuyao Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Tianling Wang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Hao Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Jian Ouyang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Chao Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Siya Wang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhilei Hu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Chao Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China.
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, China.
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, China.
| |
Collapse
|
2
|
Wang X, Huang Y, Yang Y, Tian X, Jin Y, Jiang W, He H, Xu Y, Liu Y. Polysaccharide-based biomaterials for regenerative therapy in intervertebral disc degeneration. Mater Today Bio 2025; 30:101395. [PMID: 39759846 PMCID: PMC11699348 DOI: 10.1016/j.mtbio.2024.101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
Intervertebral disc (IVD) degeneration represents a significant cause of chronic back pain and disability, with a substantial impact on the quality of life. Conventional therapeutic modalities frequently address the symptoms rather than the underlying etiology, underscoring the necessity for regenerative therapies that restore disc function. Polysaccharide-based materials, such as hyaluronic acid, alginate, chitosan, and chondroitin sulfate, have emerged as promising candidates for intervertebral disc degeneration (IVDD) therapy due to their biocompatibility, biodegradability, and ability to mimic the native extracellular matrix (ECM) of the nucleus pulposus (NP). These materials have demonstrated the capacity to support cell viability, facilitate matrix production, and alleviate inflammation in vitro and in vivo, thus supporting tissue regeneration and restoring disc function in comparison to conventional treatment. Furthermore, polysaccharide-based hydrogels have demonstrated the potential to deliver bioactive molecules, including growth factors, cytokines and anti-inflammatory drugs, directly to the degenerated disc environment, thereby enhancing therapeutic outcomes. Therefore, polysaccharide-based materials provide structural support and facilitate the regeneration of native tissue, representing a versatile and effective approach for the treatment of IVDD. Despite their promise, challenges such as limited long-term stability, potential immunogenicity, and the difficulty in scaling up production for clinical use remain. This review delineates the potential of various polysaccharides during the fabrication of hydrogels and scaffolds for disc regeneration, guiding and inspiring future research to focus on optimizing these materials for clinical translation for IVDD repair and regeneration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yixue Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Xin Tian
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden
| | - Yesheng Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Weimin Jiang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Hanliang He
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yijie Liu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| |
Collapse
|
3
|
Elmounedi N, Bahloul W, Keskes H. Current Therapeutic Strategies of Intervertebral Disc Regenerative Medicine. Mol Diagn Ther 2024; 28:745-775. [PMID: 39158834 DOI: 10.1007/s40291-024-00729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/20/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the most frequent causes of low back pain. No treatment is currently available to delay the progression of IDD. Conservative treatment or surgical interventions is only used to target the symptoms of IDD rather than treat the underlying cause. Currently, numerous potential therapeutic strategies are available, including molecular therapy, gene therapy, and cell therapy. However, the hostile environment of degenerated discs is a major problem that has hindered the clinical applicability of such approaches. In this regard, the design of drugs using alternative delivery systems (macro-, micro-, and nano-sized particles) may resolve this problem. These can protect and deliver biomolecules along with helping to improve the therapeutic effect of drugs via concentrating, protecting, and prolonging their presence in the degenerated disc. This review summarizes the research progress of diagnosis and the current options for treating IDD.
Collapse
Affiliation(s)
- Najah Elmounedi
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia.
| | - Walid Bahloul
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Hassib Keskes
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
4
|
Ramzan F, Salim A, Hussain A, Khan I. Unleashing the Healing Power of Mesenchymal Stem Cells for Osteochondral Abnormalities. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024. [DOI: 10.1007/s40883-024-00356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/25/2024] [Accepted: 08/31/2024] [Indexed: 01/11/2025]
|
5
|
Ferreira JR, Caldeira J, Sousa M, Barbosa MA, Lamghari M, Almeida-Porada G, Gonçalves RM. Dynamics of CD44 + bovine nucleus pulposus cells with inflammation. Sci Rep 2024; 14:9156. [PMID: 38644369 PMCID: PMC11033282 DOI: 10.1038/s41598-024-59504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/11/2024] [Indexed: 04/23/2024] Open
Abstract
Intervertebral Disc (IVD) degeneration has been associated with a chronic inflammatory response, but knowledge on the contribution of distinct IVD cells, namely CD44, to the progression of IVD degeneration remains elusive. Here, bovine nucleus pulposus (NP) CD44 cells were sorted and compared by gene expression and proteomics with the negative counterpart. NP cells were then stimulated with IL-1b (10 ng/ml) and dynamics of CD44 gene and protein expression was analyzed upon pro-inflammatory treatment. The results emphasize that CD44 has a multidimensional functional role in IVD metabolism, ECM synthesis and production of neuropermissive factors. CD44 widespread expression in NP was partially associated with CD14 and CD45, resulting in the identification of distinct cell subsets. In conclusion, this study points out CD44 and CD44-based cell subsets as relevant targets in the modulation of the IVD pro-inflammatory/degenerative cascade.
Collapse
Affiliation(s)
- J R Ferreira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
- Cell & Gene Therapy Safety, Clinical Pharmacology & Safety Science, R&D, AstraZeneca, Molndal, Sweden
| | - J Caldeira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - M Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
| | - M A Barbosa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
| | - M Lamghari
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
| | - G Almeida-Porada
- WFIRM-Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - R M Gonçalves
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
6
|
Liu G, Wei J, Xiao W, Xie W, Ru Q, Chen L, Wu Y, Mobasheri A, Li Y. Insights into the Notch signaling pathway in degenerative musculoskeletal disorders: Mechanisms and perspectives. Biomed Pharmacother 2023; 169:115884. [PMID: 37981460 DOI: 10.1016/j.biopha.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Degenerative musculoskeletal disorders are a group of age-related diseases of the locomotive system that severely affects the patient's ability to work and cause adverse sequalae such as fractures and even death. The incidence and prevalence of degenerative musculoskeletal disorders is rising owing to the aging of the world's population. The Notch signaling pathway, which is expressed in almost all organ systems, extensively regulates cell proliferation and differentiation as well as cellular fate. Notch signaling shows increased activity in degenerative musculoskeletal disorders and retards the progression of degeneration to some extent. The review focuses on four major degenerative musculoskeletal disorders (osteoarthritis, intervertebral disc degeneration, osteoporosis, and sarcopenia) and summarizes the pathophysiological functions of Notch signaling in these disorders, especially its role in stem/progenitor cells in each disorder. Finally, a conclusion will be presented to explore the research and application of the perspectives on Notch signaling in degenerative musculoskeletal disorders.
Collapse
Affiliation(s)
- Gaoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun Wei
- Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
7
|
Zhang J, Zhang W, Sun T, Wang J, Li Y, Liu J, Li Z. The Influence of Intervertebral Disc Microenvironment on the Biological Behavior of Engrafted Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:8671482. [PMID: 36387746 PMCID: PMC9663214 DOI: 10.1155/2022/8671482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2024] Open
Abstract
Intervertebral disc degeneration is the main cause of low back pain. Traditional treatment methods cannot repair degenerated intervertebral disc tissue. The emergence of stem cell therapy makes it possible to regenerate and repair degenerated intervertebral disc tissue. At present, mesenchymal stem cells are the most studied, and different types of mesenchymal stem cells have their own characteristics. However, due to the harsh and complex internal microenvironment of the intervertebral disc, it will affect the biological behaviors of the implanted mesenchymal stem cells, such as viability, proliferation, migration, and chondrogenic differentiation, thereby affecting the therapeutic effect. This review is aimed at summarizing the influence of each intervertebral disc microenvironmental factor on the biological behavior of mesenchymal stem cells, so as to provide new ideas for using tissue engineering technology to assist stem cells to overcome the influence of the microenvironment in the future.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Wentao Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Ying Li
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| | - Jing Liu
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| |
Collapse
|
8
|
Researches on Stem and Progenitor Cells in Intervertebral Discs: An Analysis of the Scientific Landscape. Stem Cells Int 2022; 2022:1274580. [PMID: 36093440 PMCID: PMC9458398 DOI: 10.1155/2022/1274580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Low back pain (LBP) is a common clinical symptom, and the prevalence is ranged from 60% to 70%. With the deepening of basic research, the development of intervertebral disc regeneration-oriented cell therapy, especially stem and progenitor cells therapy, showed good research prospects and was expected to become new methods of treatment for LBP. Our study is aimed at analyzing the scientific output of stem and progenitor cells in intervertebral discs and at driving future research into new publications. Researches focused on this file were searched from the Science Citation Index Expanded (SCI-E) of the Web of Science (WOS) core collection database and were screened according to inclusion criteria. We evaluated and visualized the results, including annual publications, citations, authors, organizations, countries, research directions, funds, and journals by bibliometric website, VOSviewer, and Citespace softwares on May 27, 2022. A total of 450 original articles and reviews were included, and the overall trend of the number of publications rapidly increased. In worldwide, China and the USA were the leading countries for research production. The retrieved 450 publications received 14322 citations, with an average of 31.83 citations and an H-index of 62. The most high-yield author, organization, country, research directions, funds, and journals were Chen QX from Zhejiang University, Zhejiang University, China, Cell Biology, National Natural Science Foundation of China, and Spine, respectively. Keywords cluster analysis showed the research hotspots in the future, including “human intervertebral disc”, “adipose-derived mesenchymal stem cell”, “intervertebral disc degeneration”, “degenerative disc model”, “nucleus pulposus regeneration”, “human cartilage”, “3d culture”, “shrinkage-free preparation”, and “polylactide disc”. Furthermore, with accumulating evidence demonstrating the role of stem and progenitor cells in intervertebral discs, “microenvironment”, “activation”, “intervertebral disc degeneration”, and “oxidative stress” are becoming the research frontiers and trends.
Collapse
|
9
|
Application of stem cells in the repair of intervertebral disc degeneration. Stem Cell Res Ther 2022; 13:70. [PMID: 35148808 PMCID: PMC8832693 DOI: 10.1186/s13287-022-02745-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a common disease that increases with age, and its occurrence is stressful both psychologically and financially. Stem cell therapy for IDD is emerging. For this therapy, stem cells from different sources have been proven in vitro, in vivo, and in clinical trials to relieve pain and symptoms, reverse the degeneration cascade, delay the aging process, maintain the spine shape, and retain mechanical function. However, further research is needed to explain how stem cells play these roles and what effects they produce in IDD treatment. This review aims to summarize and objectively analyse the current evidence on stem cell therapy for IDD.
Collapse
|
10
|
Wang H, Wang D, Luo B, Wang D, Jia H, Peng P, Shang Q, Mao J, Gao C, Peng Y, Gan L, Du J, Luo Z, Yang L. Decoding the annulus fibrosus cell atlas by scRNA-seq to develop an inducible composite hydrogel: A novel strategy for disc reconstruction. Bioact Mater 2022; 14:350-363. [PMID: 35386822 PMCID: PMC8964821 DOI: 10.1016/j.bioactmat.2022.01.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/08/2023] Open
Abstract
Low back pain is one of the most serious public health problems worldwide and the major clinical manifestation of intervertebral disc degeneration (IVDD). The key pathological change during IVDD is dysfunction of the annulus fibrosus (AF). However, due to the lack of an in-depth understanding of AF biology, the methods to reconstruct the AF are very limited. In this study, the mice AF cell atlas were decoded by single-cell RNA sequencing to provide a guide for AF reconstruction. The results first identify a new population of AF cells, fibrochondrocyte-like AF cells, which synthesize both collagen I and collagen II and are potential functional cells for AF reconstruction. According to the dual features of the AF extracellular matrix, a composite hydrogel based on the acylation of methacrylated silk fibroin with methacrylated hyaluronic acid was produced. To obtain the ability to stimulate differentiation, the composite hydrogels were combined with a fibrochondrocyte-inducing supplement. Finally, reconstruction of the AF defects, by the novel AF stem cell-loaded composite hydrogel, could be observed, its amount of chondroid matrices recovered to 31.7% of AF aera which is significantly higher than that in other control groups. In summary, this study decodes the AF cell atlas, based on which a novel strategy for AF reconstruction is proposed. There are 10 populations of cells in the annulus fibrosus (AF), as decoded by single cell RNA sequencing. Lineage tracing shows the route of migration and differentiation of annulus fibrosus-derived stem cells (AFSCs). A new population of AF cells, fibrochondrocyte-like AF cells, was identified. Both the fibrinoid and chondroid matrices of AF are reconstructed by the novel AFSCs-loaded composite hydrogel.
Collapse
|
11
|
Xuan A, Ruan D, Wang C, He Q, Wang D, Hou L, Zhang C, Li C, Ji W, Wen T, Xu C, Zhu Z. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:490-503. [PMID: 35427416 PMCID: PMC9154349 DOI: 10.1093/stcltm/szac013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
The treatment of intervertebral disc degeneration (IVDD) is still a huge challenge for clinical updated surgical techniques and basic strategies of intervertebral disc regeneration. Few studies have ever tried to combine surgery and cell therapy to bridge the gap between clinical and basic research. A prospective clinical study with a 72-month follow-up was conducted to assess the safety and feasibility of autologous discogenic cells transplantation combined with discectomy in the treatment of lumbar disc herniation (LDH) and to evaluate the regenerative ability of discogenic cells in IVDD. Forty patients with LDH who were scheduled to have discectomy enrolled in our study and were divided into the observed group (transplantation of autologous discogenic cells after discectomy) and control group (only-discectomy). Serial MRI and X-ray were used to evaluate the degenerative extent of index discs, and clinical scores were used to determine the symptomatic improvement. No adverse events were observed in the observed group, and seven patients in the control group underwent revisions. Both groups had significant improvement of all functional scores post-operatively, with the observed group improving more considerably at 36-month and 72-month follow-up. The height and water content of discs in both groups decreased significantly since 36 months post-op with the control group decreased more obviously. Discectomy combined with autologous discogenic cells transplantation is safe and feasible in the treatment of LDH. Radiological analysis demonstrated that discogenic cells transplantation could slow down the further degeneration of index discs and decrease the complications of discectomy.
Collapse
Affiliation(s)
- Anwu Xuan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Dike Ruan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
- Corresponding author: Dike Ruan, MD, The Second School of Clinical Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, People’s Republic of China, and the Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, 6 Fucheng Road, Haidian District, Beijing 100048, People’s Republic of China.
| | - Chaofeng Wang
- Department of Orthopedics, Xi’an Honghui Hospital, Xi’an, People’s Republic of China
| | - Qing He
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Deli Wang
- Department of Orthopedics, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Lisheng Hou
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Chao Zhang
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Chao Li
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Wei Ji
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Tianyong Wen
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Cheng Xu
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Zhenbiao Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Liu C, Li Y, Zhang Y, Xu H. The experimental study of regeneration of annulus fibrosus using decellularized annulus fibrosus matrix/poly(ether carbonate urethane)urea-blended fibrous scaffolds with varying elastic moduli. J Biomed Mater Res A 2021; 110:991-1003. [PMID: 34918475 DOI: 10.1002/jbm.a.37347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022]
Abstract
Although tissue engineering has attracted increasing attention for the treatment of degenerative intervertebral disc disease, the biochemical properties, structural organization, and mechanical characteristics of annulus fibrosus tissue have restricted progress. Differentiation of annulus fibrosus-derived stem cells (AFSCs) can be regulated by the elasticity of substrates such as poly(ether carbonate urethane)urea (PECUU). Decellularized annulus fibrosus matrix (DAFM) has good biocompatibility and biodegradability, making it suitable for cell adhesion, proliferation, and differentiation. In this study, we used a coaxial electrospinning method to synthesize DAFM/PECUU-blended fibrous scaffolds with elasticities approximating that of native inner and outer annulus fibrosus tissue. AFSCs cultured on DAFM/PECUU-blended fibrous scaffolds exhibited increased collagen type I gene expression with increasing elasticity of the scaffold material; notably, collagen type II and aggrecan gene expression exhibited the opposite trend. Regarding extracellular matrix secretion, collagen type I content gradually increased with substrate elasticity, while collagen type II and aggrecan contents decreased. In vivo evaluations employing magnetic resonance imaging, hematoxylin and eosin staining, and immunohistochemistry indicated that DAFM/PECUU-blended fibrous scaffolds could effectively repair defects of annulus fibrosus tissue. Our findings provide a theoretical and practical basis for the development of bionic annulus fibrosus tissue that closely mimics the biological properties, mechanical function, and matrix composition of native tissue.
Collapse
Affiliation(s)
- Chen Liu
- Spine Research Center of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China.,Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, China
| | - Yu Li
- Spine Research Center of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China
| | - Yu Zhang
- Spine Research Center of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China
| | - Hongguang Xu
- Spine Research Center of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China.,Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
13
|
Intervertebral Disc Stem/Progenitor Cells: A Promising "Seed" for Intervertebral Disc Regeneration. Stem Cells Int 2021; 2021:2130727. [PMID: 34367292 PMCID: PMC8342144 DOI: 10.1155/2021/2130727] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is considered to be the primary reason for low back pain (LBP), which has become more prevalent from 21 century, causing an enormous economic burden for society. However, in spite of remarkable improvements in the basic research of IVD degeneration (IVDD), the effects of clinical treatments of IVDD are still leaving much to be desired. Accumulating evidence has proposed the existence of endogenous stem/progenitor cells in the IVD that possess the ability of proliferation and differentiation. However, few studies have reported the biological properties and potential application of IVD progenitor cells in detail. Even so, these stem/progenitor cells have been consumed as a promising cell source for the regeneration of damaged IVD. In this review, we will first introduce IVD, describe its physiology and stem/progenitor cell niche, and characterize IVDSPCs between homeostasis and IVD degeneration. We will then summarize recent studies on endogenous IVDSPC-based IVD regeneration and exogenous cell-based therapy for IVDD. Finally, we will discuss the potential applications and future developments of IVDSPC-based repair of IVD degeneration.
Collapse
|
14
|
Guan Y, Sun C, Zou F, Wang H, Lu F, Song J, Liu S, Xia X, Jiang J, Ma X. Carbohydrate sulfotransferase 3 (CHST3) overexpression promotes cartilage endplate-derived stem cells (CESCs) to regulate molecular mechanisms related to repair of intervertebral disc degeneration by rat nucleus pulposus. J Cell Mol Med 2021; 25:6006-6017. [PMID: 33993645 PMCID: PMC8256370 DOI: 10.1111/jcmm.16440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
To investigate the regulatory effect of carbohydrate sulfotransferase 3 (CHST3) in cartilage endplate-derived stem cells (CESCs) on the molecular mechanism of intervertebral disc degeneration after nucleus pulposus repair in rats. We performed GO and KEGG analysis of GSE15227 database to select the differential genes CHST3 and CSPG4 in grade Ⅱ, Ⅲ and Ⅳ intervertebral disc degeneration, IHC and WB to detect the protein profile of CHST3 and CSPG4, Co-IP for the interaction between CHST3 and CSPG4. Then, immunofluorescence was applied to measure the level of CD90 and CD105, and flow cytometry indicated the level of CD73, CD90 and CD105 in CESCs. Next, Alizarin red staining, Alcian blue staining and TEM were performed to evaluate the effects of CESCs into osteoblasts and chondroblasts, respectively, CCK8 for the cell proliferation of osteoblasts and chondroblasts after induction for different times; cell cycle of osteoblasts or chondroblasts was measured by flow cytometry after induction, and WB for the measurement of specific biomarkers of OC and RUNX in osteoblasts and aggrecan, collagen II in chondroblasts. Finally, colony formation was applied to measure the cell proliferation of CESCs transfected with ov-CHST3 or sh-CHST3 when cocultured with bone marrow cells, WB for the protein expression of CHST3, CSPG4 and ELAVL1 in CSECs, transwell assay for the migration of CESCs to bone marrow cells, TEM image for the cellular characteristics of bone marrow cells, and WB for the protein profile of VCAN, VASP, NCAN and OFD1 in bone marrow cells. CHST3 and CSPG4 were differentially expressed and interacted in grade Ⅱ, Ⅲ and Ⅳ intervertebral disc degeneration; CD73, CD90 and CD105 were lowly expressed in CESCs, osteogenic or chondroblastic induction changed the characteristics, proliferation, cell cycle and specific biomarkers of osteoblasts and chondroblasts after 14 or 21 days,; CHST3 affected the cell proliferation, protein profile, migration and cellular features of cocultured CESCs or bone marrow cells. CHST3 overexpression promoted CESCs to regulate bone marrow cells through interaction with CSPG4 to repair the grade Ⅱ, Ⅲ and Ⅳ intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yunzhi Guan
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Chi Sun
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Fei Zou
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Hongli Wang
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Feizhou Lu
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Jian Song
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Siyang Liu
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Xinlei Xia
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Jianyuan Jiang
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Xiaosheng Ma
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
15
|
Liu Y, Liu H, Meng Y, Zhang L. [Research progress of endogenous repair strategy in intervertebral disc]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:636-641. [PMID: 33998219 DOI: 10.7507/1002-1892.202012070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the research progress of endogenous repair strategy (ERS) in intervertebral disc (IVD). Methods The domestic and foreign literature related to ERS in IVD in recent years was reviewed, and its characteristics, status, and prospect in the future were summarized. Results The key of ERS in IVD is to improve the vitality of stem/progenitor cells in IVD or promote its migration from stem cell Niche to the tissue that need to repair. These stem/progenitor cells in IVD are derived from nucleus pulposus, annulus fibrosus, and cartilaginous endplate, showing similar biological characteristics to mesenchymal stem cells including the expression of the specific stem/progenitor cell surface markers and gene, and also the capacity of multiple differentiations potential. However, the development, senescence, and degeneration of IVD have consumed these stem/progenitor cells, and the harsh internal microenvironment further impair their biological characteristics, which leads to the failure of endogenous repair in IVD. At present, relevant research mainly focuses on improving the biological characteristics of endogenous stem/progenitor cells, directly supplementing endogenous stem/progenitor cells, biomaterials and small molecule compounds to stimulate the endogenous repair in IVD, so as to improve the effect of endogenous repair. Conclusion At present, ERS has gotten some achievements in the treatment of IVD degeneration, but its related studies are still in the pre-clinical stage. So further studies regarding ERS should be carried out in the future, especially in vivo experiments and clinical transformation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Hao Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yang Meng
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Liang Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou Jiangsu, 225000, P.R.China
| |
Collapse
|
16
|
Smith K, Mercuri J. Microgravity and Radiation Effects on Astronaut Intervertebral Disc Health. Aerosp Med Hum Perform 2021; 92:342-352. [PMID: 33875067 DOI: 10.3357/amhp.5713.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION: The effects of spaceflight on the intervertebral disc (IVD) have not been thoroughly studied, despite the knowledge that spaceflight increases the risk of herniation of IVDs in astronauts upon return to Earth. However, as long duration missions become more common, fully characterizing the mechanisms behind space-induced IVD degeneration becomes increasingly imperative for mission success. This review therefore surveys current literature to outline the results of human, animal, and cell-level studies investigating the effect of microgravity and radiation exposure on IVD health. Overall, recurring study findings include increases in IVD height in microgravity conditions, upregulation of catabolic proteases leading to a weakening extracellular matrix (ECM), and both nucleus pulposus (NP) swelling and loss of annulus fibrosus (AF) fiber alignment which are hypothesized to contribute to the increased risk of herniation when reloading is experienced. However, the limitations of current studies are also discussed. For example, human studies do not allow for invasive measures of the underpinning biochemical mechanisms, correlating animal model results to the human condition may be difficult, and cellular studies lack incorporation of ECM and other complexities that mimic the native IVD microarchitecture and environment. Moving forward, the use of three-dimensional organoid culture models that incorporate IVD-specific human cells, ECM, and signals as well as the development of cell- and ECM-level computational models may further improve our understanding of the impacts that spaceflight has on astronaut IVD health.Smith K, Mercuri J. Microgravity and radiation effects on astronaut intervertebral disc health. Aerosp Med Hum Perform. 2021; 92(5):342352.
Collapse
|
17
|
ASIC1 and ASIC3 mediate cellular senescence of human nucleus pulposus mesenchymal stem cells during intervertebral disc degeneration. Aging (Albany NY) 2021; 13:10703-10723. [PMID: 33824228 PMCID: PMC8064223 DOI: 10.18632/aging.202850] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
Stem cell approaches have become an attractive therapeutic option for intervertebral disc degeneration (IVDD). Nucleus pulposus mesenchymal stem cells (NP-MSCs) participate in the regeneration and homeostasis of the intervertebral disc (IVD), but the molecular mechanisms governing these processes remain to be elucidated. Acid-sensing ion channels (ASICs) which act as key receptors for extracellular protons in central and peripheral neurons, have been implicated in IVDD where degeneration is associated with reduced microenvironmental pH. Here we show that ASIC1 and ASIC3, but not ASIC2 and ASIC4 are upregulated in human IVDs according to the degree of clinical degeneration. Subjecting IVD-derived NP-MSCs to pH 6.6 culture conditions to mimic pathological IVD changes resulted in decreased cell proliferation that was associated with cell cycle arrest and induction of senescence. Key molecular changes observed were increased expression of p53, p21, p27, p16 and Rb1. Instructively, premature senescence in NP-MSCs could be largely alleviated using ASIC inhibitors, suggesting both ASIC1 and ASIC3 act decisively upstream to activate senescence programming pathways including p53-p21/p27 and p16-Rb1 signaling. These results highlight the potential of ASIC inhibitors as a therapeutic approach for IVDD and broadly define an in vitro system that can be used to evaluate other IVDD therapies.
Collapse
|
18
|
Nan LP, Wang F, Liu Y, Wu Z, Feng XM, Liu JJ, Zhang L. 6-gingerol protects nucleus pulposus-derived mesenchymal stem cells from oxidative injury by activating autophagy. World J Stem Cells 2020; 12:1603-1622. [PMID: 33505603 PMCID: PMC7789124 DOI: 10.4252/wjsc.v12.i12.1603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/30/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To date, there has been no effective treatment for intervertebral disc degeneration (IDD). Nucleus pulposus-derived mesenchymal stem cells (NPMSCs) showed encouraging results in IDD treatment, but the overexpression of reactive oxygen species (ROS) impaired the endogenous repair abilities of NPMSCs. 6-gingerol (6-GIN) is an antioxidant and anti-inflammatory reagent that might protect NPMSCs from injury.
AIM To investigate the effect of 6-GIN on NPMSCs under oxidative conditions and the potential mechanism.
METHODS The cholecystokinin-8 assay was used to evaluate the cytotoxicity of hydrogen peroxide and the protective effects of 6-GIN. ROS levels were measured by 2´7´-dichlorofluorescin diacetate analysis. Matrix metalloproteinase (MMP) was detected by the tetraethylbenzimidazolylcarbocyanine iodide assay. TUNEL assay and Annexin V/PI double-staining were used to determine the apoptosis rate. Additionally, autophagy-related proteins (Beclin-1, LC-3, and p62), apoptosis-associated proteins (Bcl-2, Bax, and caspase-3), and PI3K/Akt signaling pathway-related proteins (PI3K and Akt) were evaluated by Western blot analysis. Autophagosomes were detected by transmission electron microscopy in NPMSCs. LC-3 was also detected by immunofluorescence. The mRNA expression of collagen II and aggrecan was evaluated by real-time polymerase chain reaction (RT-PCR), and the changes in collagen II and MMP-13 expression were verified through an immunofluorescence assay.
RESULTS 6-GIN exhibited protective effects against hydrogen peroxide-induced injury in NPMSCs, decreased hydrogen peroxide-induced intracellular ROS levels, and inhibited cell apoptosis. 6-GIN could increase Bcl-2 expression and decrease Bax and caspase-3 expression. The MMP, Annexin V-FITC/PI flow cytometry and TUNEL assay results further confirmed that 6-GIN treatment significantly inhibited NPMSC apoptosis induced by hydrogen peroxide. 6-GIN treatment promoted extracellular matrix (ECM) expression by reducing the oxidative stress injury-induced increase in MMP-13 expression. 6-GIN activated autophagy by increasing the expression of autophagy-related markers (Beclin-1 and LC-3) and decreasing the expression of p62. Autophagosomes were visualized by transmission electron microscopy. Pretreatment with 3-MA and BAF further confirmed that 6-GIN-mediated stimulation of autophagy did not reduce autophagosome turnover but increased autophagic flux. The PI3K/Akt pathway was also found to be activated by 6-GIN. 6-GIN inhibited NPMSC apoptosis and ECM degeneration, in which autophagy and the PI3K/Akt pathway were involved.
CONCLUSION 6-GIN efficiently decreases ROS levels, attenuates hydrogen peroxide-induced NPMSCs apoptosis, and protects the ECM from degeneration. 6-GIN is a promising candidate for treating IDD.
Collapse
Affiliation(s)
- Li-Ping Nan
- Department of Orthopedic, Tongji University School of Medicine, Shanghai Tenth People’s Hospital, Tenth People’s Hospital of Tongji University, Shanghai 200072, China
| | - Feng Wang
- Department of Spine Surgery, Tongji University School of Medicine, Shanghai East Hospital, Shanghai 200120, China
| | - Yang Liu
- Department of Orthopedic, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Zhong Wu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Jun-Jian Liu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| |
Collapse
|
19
|
Li Z, Chen S, Ma K, He R, Xiong L, Hu Y, Deng X, Yang A, Ma X, Shao Z. Comparison of different methods for the isolation and purification of rat nucleus pulposus-derived mesenchymal stem cells. Connect Tissue Res 2020; 61:426-434. [PMID: 31203667 DOI: 10.1080/03008207.2019.1611793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Recently, nucleus pulposus-derived mesenchymal stem cells (NPMSCs) have been identified and have shown good prospects for the repair of degenerative intervertebral discs. However, there is no consensus about the methods for the isolation and purification of NPMSCs. Therefore, a reliable and efficient isolation and purification method is potentially needed. We aimed to compare different methods and to identify an optimal method for isolating and purifying NPMSCs. METHODS NPMSCs were isolated and purified using two common methods (a low-density culture (LD) method and a mesenchymal stem cell complete medium culture (MSC-CM) method) and two novel methods (a cloning cylinder (CC) method and a combination of the CC and MSC-CM methods (MSC-CM+CC)). The morphology, MSC-specific surface markers (CD44, CD73, CD90, CD105, CD34 and HLA-DR), multiple-lineage differentiation potential, colony formation ability, and stemness gene (Oct4, Nanog, and Sox2) expression were evaluated and compared. RESULTS NPMSCs isolated from nucleus pulposus (NP) tissues via the four methods met the criteria stated by the International Society of Cell Therapy (ISCT) for MSCs, including adherent growth ability, MSC-specific surface antigen expression, and multi-lineage differentiation potential. In particular, the MSC-CM+CC method yielded a relatively higher quality of NPMSCs in terms of cell surface markers, multiple-lineage differentiation potential, colony formation ability, and stemness gene expression. CONCLUSIONS Our results indicated that NPMSCs can be obtained via all four methods and that the MSC-CM+CC method is more reliable and efficient than the other three methods. The findings from this study provide an alternative option for isolating and purifying NPMSCs.
Collapse
Affiliation(s)
- Zhiliang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University , Wuhan, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Ruijun He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Liming Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xiangyu Deng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Aoxue Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xuan Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| |
Collapse
|
20
|
Childs RD, Nakao H, Isogai N, Murthy A, Landis WJ. An analytical study of neocartilage from microtia and otoplasty surgical remnants: A possible application for BMP7 in microtia development and regeneration. PLoS One 2020; 15:e0234650. [PMID: 32555733 PMCID: PMC7299323 DOI: 10.1371/journal.pone.0234650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
To investigate auricular reconstruction by tissue engineering means, this study compared cartilage regenerated from human chondrocytes obtained from either microtia or normal (conchal) tissues discarded from otoplasties. Isolated cells were expanded in vitro, seeded onto nanopolyglycolic acid (nanoPGA) sheets with or without addition of bone morphogenetic protein-7 (BMP7), and implanted in nude mice for 10 weeks. On specimen harvest, cartilage development was assessed by gross morphology, histology, and RT-qPCR and microarray analyses. Neocartilages from normal and microtia surgical tissues were found equivalent in their dimensions, qualitative degree of proteoglycan and elastic fiber staining, and quantitative gene expression levels of types II and III collagen, elastin, and SOX5. Microarray analysis, applied for the first time for normal and microtia neocartilage comparison, yielded no genes that were statistically significantly different in expression between these two sample groups. These results support use of microtia tissue as a cell source for normal auricular reconstruction. Comparison of normal and microtia cells, each seeded on nanoPGA and supplemented with BMP7 in a slow-release hydrogel, showed statistically significant differences in certain genes identified by microarray analysis. Such differences were also noted in several analyses comparing counterpart seeded cells without BMP7. Summary data suggest a possible application for BMP7 in microtia cartilage regeneration and encourage further studies to elucidate whether such genotypic differences translate to phenotypic characteristics of the human microtic ear. The present work advances understanding relevant to the potential clinical use of microtia surgical remnants as a suitable cell source for tissue engineering of the pinna.
Collapse
Affiliation(s)
- Robin DiFeo Childs
- Department of Polymer Science, University of Akron, Akron, Ohio, United States of America
- Department of Plastic and Reconstructive Surgery, Kindai University Medical School, Osaka sayama, Osaka, Japan
| | - Hitomi Nakao
- Division of Plastic and Reconstructive Surgery, Children’s Hospital Medical Center, Akron, Ohio, United States of America
| | - Noritaka Isogai
- Division of Plastic and Reconstructive Surgery, Children’s Hospital Medical Center, Akron, Ohio, United States of America
| | - Ananth Murthy
- Department of Plastic and Reconstructive Surgery, Kindai University Medical School, Osaka sayama, Osaka, Japan
| | - William J. Landis
- Department of Polymer Science, University of Akron, Akron, Ohio, United States of America
- * E-mail:
| |
Collapse
|
21
|
Frapin L, Clouet J, Chédeville C, Moraru C, Samarut E, Henry N, André M, Bord E, Halgand B, Lesoeur J, Fusellier M, Guicheux J, Le Visage C. Controlled release of biological factors for endogenous progenitor cell migration and intervertebral disc extracellular matrix remodelling. Biomaterials 2020; 253:120107. [PMID: 32450408 DOI: 10.1016/j.biomaterials.2020.120107] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
The recent description of resident stem/progenitor cells in degenerated intervertebral discs (IVDs) supports the notion that their regenerative capacities could be harnessed to stimulate endogenous repair of the nucleus pulposus (NP). In this study, we developed a delivery system based on pullulan microbeads (PMBs) for sequential release of the chemokine CCL-5 to recruit these disc stem/progenitor cells to the NP tissue, followed by the release of the growth factors TGF-β1 and GDF-5 to induce the synthesis of a collagen type II- and aggrecan-rich extracellular matrix (ECM). Bioactivity of released CCL5 on human adipose-derived stem cells (hASCs), selected to mimic disc stem/progenitors, was demonstrated using a Transwell® chemotaxis assay. The regenerative effects of loaded PMBs were investigated in ex vivo spontaneously degenerated ovine IVDs. Fluorescent hASCs were seeded on the top cartilaginous endplates (CEPs); the degenerated NPs were injected with PMBs loaded with CCL5, TGF-β1, and GDF-5; and the IVDs were then cultured for 3, 7, and 28 days to allow for cell migration and disc regeneration. The PMBs exhibited sustained release of biological factors for 21 days. Ex vivo migration of seeded hASCs from the CEP toward the NP was demonstrated, with the cells migrating a significantly greater distance when loaded PMBs were injected (5.8 ± 1.3 mm vs. 3.5 ± 1.8 mm with no injection of PMBs). In ovine IVDs, the overall NP cellularity, the collagen type II and the aggrecan staining intensities, and the Tie2+ progenitor cell density in the NP were increased at day 28 compared to the control groups. Considered together, PMBs loaded with CCL5/TGF-β1/GDF-5 constitute an innovative and promising strategy for controlled release of growth factors to promote cell recruitment and extracellular matrix remodelling.
Collapse
Affiliation(s)
- Leslie Frapin
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Johann Clouet
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes, F-44093, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes, F-44035, France
| | - Claire Chédeville
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Constantin Moraru
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Edouard Samarut
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Nina Henry
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Manon André
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; SC3M -"Electron Microscopy, Microcharacterization, and Functional Morphohistology Imaging" Core Facility, Structure Fédérative de Recherche François Bonamy, INSERM - UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, Nantes, F-04402, France
| | - Eric Bord
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Boris Halgand
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France
| | - Julie Lesoeur
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; SC3M -"Electron Microscopy, Microcharacterization, and Functional Morphohistology Imaging" Core Facility, Structure Fédérative de Recherche François Bonamy, INSERM - UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, Nantes, F-04402, France
| | - Marion Fusellier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; Department of Diagnostic Imaging, CRIP, National Veterinary School (ONIRIS), Nantes, F-44307, France
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; SC3M -"Electron Microscopy, Microcharacterization, and Functional Morphohistology Imaging" Core Facility, Structure Fédérative de Recherche François Bonamy, INSERM - UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, Nantes, F-04402, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France.
| | - Catherine Le Visage
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France.
| |
Collapse
|
22
|
Liu Y, Li Y, Nan LP, Wang F, Zhou SF, Feng XM, Liu H, Zhang L. Insights of stem cell-based endogenous repair of intervertebral disc degeneration. World J Stem Cells 2020; 12:266-276. [PMID: 32399135 PMCID: PMC7202923 DOI: 10.4252/wjsc.v12.i4.266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain has become more prevalent in recent years, causing enormous economic burden for society and government. Common therapies used in clinics including conservative treatment and surgery can only relieve pain. Subsequent cell-based treatment such as mesenchymal stem cell transplantation poses problems such as short duration of therapeutic effect and tumorigenesis. Recently, the discovery and identification of stem cell niche and stem/progenitor cells in intervertebral disc bring increased attention to endogenous repair strategy. Therefore, we review the studies involving endogenous repair strategy and present the characteristics and current status of this treatment. Meanwhile, we also discuss the strategy and perspective of endogenous repair strategy in future.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Yan Li
- Department of Oncology, The Affiliated Cancer Hospital, School of Medicine, UESTC, Chengdu 610000, Sichuan Province, China
| | - Li-Ping Nan
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Feng Wang
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Shi-Feng Zhou
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Hao Liu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| |
Collapse
|
23
|
Chen Y, Tang L. Stem Cell Senescence: the Obstacle of the Treatment of Degenerative Disk Disease. Curr Stem Cell Res Ther 2020; 14:654-668. [PMID: 31490764 DOI: 10.2174/1574888x14666190906163253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/05/2019] [Accepted: 06/01/2019] [Indexed: 12/14/2022]
Abstract
Intervertebral disc (IVD) has a pivotal role in the maintenance of flexible motion. IVD degeneration is one of the primary causes of low back pain and disability, which seriously influences patients' health, and increases the family and social economic burden. Recently, stem cell therapy has been proven to be more effective on IVD degeneration disease. However, stem cell senescence is the limiting factor in the IVD degeneration treatment. Senescent stem cells have a negative effect on the self-repair on IVD degeneration. In this review, we delineate that the factors such as telomerase shortening, DNA damage, oxidative stress, microenvironment and exosomes will induce stem cell aging. Recent studies tried to delay the aging of stem cells by regulating the expression of aging-related genes and proteins, changing the activity of telomerase, improving the survival microenvironment of stem cells and drug treatment. Understanding the mechanism of stem cell aging and exploring new approaches to delay or reverse stem cell aging asks for research on the repair of the degenerated disc.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University, Chongqing 400044, China
| |
Collapse
|
24
|
Heme Oxygenase-1-Mediated Autophagy Protects against Oxidative Damage in Rat Nucleus Pulposus-Derived Mesenchymal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9349762. [PMID: 32184919 PMCID: PMC7063211 DOI: 10.1155/2020/9349762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/10/2020] [Indexed: 12/30/2022]
Abstract
Although endogenous nucleus pulposus-derived mesenchymal stem cell- (NPMSC-) based regenerative medicine has provided promising repair strategy for intervertebral disc (IVD) degeneration, the hostile microenvironments in IVD, including oxidative stress, can negatively affect the survival and function of the NPMSCs and severely hinder the endogenous repair process. Therefore, it is of great importance to reveal the mechanisms of the endogenous repair failure caused by the adverse microenvironments in IVD. The aim of this study was to investigate the effect of oxidative stress on the rat NPMSCs and its underlying mechanism. Our results demonstrated that oxidative stress inhibited cell viability, induced apoptosis, and increased the production of reactive oxygen species (ROS) in NPMSCs. In addition, the results showed that the expression level of heme oxygenase-1 (HO-1) increased at an early stage but decreased at a late stage when NPMSCs were exposed to oxidative stress, and the oxidative damages of NPMSCs could be partially reversed by promoting the expression of HO-1. Further mechanistic analysis indicated that the protective effect of HO-1 against oxidative damage in NPMSCs was mediated by the activation of autophagy. Taken together, our study revealed that oxidative stress could inhibit cell viability, induce apoptosis, and increase ROS production in NPMSCs, and HO-1-mediated autophagy might act as a protective response to the oxidative damage. These findings might enhance our understanding on the mechanism of the endogenous repair failure during IVD degeneration and provide novel research direction for the endogenous repair of IVD degeneration.
Collapse
|
25
|
Abstract
Intervertebral disc (IVD) degeneration is associated with low back pain. In IVDs, a high mechanical load, high osmotic pressure and hypoxic conditions create a hostile microenvironment for resident cells. How IVD homeostasis and function are maintained under stress remains to be understood; however, several research groups have reported isolating native endogenous progenitor-like or otherwise proliferative cells from the IVD. The isolation of such cells implies that the IVD might contain a quiescent progenitor-like population that could be activated for IVD repair and regeneration. Increased understanding of endogenous disc progenitor cells will improve our knowledge of IVD homeostasis and, when combined with tissue engineering techniques, might hold promise for future therapeutic applications. In this Review, the characteristics of progenitor cells in different IVD compartments are discussed, as well as the potency of different cell populations within the IVD. The stem cell characteristics of these cells are also compared with those of mesenchymal stromal cells. On the basis of existing evidence, whether and how IVD degeneration and the hostile microenvironment might affect endogenous progenitor cell function are considered, and ways to channel the potential of these cells for IVD repair are suggested.
Collapse
|
26
|
Tian D, Liu J, Chen L, Zhu B, Jing J. The protective effects of PI3K/Akt pathway on human nucleus pulposus mesenchymal stem cells against hypoxia and nutrition deficiency. J Orthop Surg Res 2020; 15:29. [PMID: 31992313 PMCID: PMC6988348 DOI: 10.1186/s13018-020-1551-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To study the effects of hypoxia and nutrition deficiency mimicking degenerated intervertebral disc on the biological behavior of human nucleus-derived pulposus mesenchymal stem cells (hNP-MSCs) and the role of PI3K/Akt pathway in the process in vitro. METHODS hP-MSCs were isolated from lumbar disc and were further identified by their immunophenotypes and multilineage differentiation. Then, cells were divided into the control group, hypoxia and nutrition deficiency group, the LY294002 group, and insulin-like growth factor 1 (IGF-1) group. Then cell apoptosis, the cell viability, the caspase 3 activity, and the expression of PI3K, Akt, and functional genes (aggrecan, collagen I, and collagen II) were evaluated. RESULT Our work showed that isolated cells met the criteria of International Society for cellular Therapy. Therefore, cells obtained from degenerated nucleus pulposus were definitely hNP-MSCs. Our results showed that hypoxia and nutrition deficiency could significantly increase cell apoptosis, the caspase 3 activity, and inhibit cell viability. Gene expression results demonstrated that hypoxia and nutrition deficiency could increase the relative expression of PI3K and Akt gene and inhibit the expression of functional genes. However, when the PI3K/Akt pathway was inhibited by LY294002, the cell apoptosis and caspase 3 activity significantly increased while the cell viability was obviously inhibited. Quantitative real-time PCR results showed that the expression of functional genes was more significantly inhibited. Our study further verified that the above-mentioned biological activities of hNP-MSCs could be significantly improved by IGF1. CONCLUSIONS PI3K/Akt signal pathway may have protective effects on human nucleus pulposus-derived mesenchymal stem cells against hypoxia and nutrition deficiency.
Collapse
Affiliation(s)
- DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Jianjun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Lei Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Bin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China.
| |
Collapse
|
27
|
Torre OM, Mroz V, Benitez ARM, Huang AH, Iatridis JC. Neonatal annulus fibrosus regeneration occurs via recruitment and proliferation of Scleraxis-lineage cells. NPJ Regen Med 2019; 4:23. [PMID: 31885875 PMCID: PMC6925137 DOI: 10.1038/s41536-019-0085-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
Intervertebral disc (IVD) injuries are a cause of degenerative changes in adults which can lead to back pain, a leading cause of disability. We developed a model of neonatal IVD regeneration with full functional restoration and investigate the cellular dynamics underlying this unique healing response. We employed genetic lineage tracing in mice using Scleraxis (Scx) and Sonic hedgehog (Shh) to fate-map annulus fibrosus (AF) and nucleus pulposus (NP) cells, respectively. Results indicate functional AF regeneration after severe herniation injury occurs in neonates and not adults. AF regeneration is mediated by Scx-lineage cells that lose ScxGFP expression and adopt a stem/progenitor phenotype (Sca-1, days 3–14), proliferate, and then redifferentiate towards type I collagen producing, ScxGFP+ annulocytes at day 56. Non Scx-lineage cells were also transiently observed during neonatal repair, including Shh-lineage cells, macrophages, and myofibroblasts; however, these populations were no longer detected by day 56 when annulocytes redifferentiate. Overall, repair did not occur in adults. These results identify an exciting cellular mechanism of neonatal AF regeneration that is predominantly driven by Scx-lineage annulocytes.
Collapse
Affiliation(s)
- Olivia M Torre
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1188, New York, NY 10029-6574 USA
| | - Victoria Mroz
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1188, New York, NY 10029-6574 USA
| | - Anthony R Martinez Benitez
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1188, New York, NY 10029-6574 USA
| | - Alice H Huang
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1188, New York, NY 10029-6574 USA
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1188, New York, NY 10029-6574 USA
| |
Collapse
|
28
|
Pioglitazone Protects Compression-Mediated Apoptosis in Nucleus Pulposus Mesenchymal Stem Cells by Suppressing Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4764071. [PMID: 31885796 PMCID: PMC6893265 DOI: 10.1155/2019/4764071] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/19/2019] [Accepted: 08/10/2019] [Indexed: 01/28/2023]
Abstract
Excessive compression, the main cause of intervertebral disc (IVD) degeneration, affected endogenous repair of the intervertebral disc. Pioglitazone (PGZ) is the agonist of peroxisome proliferator-activated receptor γ, which has been widely used in the treatment of diabetes mellitus. The present study aim at investigating whether pioglitazone has protective effects on compression-mediated cell apoptosis in nucleus pulposus mesenchymal stem cells (NP-MSCs) and further exploring the possible underlying mechanism. Our results indicated that the isolated cells satisfied the criteria of MSC stated by the International Society for Cellular Therapy. Besides, our research revealed that pioglitazone could protect cell viability, cell proliferation of NP-MSCs and alleviated the toxic effects caused by compression. The actin stress fibers was suppressed obviously under compression, and pioglitazone alleviated the adverse outcomes. Pioglitazone exerted protective effects on compression-induced NP-MSCs apoptosis according to annexin V/PI double-staining and TUNEL assays. Pioglitazone suppressed compression-induced NP-MSCs oxidative stress, including decreasing compression-induced overproduction of reactive oxygen species (ROS) and malondialdehyde (MDA), and alleviated compression-induced mitochondrial membrane potential (MMP) decrease. Ultrastructure collapse of the mitochondria exhibited a notable improvement by pioglitazone in compression-induced NP-MSCs according to transmission electron microscopy (TEM). Furthermore, the molecular results showed that pioglitazone significantly decreased the expression of apoptosis-associated proteins, including cyto.cytochrome c, Bax, cleaved caspase-9, and cleaved caspase-3, and promoted Bcl-2 expression. These results indicated that pioglitazone alleviated compression-induced NP-MSCs apoptosis by suppressing oxidative stress and the mitochondrial apoptosis pathway, which may be a valuable candidate for the treatment of IVD degeneration.
Collapse
|
29
|
Penolazzi L, Lambertini E, Scussel Bergamin L, Gandini C, Musio A, De Bonis P, Cavallo M, Piva R. Reciprocal Regulation of TRPS1 and miR-221 in Intervertebral Disc Cells. Cells 2019; 8:cells8101170. [PMID: 31569377 PMCID: PMC6829335 DOI: 10.3390/cells8101170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
Intervertebral disc (IVD), a moderately moving joint located between the vertebrae, has a limited capacity for self-repair, and treating injured intervertebral discs remains a major challenge. The development of innovative therapies to reverse IVD degeneration relies primarily on the discovery of key molecules that, occupying critical points of regulatory mechanisms, can be proposed as potential intradiscal injectable biological agents. This study aimed to elucidate the underlying mechanism of the reciprocal regulation of two genes differently involved in IVD homeostasis, the miR-221 microRNA and the TRPS1 transcription factor. Human lumbar IVD tissue samples and IVD primary cells were used to specifically evaluate gene expression and perform functional analysis including the luciferase gene reporter assay, chromatin immunoprecipitation, cell transfection with hTRPS1 overexpression vector and antagomiR-221. A high-level expression of TRPS1 was significantly associated with a lower pathological stage, and TRPS1 overexpression strongly decreased miR-221 expression, while increasing the chondrogenic phenotype and markers of antioxidant defense and stemness. Additionally, TRPS1 was able to repress miR-221 expression by associating with its promoter and miR-221 negatively control TRPS1 expression by targeting the TRPS1-3'UTR gene. As a whole, these results suggest that, in IVD cells, a double-negative feedback loop between a potent chondrogenic differentiation suppressor (miR-221) and a regulator of axial skeleton development (TRPS1) exists. Our hypothesis is that the hostile degenerated IVD microenvironment may be counteracted by regenerative/reparative strategies aimed at maintaining or stimulating high levels of TRPS1 expression through inhibition of one of its negative regulators such as miR-221.
Collapse
Affiliation(s)
- Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Leticia Scussel Bergamin
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Carlotta Gandini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Antonio Musio
- Department of Neurosurgery, S. Anna University Hospital, 44124 Ferrara, Italy.
| | - Pasquale De Bonis
- Department of Neurosurgery, S. Anna University Hospital, 44124 Ferrara, Italy.
| | - Michele Cavallo
- Department of Neurosurgery, S. Anna University Hospital, 44124 Ferrara, Italy.
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
- Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
30
|
Frapin L, Clouet J, Delplace V, Fusellier M, Guicheux J, Le Visage C. Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors. Adv Drug Deliv Rev 2019; 149-150:49-71. [PMID: 31445063 DOI: 10.1016/j.addr.2019.08.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/05/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022]
Abstract
Intervertebral disc (IVD) degeneration has been associated with low back pain, which is a major musculoskeletal disorder and socio-economic problem that affects as many as 600 million patients worldwide. Here, we first review the current knowledge of IVD physiology and physiopathological processes in terms of homeostasis regulation and consecutive events that lead to tissue degeneration. Recent progress with IVD restoration by anti-catabolic or pro-anabolic approaches are then analyzed, as are the design of macro-, micro-, and nano-platforms to control the delivery of such therapeutic agents. Finally, we hypothesize that a sequential delivery strategy that i) firstly targets the inflammatory, pro-catabolic microenvironment with release of anti-inflammatory or anti-catabolic cytokines; ii) secondly increases cell density in the less hostile microenvironment by endogenous cell recruitment or exogenous cell injection, and finally iii) enhances cellular synthesis of extracellular matrix with release of pro-anabolic factors, would constitute an innovative yet challenging approach to IVD regeneration.
Collapse
|
31
|
Henriksson HB, Papadimitriou N, Hingert D, Baranto A, Lindahl A, Brisby H. The Traceability of Mesenchymal Stromal Cells After Injection Into Degenerated Discs in Patients with Low Back Pain. Stem Cells Dev 2019; 28:1203-1211. [PMID: 31237488 DOI: 10.1089/scd.2019.0074] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Low back pain is a major health issue and one main cause to this condition is believed to be intervertebral disc (IVD) degeneration. Stem cell therapy for degenerated discs using mesenchymal stromal cells (MSCs) has been suggested. The aim of the study was to investigate the presence and distribution pattern of autologous MSCs transplanted into degenerated IVDs in patients and explanted posttransplantation. IVD tissues from four patients (41, 45, 47, and 47 years of age) participating in a clinical feasibility study on MSC transplantation to degenerative discs were investigated. Three patients decided to undergo fusion surgery at time points 8 months and one patient at 28 months posttransplantation. Pretransplantation, MSCs from bone marrow aspirate were isolated by centrifugation in FICOLL® test tubes and cultured (passage 1). Before transplantation, MSCs were labeled with 1 mg/mL iron sucrose (Venofer®) and 1 × 106 MSCs were transplanted into degenerated IVDs. At the time point of surgery, IVD tissues were collected. IVD tissue samples were fixated, embedded in paraffin, and sections prepared. IVD samples were stained with Prussian Blue, by which iron deposits are visualized and examined (light microscopy). Immunohistochemistry (IHC), including SOX9 (sex determining region Y box 9), Coll2A1 (collagen 2A1), and cell viability (TUNEL) were performed. Cells positive for iron deposits were observed in IVD tissues (3/4 patients). The cells/iron deposits were observed in clusters and/or as solitary cells in regions in IVD tissue samples [regions of interest (ROIs)]. By IHC, SOX9- and Coll2A1-positive cells were detected in the same regions as the detected cells/iron deposits. A few nonviable cells were detected by TUNEL assay in ROIs. Results demonstrated that MSCs, labeled with iron sucrose, transplanted into degenerated IVDs were detectable 8 months posttransplantation. The detected cellular activity indicates that MSCs have differentiated into chondrocyte-like cells and that the injected MSCs and/or their progeny have survived since the cells were found in large cluster and as solitary cells which were distributed at different parts of the IVD.
Collapse
Affiliation(s)
- Helena Barreto Henriksson
- Department of Orthopedics, Institute for Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska Hospital, Gothenburg, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nikolaos Papadimitriou
- Department of Orthopedics, Institute for Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Orthopedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daphne Hingert
- Department of Orthopedics, Institute for Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Adad Baranto
- Department of Orthopedics, Institute for Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Orthopedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Brisby
- Department of Orthopedics, Institute for Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Orthopedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
32
|
Zhu J, Xia K, Yu W, Wang Y, Hua J, Liu B, Gong Z, Wang J, Xu A, You Z, Chen Q, Li F, Tao H, Liang C. Sustained release of GDF5 from a designed coacervate attenuates disc degeneration in a rat model. Acta Biomater 2019; 86:300-311. [PMID: 30660009 DOI: 10.1016/j.actbio.2019.01.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Low back pain is often caused by intervertebral disc degeneration, which is characterized by nucleus pulposus (NP) and extracellular matrix (ECM) degeneration. Human adipose-derived stem cells (hADSCs) induced by growth and differentiation factor-5 (GDF5) can differentiate into an NP-like phenotype. Although stem cell-based therapy with prolonged exposure to growth factors is regarded as a promising treatment, the efficacy of this approach in attenuating the disc degeneration process is limited by the short lifespan of growth factors. In our study, a unique growth factor delivery vehicle composed of heparin and the synthetic polycation poly(ethylene argininylaspartate diglyceride) (PEAD) was used to sustain GDF5 release. The results showed that sustained release of GDF5 by the PEAD:heparin delivery system promoted hADSC differentiation to an NP-like phenotype in vitro. After injection of the PEAD:heparin:GDF5 delivery platform and hADSCs into intervertebral spaces of coccygeal (Co) vertebrae Co7/Co8 and Co8/Co9 of the rat, the disc height, water content, and structure of the NPs decreased more slowly than other treatment groups. This new strategy may be used as an alternative treatment for attenuating intervertebral disc degeneration with hADSCs without the need for gene therapy. STATEMENT OF SIGNIFICANCE: Low back pain is often caused by intervertebral disc degeneration, which is characterized by nucleus pulposus (NP) and extracellular matrix (ECM) degeneration. Human adipose-derived stem cells (hADSCs) induced by growth and differentiation factor-5 (GDF-5) can differentiate into an NP-like phenotype. Although stem cell-based therapy with prolonged exposure to growth factor is regarded as a promising treatment, the efficacy of this approach in the disc regeneration process is limited by the short life of growth factors. In our study, a unique growth factor delivery vehicle comprised of heparin and the synthetic polycation poly(ethylene argininylaspartate diglyceride) (PEAD) was used to sustain the release of GDF-5. Numerous groups have explored IDD regeneration methods in vitro and in vivo. Our study differs in that GDF5 was incorporated into a vehicle through charge attraction and exhibited a sustained release profile. Moreover, GDF-5 seeded coacervate combined with hADSC injection could be a minimally invasive approach for tissue engineering that is suitable for clinical application. We investigated the stimulatory effects of our GDF-5 seeded coacervate on the differentiation of ADSCs in vitro and the reparative effect of the delivery system on degenerated NP in vivo.
Collapse
|
33
|
Ma K, Chen S, Li Z, Deng X, Huang D, Xiong L, Shao Z. Mechanisms of endogenous repair failure during intervertebral disc degeneration. Osteoarthritis Cartilage 2019; 27:41-48. [PMID: 30243946 DOI: 10.1016/j.joca.2018.08.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 02/02/2023]
Abstract
Intervertebral disc (IVD) degeneration is frequently associated with Low back pain (LBP), which can severely reduce the quality of human life and cause enormous economic loss. However, there is a lack of long-lasting and effective therapies for IVD degeneration at present. Recently, stem cell based tissue engineering techniques have provided novel and promising treatment for the repair of degenerative IVDs. Numerous studies showed that stem/progenitor cells exist naturally in IVDs and could migrate from their niche to the IVD to maintain the quantity of nucleus pulposus (NP) cells. Unfortunately, these endogenous repair processes cannot prevent IVD degeneration as effectively as expected. Therefore, theoretical basis for regeneration of the NP in situ can be obtained from studying the mechanisms of endogenous repair failure during IVD degeneration. Although there have been few researches to study the mechanism of cell death and migration of stem/progenitor cells in IVD so far, studies demonstrated that the major inducing factors (compression and hypoxia) of IVD degeneration could decrease the number of NP cells by regulating apoptosis, autophagy, and necroptosis, and the particular chemokines and their receptors played a vital role in the migration of mesenchymal stem cells (MSCs). These studies provide a clue for revealing the mechanisms of endogenous repair failure during IVD degeneration. This article reviewed the current research situation and progress of the mechanisms through which IVD stem/progenitor cells failed to repair IVD tissues during IVD degeneration. Such studies provide an innovative research direction for endogenous repair and a new potential treatment strategy for IVD degeneration.
Collapse
Affiliation(s)
- K Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - S Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Z Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - X Deng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - D Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - L Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Z Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
34
|
Intervertebral Disc-Derived Stem/Progenitor Cells as a Promising Cell Source for Intervertebral Disc Regeneration. Stem Cells Int 2018; 2018:7412304. [PMID: 30662469 PMCID: PMC6312624 DOI: 10.1155/2018/7412304] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is considered to be the primary reason for low back pain. Despite remarkable improvements in both pharmacological and surgical management of IVD degeneration (IVDD), therapeutic effects are still unsatisfactory. It is because of the fact that these therapies are mainly focused on alleviating the symptoms rather than treating the underlying cause or restoring the structure and biomechanical function of the IVD. Accumulating evidence has revealed that the endogenous stem/progenitor cells exist in the IVD, and these cells might be a promising cell source in the regeneration of degenerated IVD. However, the biological characteristics and potential application of IVD-derived stem/progenitor cells (IVDSCs) have yet to be investigated in detail. In this review, the authors aim to perform a review to systematically discuss (1) the isolation, surface markers, classification, and biological characteristics of IVDSCs; (2) the aging- and degeneration-related changes of IVDSCs and the influences of IVD microenvironment on IVDSCs; and (3) the potential for IVDSCs to promote regeneration of degenerated IVD. The authors believe that this review exclusively address the current understanding of IVDSCs and provide a novel approach for the IVD regeneration.
Collapse
|
35
|
Effect of Compression Loading on Human Nucleus Pulposus-Derived Mesenchymal Stem Cells. Stem Cells Int 2018; 2018:1481243. [PMID: 30402107 PMCID: PMC6196892 DOI: 10.1155/2018/1481243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose Mechanical loading plays a vital role in the progression of intervertebral disc (IVD) degeneration, but little is known about the effect of compression loading on human nucleus pulposus-derived mesenchymal stem cells (NP-MSCs). Thus, this study is aimed at investigating the effect of compression on the biological behavior of NP-MSCs in vitro. Methods Human NP-MSCs were isolated from patients undergoing lumbar discectomy for IVD degeneration and were identified by immunophenotypes and multilineage differentiation. Then, cells were cultured in the compression apparatus at 1.0 MPa for different times (0 h, 24 h, 36 h, and 48 h). The viability-, differentiation-, and differentiation-related genes (Runx2, APP, and Col2) and colony formation-, migration-, and stem cell-related proteins (Sox2 and Oct4) were evaluated. Results The results showed that the isolated cells fulfilled the criteria of MSC stated by the International Society for Cellular Therapy (ISCT). And our results also indicated that compression loading significantly inhibited cell viability, differentiation, colony formation, and migration. Furthermore, gene expression suggested that compression loading could downregulate the expression of stem cell-related proteins and lead to NP-MSC stemness losses. Conclusions Our results suggested that the biological behavior of NP-MSCs could be inhibited by compression loading and therefore enhanced our understanding on the compression-induced endogenous repair failure of NP-MSCs during IVDD.
Collapse
|
36
|
Icariin Improves the Viability and Function of Cryopreserved Human Nucleus Pulposus-Derived Mesenchymal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3459612. [PMID: 30050653 PMCID: PMC6040248 DOI: 10.1155/2018/3459612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
Nucleus pulposus-derived mesenchymal stem cells (NPMSCs) have shown a good prospect in the regeneration of intervertebral disc (IVD) tissues. However, fresh NPMSCs are not always readily available for basic research and clinical applications. Therefore, there is a need for an effective long-term cryopreservation method for NPMSCs. The aim of this study was to determine whether adding icariin (ICA) to the conventional cryoprotectant containing dimethyl sulfoxide (DMSO) had a better cryoprotective effect for NPMSCs. The results showed that the freezing solution containing ICA along with DMSO significantly increased the postthawed cell viability, decreased the apoptosis rate, improved cell adherence, and maintained the mitochondrial functions, as compared to the freezing solution containing DMSO alone. And the inhibition of oxidative stress and upregulation of heat shock proteins (HSPs) in the presence of ICA also confirmed the beneficial effect of ICA. Furthermore, ICA had no cytotoxicity and did not alter the characteristics of postthawed NPMSCs. In conclusion, these results suggested that the addition of ICA to the conventional freezing medium could improve the viability and function of the cryopreserved human NPMSCs and provided an optimal formulated freezing solution for human NPMSC cryopreservation.
Collapse
|
37
|
Brown S, Matta A, Erwin M, Roberts S, Gruber HE, Hanley EN, Little CB, Melrose J. Cell Clusters Are Indicative of Stem Cell Activity in the Degenerate Intervertebral Disc: Can Their Properties Be Manipulated to Improve Intrinsic Repair of the Disc? Stem Cells Dev 2018; 27:147-165. [DOI: 10.1089/scd.2017.0213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sharon Brown
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Ajay Matta
- Krembil Research Institute, Toronto, Canada
| | - Mark Erwin
- Krembil Research Institute, Toronto, Canada
| | - Sally Roberts
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Helen E. Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Edward N. Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Christopher B. Little
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
38
|
Liang H, Deng X, Shao Z. [Research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1267-1272. [PMID: 29806333 DOI: 10.7507/1002-1892.201703036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. Methods The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Results Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Conclusion Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.
Collapse
Affiliation(s)
- Hang Liang
- Orthopaedic Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, 430022, P.R.China
| | - Xiangyu Deng
- Orthopaedic Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, 430022, P.R.China
| | - Zengwu Shao
- Orthopaedic Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, 430022,
| |
Collapse
|
39
|
Li XC, Tang Y, Wu JH, Yang PS, Wang DL, Ruan DK. Characteristics and potentials of stem cells derived from human degenerated nucleus pulposus: potential for regeneration of the intervertebral disc. BMC Musculoskelet Disord 2017; 18:242. [PMID: 28583105 PMCID: PMC5460486 DOI: 10.1186/s12891-017-1567-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/09/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Eliminating the symptoms during treatment of intervertebral disc degeneration (IVDD) is only a temporary solution that does not cure the underlying cause. A biological method to treat this disorder may be possible by the newly discovered nucleus pulposus derived stem cells (NPDCs). However, the uncertain characteristics and potential of NPDCs calls for a comprehensive study. METHODS In the present study, nucleus pulposus samples were obtained from 5 patients with IVDD undergoing discectomy procedure and NPDCs were harvested using fluorescence activated cell sorting (FACS) by the co-expression of GD2+ and Tie2+. After in vitro expansion, the properties of NPDCs were compared with those of bone marrow mesenchyme stem cells (BMSCs) from the same subjects. RESULTS NPDCs performed similar properties in cell colony-forming ability, cell proliferation rate, cell cycle and stem cell gene expression similar to those of BMSCs. In addition, NPDCs could be differentiated into osteoblasts, adipocytes, and chondrocytes, and are found to be superior in chondrogenesis but inferior in adipocyte differentiation. CONCLUSIONS NPDCs derived from the degenerated intervertebral disc still keep the regeneration ability similar to BMSCs. Besides, the superior capacity in chondrogenesis may provide a promising cell candidate for cell-based regenerative medicine and tissue engineering in IVDD.
Collapse
Affiliation(s)
- Xiao-Chuan Li
- Department of Orthopaedic Surgery, Navy General Hospital, Beijing, 100048 China
- Department of Orthopedic Surgery, Gaozhou people’s Hospital, No 89, Xi-Guan Road, Guangdong Guangzhou, 525200 China
| | - Yong Tang
- Department of Orthopaedic Surgery, Navy General Hospital, Beijing, 100048 China
| | - Jian-Hong Wu
- Department of Orthopaedic Surgery, Navy General Hospital, Beijing, 100048 China
| | - Pu-Shan Yang
- Department of Orthopaedic Surgery, Navy General Hospital, Beijing, 100048 China
| | - De-Li Wang
- Department of Orthopaedic Surgery, Navy General Hospital, Beijing, 100048 China
| | - Di-Ke Ruan
- Department of Orthopaedic Surgery, Navy General Hospital, Beijing, 100048 China
| |
Collapse
|
40
|
Liu J, Tao H, Wang H, Dong F, Zhang R, Li J, Ge P, Song P, Zhang H, Xu P, Liu X, Shen C. Biological Behavior of Human Nucleus Pulposus Mesenchymal Stem Cells in Response to Changes in the Acidic Environment During Intervertebral Disc Degeneration. Stem Cells Dev 2017; 26:901-911. [PMID: 28298159 DOI: 10.1089/scd.2016.0314] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An acidic environment is vital for the maintenance of cellular activities but can be affected tremendously during intervertebral disc degeneration (IVDD). The effect of changes in the acidity of the environment on human nucleus pulposus mesenchymal stem cells (NP-MSCs) is, however, unknown. Thus, this study aimed to observe the biological effects of acidic conditions mimicking a degenerated intervertebral disc on NP-MSCs in vitro. NP-MSCs were isolated from patients with lumbar disc herniation and were further identified by their immunophenotypes and multilineage differentiation. Then, cells were cultured at acidic pH levels (pH 6.2, pH 6.5, pH 6.8, pH 7.1, and pH 7.4) with/without amiloride, an acid-sensing ion channel (ASIC) blocker. The proliferation and apoptosis of NP-MSCs and the expression of stem cell-related genes (Oct4, Nanog, Jagged, Notch1), ASICs, and functional genes (Aggrecan, SOX-9, Collagen-I, and Collagen-II) in NP-MSCs were evaluated. Our work showed that cells obtained from human degenerated NP met the criteria of International Society for Cellular Therapy. Therefore, cells obtained from a degenerated nucleus pulposus were definitively identified as NP-MSCs. Our results also indicated that acidic conditions could significantly inhibit cell proliferation and increase cell apoptosis. Gene expression results demonstrated that acidic conditions could decrease the expression of stem cell-related genes and inhibit extracellular matrix synthesis, whereas it could increase the expression of ASICs. Our study further verified that the above-mentioned biological activities of NP-MSCs could be significantly improved by amiloride. Therefore, the results of the study indicated that the biological behavior of NP-MSCs could be inhibited by acidic conditions during IVDD, and amiloride may meliorate IVDD by improving the activities of NP-MSCs.
Collapse
Affiliation(s)
- Jianjun Liu
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Hui Tao
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Hanbang Wang
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Fulong Dong
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Renjie Zhang
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Jie Li
- 2 Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Peng Ge
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Peiwen Song
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Huaqing Zhang
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Peng Xu
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Xiaoying Liu
- 3 Biology Department, School of Life Science, Anhui Medical University , Hefei, People's Republic of China
| | - Cailiang Shen
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| |
Collapse
|
41
|
Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs. Int Immunopharmacol 2016; 43:236-242. [PMID: 28043032 DOI: 10.1016/j.intimp.2016.12.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/25/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Abstract
Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration.
Collapse
|
42
|
Li XC, Wu YH, Bai XD, Ji W, Guo ZM, Wang CF, He Q, Ruan DK. BMP7-Based Functionalized Self-Assembling Peptides Protect Nucleus Pulposus-Derived Stem Cells From Apoptosis In Vitro. Tissue Eng Part A 2016; 22:1218-1228. [PMID: 27582519 DOI: 10.1089/ten.tea.2016.0230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tissue engineering has shown great success in the treatment of intervertebral disk degeneration (IVDD) in the past decade. However, the adverse and harsh microenvironment associated in the intervertebral disks remains a great obstacle for the survival of transplanted cells. Although increasing numbers of new materials have been created or modified to overcome this hurdle, a new effective strategy of biological therapy is still required. In this study, bone morphogenic protein 7 (BMP7)-based functionalized self-assembling peptides were developed by conjugating a bioactive motif from BMP-7 (RKPS) onto the C-terminal of the peptide RADARADARADARADA (RADA16-I) at a ratio of 1:1 to form a new RADARKPS peptide. Human nucleus pulposus-derived stem cells (NPDCs) were cultured in the presence of RADA-RKPS or RADA16-I in an apoptosis-promoting environment that was induced by tumor necrosis factor-alpha, and cells were cultured with RADA16-I in normal medium that served as the control group. After 48 h of apoptosis induction, the viability, proliferation, apoptosis rate, and expression of apoptosis-related genes of NPDCs in the different groups were evaluated, and the differentiation of NPDCs toward nucleus pulposus-like cells was tested. The results showed that the RADA-RKPS peptide could significantly protect the survival and proliferation of NPDCs. In addition, the application of RADA-RKPS decreased the rate of cell apoptosis, as detected by TUNEL-positive staining. Furthermore, our in vitro study confirmed the apoptosis-protecting effects of RADA-RKPS peptides, which significantly reduced the BAX/BCL-2 ratio of NPDCs and upregulated the gene expression of collagen II a1, aggrecan, and Sox-9 after 48 h of apoptosis induction. Collectively, these lines of evidence suggest that RADA-RKPS peptides confer a protective effect to NPDCs in an apoptosis environment, suggesting their potential application in the development of new biological treatment strategies for IVDD.
Collapse
Affiliation(s)
- Xiao-Chuan Li
- 1 The Third Affiliated Hospital of Southern Medical University , Guangzhou, China .,2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China .,3 Department of Orthopedic Surgery, The People's Hospital of Gaozhou, Guangdong, People's Republic of China
| | - Yao-Hong Wu
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Xue-Dong Bai
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Wei Ji
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Zi-Ming Guo
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Chao-Feng Wang
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Qing He
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Di-Ke Ruan
- 1 The Third Affiliated Hospital of Southern Medical University , Guangzhou, China .,2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| |
Collapse
|
43
|
Mesenchymal Stem/Stromal Cells seeded on cartilaginous endplates promote Intervertebral Disc Regeneration through Extracellular Matrix Remodeling. Sci Rep 2016; 6:33836. [PMID: 27652931 PMCID: PMC5031983 DOI: 10.1038/srep33836] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is characterized by significant biochemical and histomorphological alterations, such as loss of extracellular matrix (ECM) integrity, by abnormal synthesis of ECM main components, resultant from altered anabolic/catabolic cell activities and cell death. Mesenchymal Stem/Stromal Cell (MSC) migration towards degenerated IVD may represent a viable strategy to promote tissue repair/regeneration. Here, human MSCs (hMSCs) were seeded on top of cartilaginous endplates (CEP) of nucleotomized IVDs of bovine origin and cultured ex vivo up to 3 weeks. hMSCs migrated from CEP towards the lesion area and significantly increased expression of collagen type II and aggrecan in IVD, namely in the nucleus pulposus. Concomitantly, hMSCs stimulated the production of growth factors, promoters of ECM synthesis, such as fibroblast growth factor 6 (FGF-6) and 7 (FGF-7), platelet-derived growth factor receptor (PDGF-R), granulocyte-macrophage colony-stimulating factor (GM-CSF) and insulin-like growth factor 1 receptor (IGF-1sR). Overall, our results demonstrate that CEP can be an alternative route to MSC-based therapies for IVD regeneration through ECM remodeling, thus opening new perspectives on endogenous repair capacity through MSC recruitment.
Collapse
|