1
|
Cen YY, Gao XL, Feng YH, Zhou C, Li CJ, Liu F, Shen JF, Zhang YY. The Double-Edged Effect of Connexins and Pannexins of Glial Cells in Central and Peripheral Nervous System After Nerve Injury. Mol Neurobiol 2025:10.1007/s12035-025-04991-6. [PMID: 40310549 DOI: 10.1007/s12035-025-04991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Glial cells play pivotal roles in homeostatic regulation and driving reactive pathologic changes after nerve injury. Connexins (Cxs) and pannexins (Panxs) have emerged as seminal proteins implicated in cell-cell communication, exerting a profound impact on the response processes of glial cell activation, proliferation, protein synthesis and secretion, as well as apoptosis following nerve injury. These influences are mediated through various forms, including protein monomers, hemichannel (HC), and gap junction (GJ), mainly by regulating intercellular or intracellular signaling pathways. Multiple Cx and Panx isoforms have been detected in central nervous system (CNS) or peripheral nervous system (PNS). Each isoform exhibits distinct cellular and subcellular localization, and the differential regulation and functional roles of various protein isoforms are observed post-injury. The quantitative and functional alterations of the same protein isoform in different studies remain inconsistent, attributable to factors such as the predominant mode of protein polymerization, the specific injury model, and the injury site. Similarly, the same protein isoforms have different roles in regulating the response processes after nerve injury, thus exerting a double-edged sword effect. This review describes the regulatory mechanisms and bidirectional effects of Cxs and Panxs. Additionally, it surveys the current status of research and application of drugs as therapeutic targets for neuropathic injuries. We summarize comprehensive and up-to-date information on these proteins in the glial cell response to nerve injury, providing new perspectives for future mechanistic exploration and development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yue-Yan Cen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Xin-Lin Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Yu-Heng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
2
|
Shome A, Rupenthal ID, Niederer RL, Mugisho OO. The NLRP3 inflammasome pathway contributes to chronic inflammation in experimental autoimmune uveitis. Animal Model Exp Med 2025. [PMID: 40156826 DOI: 10.1002/ame2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/19/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Noninfectious uveitis, a chronic ocular inflammatory disease, is characterized by the activation of immune cells in the eye, with most studies focusing on the role of the adaptive immune system in the disease. However, limited data exist on the potential contribution of the innate immune system, specifically the nucleotide-binding oligomerization domain and leucine-rich repeat receptor-3 (NLRP3) inflammasome pathway. This pathway has previously been identified as a driver of inflammation in several low-grade, progressive inflammatory eye diseases such as diabetic retinopathy. The aim of this study was to determine whether the NLRP3 inflammasome pathway plays a role in the pathogenesis and chronicity of experimental autoimmune uveitis (EAU). METHODS EAU was induced in C57BL/6J mice via intraperitoneal pertussis toxin and subcutaneous interphotoreceptor retinoid-binding protein injections. After 12 weeks, eyes were enucleated, and whole eye sections were assessed for inflammasome, macrophage, and microglial markers in the retina, ciliary body, and cornea using immunohistochemistry. RESULTS Our study confirmed higher NLRP3 inflammasome activation (increased expression of NLRP3 and cleaved caspase 1 labeling) in EAU mouse retinas compared to controls. This correlated with increased astrogliosis and microglial activation throughout the eye. Migratory innate and adaptive peripheral immune cells (macrophages and leukocytes) were also found within the retina and ciliary body of EAU mice. Connexin43 proteins, which form hexameric hemichannels that can release adenosine triphosphate (ATP), an upstream inflammasome priming signal, were also found upregulated in the retina and cornea of EAU mice. CONCLUSION Overall, our findings support the idea that in the EAU model there is active inflammation, even 12 weeks post induction, and that it can be correlated to inflammasome activation. This contributes to the pathogenesis and chronicity of noninfectious uveitis, and our results emphasize that targeting the inflammasome pathway could be efficacious for noninfectious uveitis treatment.
Collapse
Affiliation(s)
- Avik Shome
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Rachael L Niederer
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- Department of Ophthalmology, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Kong M, Li J, Jin R, Zhang Y, You J, Wang N, Tong N. Lycium barbarum polysaccharide alleviates H 2O 2-induced premature senescence by downregulating miRNA-34a-5p in ARPE-19 cells. Cell Stress Chaperones 2025; 30:130-142. [PMID: 40112947 PMCID: PMC12002617 DOI: 10.1016/j.cstres.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
The premature senescence of retinal pigment epithelium (RPE) plays a significant role in the development of age-related macular degeneration. This study aimed to investigate the potential protective effect of Lycium barbarum polysaccharide (LBP) against H2O2-induced premature senescence and to elucidate the underlying mechanisms. The ARPE-19 cell line was subjected to H2O2 exposure to create a model of premature senescence. The modulation of microRNA-34a-5p expression was accomplished using antagomir and agomir, as assessed by quantitative real-time polymerase chain reaction. The senescence model was successfully established by treating cells with 200 μM H2O2 for 2 hours daily over a span of three consecutive days. This oxidative stress resulted in a notable increase in the proportion of senescence-associated beta-galactosidase-positive cells, reaching 33.5%, without significant alterations in cell viability or apoptosis. In the ARPE-19 cells undergoing premature senescence, there was a marked increase in reactive oxygen species (ROS) production and malondialdehyde levels, coupled with a significant decrease in the activity of total superoxide dismutase, glutathione peroxidase, and catalase. Additionally, microRNA-34a-5p was found to be overexpressed in these cells. Treatment with LBP alleviated H2O2-induced premature senescence, diminished the overexpression of microRNA-34a-5p, and suppressed ROS production. Moreover, the incubation with ago-34a reversed the protective effect of LBP in ARPE-19 cells. In conclusion, the overexpression of microRNA-34a-5p contributes to the H2O2-induced premature senescence of ARPE-19 cells. LBP appears to mitigate this premature senescence, at least in part, by downregulating microRNA-34a-5p expression and reducing oxidative stress.
Collapse
Affiliation(s)
- Meng Kong
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China
| | - Jingwen Li
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China
| | - Rong Jin
- Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China; Department of Pediatrics, Affiliated Hospital of Qingdao University, 266001, Qingdao, China
| | - Yi Zhang
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China
| | - Jia You
- Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Central Hospital, 266001, Qingdao, China
| | - Nan Wang
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China
| | - Nianting Tong
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China.
| |
Collapse
|
4
|
Skelin L, Racetin A, Kelam N, Ogorevc M, Znaor L, Saraga-Babić M, Filipović N, Katsuyama Y, Pogorelić Z, Vukojević K. Connexin Expression Is Altered in the Eye Development of Yotari Mice: A Preliminary Study. Biomolecules 2024; 14:1174. [PMID: 39334940 PMCID: PMC11430515 DOI: 10.3390/biom14091174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to explore how Dab1 functional silencing influences the expression patterns of different connexins in the developing yotari (yot) mice eyes as potential determinants of retinogenesis. Using immunofluorescence staining, the protein expression of Dab1, Reelin, and connexin 37, 40, 43, and 45 (Cx37, Cx40, Cx43, and Cx45) in the wild-type (wt) and yot eyes at embryonic days 13.5 and 15.5 (E13.5 and E15.5) were analyzed. Different expression patterns of Cx37 were seen between the wt and yot groups. The highest fluorescence intensity of Cx37 was observed in the yot animals at E15.5. Cx40 had higher expression at the E13.5 when differentiation of retinal layers was still beginning, whereas it decreased at the E15.5 when differentiation was at the advanced stage. Higher expression of Cx43 was found in the yot group at both time points. Cx45 was predominantly expressed at E13.5 in both groups. Our results reveal the altered expression of connexins during retinogenesis in yot mice and their potential involvement in retinal pathology, where they might serve as prospective therapeutic targets.
Collapse
Affiliation(s)
- Ljubica Skelin
- Clinical Department of Ophthalmology, University Hospital of Split, 21000 Split, Croatia
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Ljubo Znaor
- Clinical Department of Ophthalmology, University Hospital of Split, 21000 Split, Croatia
- Department of Ophthalmology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Yu Katsuyama
- Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Zenon Pogorelić
- Department of Pediatric Surgery, Split University Hospital, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| |
Collapse
|
5
|
Wang B, Xiong Y, Deng X, Wang Y, Gong S, Yang S, Yang B, Yang Y, Leng Y, Li W, Li W. The role of intercellular communication in diabetic nephropathy. Front Immunol 2024; 15:1423784. [PMID: 39238645 PMCID: PMC11374600 DOI: 10.3389/fimmu.2024.1423784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Diabetic nephropathy, a common and severe complication of diabetes, is the leading cause of end-stage renal disease, ultimately leading to renal failure and significantly affecting the prognosis and lives of diabetics worldwide. However, the complexity of its developmental mechanisms makes treating diabetic nephropathy a challenging task, necessitating the search for improved therapeutic targets. Intercellular communication underlies the direct and indirect influence and interaction among various cells within a tissue. Recently, studies have shown that beyond traditional communication methods, tunnel nanotubes, exosomes, filopodial tip vesicles, and the fibrogenic niche can influence pathophysiological changes in diabetic nephropathy by disrupting intercellular communication. Therefore, this paper aims to review the varied roles of intercellular communication in diabetic nephropathy, focusing on recent advances in this area.
Collapse
Affiliation(s)
- Bihan Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinqi Deng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunhao Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyuan Gong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baichuan Yang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuhang Yang
- The First Clinical College of Wuhan University, Wuhan, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Cliff CL, Squires PE, Hills CE. Tonabersat suppresses priming/activation of the NOD-like receptor protein-3 (NLRP3) inflammasome and decreases renal tubular epithelial-to-macrophage crosstalk in a model of diabetic kidney disease. Cell Commun Signal 2024; 22:351. [PMID: 38970061 PMCID: PMC11225428 DOI: 10.1186/s12964-024-01728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Accompanied by activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, aberrant connexin 43 (Cx43) hemichannel-mediated ATP release is situated upstream of inflammasome assembly and inflammation and contributes to multiple secondary complications of diabetes and associated cardiometabolic comorbidities. Evidence suggests there may be a link between Cx43 hemichannel activity and inflammation in the diabetic kidney. The consequences of blocking tubular Cx43 hemichannel-mediated ATP release in priming/activation of the NLRP3 inflammasome in a model of diabetic kidney disease (DKD) was investigated. We examined downstream markers of inflammation and the proinflammatory and chemoattractant role of the tubular secretome on macrophage recruitment and activation. METHODS Analysis of human transcriptomic data from the Nephroseq repository correlated gene expression to renal function in DKD. Primary human renal proximal tubule epithelial cells (RPTECs) and monocyte-derived macrophages (MDMs) were cultured in high glucose and inflammatory cytokines as a model of DKD to assess Cx43 hemichannel activity, NLRP3 inflammasome activation and epithelial-to-macrophage paracrine-mediated crosstalk. Tonabersat assessed a role for Cx43 hemichannels. RESULTS Transcriptomic analysis from renal biopsies of patients with DKD showed that increased Cx43 and NLRP3 expression correlated with declining glomerular filtration rate (GFR) and increased proteinuria. In vitro, Tonabersat blocked glucose/cytokine-dependant increases in Cx43 hemichannel-mediated ATP release and reduced expression of inflammatory markers and NLRP3 inflammasome activation in RPTECs. We observed a reciprocal relationship in which NLRP3 activity exacerbated increased Cx43 expression and hemichannel-mediated ATP release, events driven by nuclear factor kappa-B (NFκB)-mediated priming and Cx43 hemichannel opening, changes blocked by Tonabersat. Conditioned media (CM) from RPTECs treated with high glucose/cytokines increased expression of inflammatory markers in MDMs, an effect reduced when macrophages were pre-treated with Tonabersat. Co-culture using conditioned media from Tonabersat-treated RPTECs dampened macrophage inflammatory marker expression and reduced macrophage migration. CONCLUSION Using a model of DKD, we report for the first time that high glucose and inflammatory cytokines trigger aberrant Cx43 hemichannel activity, events that instigate NLRP3-induced inflammation in RPTECs and epithelial-to-macrophage crosstalk. Recapitulating observations previously reported in diabetic retinopathy, these data suggest that Cx43 hemichannel blockers (i.e., Tonabersat) may dampen multi-system damage observed in secondary complications of diabetes.
Collapse
Affiliation(s)
- C L Cliff
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - P E Squires
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - C E Hills
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
| |
Collapse
|
7
|
Zhang Z, Liang F, Chang J, Shan X, Yin Z, Wang L, Li S. Autophagy in dry AMD: A promising therapeutic strategy for retinal pigment epithelial cell damage. Exp Eye Res 2024; 242:109889. [PMID: 38593971 DOI: 10.1016/j.exer.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Dry age-related macular degeneration (AMD) is a prevalent clinical condition that leads to permanent damage to central vision and poses a significant threat to patients' visual health. Although the pathogenesis of dry AMD remains unclear, there is consensus on the role of retinal pigment epithelium (RPE) damage. Oxidative stress and chronic inflammation are major contributors to RPE cell damage, and the NOD-like receptor thermoprotein structural domain-associated protein 3 (NLRP3) inflammasome mediates the inflammatory response leading to apoptosis in RPE cells. Furthermore, lipofuscin accumulation results in oxidative stress, NLRP3 activation, and the development of vitelliform lesions, a hallmark of dry AMD, all of which may contribute to RPE dysfunction. The process of autophagy, involving the encapsulation, recognition, and transport of accumulated proteins and dead cells to the lysosome for degradation, is recognized as a significant pathway for cellular self-protection and homeostasis maintenance. Recently, RPE cell autophagy has been discovered to be closely linked to the development of macular degeneration, positioning autophagy as a cutting-edge research area in the realm of dry AMD. In this review, we present an overview of how lipofuscin, oxidative stress, and the NLRP3 inflammasome damage the RPE through their respective causal mechanisms. We summarized the connection between autophagy, oxidative stress, and NLRP3 inflammatory cytokines. Our findings suggest that targeting autophagy improves RPE function and sustains visual health, offering new perspectives for understanding the pathogenesis and clinical management of dry AMD.
Collapse
Affiliation(s)
- Zhao Zhang
- Tianjin University of Chinese Medicine, Tianjin, 300193, China; The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Fengming Liang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Jun Chang
- Tianjin University of Chinese Medicine, Tianjin, 300193, China; The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Xiaoqian Shan
- Tianjin University of Chinese Medicine, Tianjin, 300193, China; The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zhixian Yin
- Hebei University of Technology, School of Electronics and Information Engineering, Tianjin, 300401, China
| | - Li Wang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Shujiao Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, 100040, China
| |
Collapse
|
8
|
Gong Q, Luo D, Wang H, Xu X, Fan Y, Zheng Z, Qian T. Inhibiting autophagy by miR-19a-3p/PTEN regulation protected retinal pigment epithelial cells from hyperglycemic damage. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119530. [PMID: 37393018 DOI: 10.1016/j.bbamcr.2023.119530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVE The catabolic process of autophagy is arousing the attention of researchers studying diabetic retinopathy (DR), but the role and molecular mechanism of autophagy in DR are still unclear. METHODS An in vivo diabetic rat model and in vitro hyperglycemic-exposed retinal pigment epithelium (RPE) cell cultures were established to mimic early DR. Transmission electron microscopy and mRFP-GFP-LC3 adenovirus transfection were applied for autophagic flux analysis. MicroRNA (miR)-19a-3p, members of the phosphate and tensin homolog (PTEN)/Akt/mammalian target of rapamycin (mTOR) pathway, and the autophagy-related proteins light chain (LC)3II/I and p62 were detected. Annexin V, transwell, Cell Counting Kit-8, fluorescein isothiocyanate-dextran monolayer permeability assay, and transepithelial electrical resistance were performed to evaluate the effects of regulating autophagy on RPE cells under the DR condition. RESULTS Autophagy was aberrantly activated in DR as evidenced by autophagosome accumulation. Further mechanistic experiments revealed that DR induced PTEN expression, thus inhibiting Akt/mTOR phosphorylation and stimulating aberrant autophagy and apoptosis. Notably, these events could be reversed by miR-19a-3p directly targeting PTEN. Downregulation of autophagy by miR-19a-3p overexpression, PTEN knockdown, or 3-methyladenine (3-MA) treatment inhibited autophagosome formation and thus effectively ameliorated hyperglycemia-induced RPE cell apoptosis, increased migration, inhibited viability, and enhanced monolayer permeability under the DR condition. CONCLUSIONS Our findings suggest that upregulation of miR-19a-3p inhibits aberrant autophagy by directly targeting PTEN, thus protecting RPE cells against DR damage. miR-19a-3p may represent a novel therapeutic target for inducing protective autophagy in early DR.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Ying Fan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.
| | - Tianwei Qian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.
| |
Collapse
|
9
|
Yang J, Hua Z, Zheng Z, Ma X, Zhu L, Li Y. Acteoside inhibits high glucose-induced oxidative stress injury in RPE cells and the outer retina through the Keap1/Nrf2/ARE pathway. Exp Eye Res 2023; 232:109496. [PMID: 37268044 DOI: 10.1016/j.exer.2023.109496] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Diabetes retinopathy (DR) is one of the most common microvascular complications of diabetes. Retinal pigment epithelial (RPE) cells exposed to a high glucose environment experience a series of functional damages, which is an important factor in promoting the progression of DR. Acteoside (ACT) has strong antioxidant and anti-apoptotic properties, but the mechanism of ACT in DR is not completely clear. Therefore, the purpose of the present study was to explore whether ACT inhibits the damage to RPE cells in a high glucose environment through antioxidative effects to alleviate the DR process. The DR in vitro cell model was constructed by treating RPE cells with high glucose, and the DR in vivo animal model was constructed by injecting streptozotocin (STZ) into the peritoneal cavity of mice to induce diabetes. The proliferation and apoptosis of RPE cells were detected by CCK-8 and flow cytometry assays, respectively. The expression changes in Nrf2, Keap1, NQO1 and HO-1 were evaluated by qRT‒PCR, Western blot and immunohistochemistry analyses. The MDA, SOD, GSH-Px and T-AOC contents were detected by kits. The changes in ROS and nuclear translocation of Nrf2 were observed by immunofluorescence assays. HE staining was used to measure the thickness of the outer nuclear layer (ONL) of the retina, and TUNEL staining was used to detect the number of apoptotic cells in the retinas of mice. In the present study, ACT effectively ameliorated outer retina damage in diabetic mice. In high glucose (HG)-induced RPE cells, ACT treatment had the following effects: improved proliferation, decreased apoptosis, inhibited Keap1 expression, promoted the nuclear translocation and expression of Nrf2, upregulated NQO1 and HO-1 (the target genes of Nrf2) expression, decreased ROS concentration, and increased the levels of the SOD, GSH-Px and T-AOC antioxidant indicators. However, knockdown of Nrf2 reversed the above phenomena, which indicated that the protective function of ACT in HG-induced RPE cells are closely related to Nrf2. In summary, the present study demonstrated that HG-induced oxidative stress injury is inhibited by ACT in RPE cells and the outer retina through the Keap1/Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Jingfei Yang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Zhijuan Hua
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Zhikun Zheng
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Xuan Ma
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Liang Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
10
|
Maran JJ, Adesina MM, Green CR, Kwakowsky A, Mugisho OO. The central role of the NLRP3 inflammasome pathway in the pathogenesis of age-related diseases in the eye and the brain. Ageing Res Rev 2023; 88:101954. [PMID: 37187367 DOI: 10.1016/j.arr.2023.101954] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
With increasing age, structural changes occur in the eye and brain. Neuronal death, inflammation, vascular disruption, and microglial activation are among many of the pathological changes that can occur during ageing. Furthermore, ageing individuals are at increased risk of developing neurodegenerative diseases in these organs, including Alzheimer's disease (AD), Parkinson's disease (PD), glaucoma and age-related macular degeneration (AMD). Although these diseases pose a significant global public health burden, current treatment options focus on slowing disease progression and symptomatic control rather than targeting underlying causes. Interestingly, recent investigations have proposed an analogous aetiology between age-related diseases in the eye and brain, where a process of chronic low-grade inflammation is implicated. Studies have suggested that patients with AD or PD are also associated with an increased risk of AMD, glaucoma, and cataracts. Moreover, pathognomonic amyloid-β and α-synuclein aggregates, which accumulate in AD and PD, respectively, can be found in ocular parenchyma. In terms of a common molecular pathway that underpins these diseases, the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome is thought to play a vital role in the manifestation of all these diseases. This review summarises the current evidence regarding cellular and molecular changes in the brain and eye with age, similarities between ocular and cerebral age-related diseases, and the role of the NLRP3 inflammasome as a critical mediator of disease propagation in the eye and the brain during ageing.
Collapse
Affiliation(s)
- Jack J Maran
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Moradeke M Adesina
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology and the New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Andrea Kwakowsky
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand.
| |
Collapse
|
11
|
A 3-miRNA Risk Scoring Signature in Early Diabetic Retinopathy. J Clin Med 2023; 12:jcm12051777. [PMID: 36902565 PMCID: PMC10003264 DOI: 10.3390/jcm12051777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
PURPOSE The aim of our study was to investigate a comprehensive profile of streptozotocin (STZ)-induced early diabetic retinopathy (DR) mice to identify a risk scoring signature based on micorRNAs (miRNAs) for early DR diagnosis. METHODS RNA sequencing was performed to obtain the gene expression profile of retinal pigment epithelium (RPE) in early STZ-induced mice. Differentially expressed genes (DEGs) were determined with log2|fold change (FC)| > 1 and p value < 0.05. Functional analysis was carried out based on gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and the protein-protein interaction (PPI) network. We predicted the potential miRNAs via online tools and ROC curves were then conducted. Three potential miRNAs with AUC > 0.7 were explored via public datasets and a formula was further established to evaluate DR severity. RESULTS In total, 298 DEGs (200 up-regulating and 98 down-regulating) were obtained through RNA sequencing. Hsa-miR-26a-5p, hsa-miR-129-2-3p and hsa-miR-217 were three predicted miRNAs with AUC > 0.7, suggesting their potential to distinguish healthy controls from early DR. The formula of DR severity score = 19.257 - 0.004 × hsa-miR-217 + 5.09 × 10-5 × hsa-miR-26a-5p - 0.003 × hsa-miR-129-2-3p was established based on regression analysis. CONCLUSIONS In the present study, we investigated the candidate genes and molecular mechanisms based on RPE sequencing in early DR mice models. Hsa-miR-26a-5p, hsa-miR-129-2-3p and hsa-miR-217 could work as biomarkers for early DR diagnosis and DR severity prediction, which was beneficial for DR early intervention and treatment.
Collapse
|
12
|
Ponce-Mora A, Yuste A, Perini-Villanueva G, Miranda M, Bejarano E. Connexins Biology in the Pathophysiology of Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:229-234. [PMID: 37440038 DOI: 10.1007/978-3-031-27681-1_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Connexins (Cx) are a family of transmembrane proteins that form gap junction intercellular channels that connect neighboring cells. These channels allow the passage of ions and other biomolecules smaller than 1 kDa, thereby synchronizing the cells both electrically and metabolically. Cxs are expressed in all retinal cell types and the diversity of Cx isoforms involved in the assembly of the channels provides a functional syncytium required for visual transduction. In this chapter, we summarize the status of current knowledge regarding Cx biology in retinal tissues and discuss how Cx dysfunction is associated with retinal disease pathophysiology. Although the contribution of Cx deficiency to retinal degeneration is not well understood, recent findings present Cx as a potential therapeutic target. Therefore, we will briefly discuss pharmacological approaches and gene therapies that are being explored to modulate Cx function and fight sight-threatening eye diseases.
Collapse
Affiliation(s)
- Alejandro Ponce-Mora
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Andrea Yuste
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Giuliana Perini-Villanueva
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - María Miranda
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Eloy Bejarano
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain.
| |
Collapse
|
13
|
Characterization of NLRP3 Inflammasome Activation in the Onset of Diabetic Retinopathy. Int J Mol Sci 2022; 23:ijms232214471. [PMID: 36430950 PMCID: PMC9697159 DOI: 10.3390/ijms232214471] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to characterize the role of nucleotide-binding oligomerization domain- (NOD-) like receptor (NLR) protein 3 (NLRP3) inflammasome activation in the onset of diabetic retinopathy (DR) using retina and vitreous from donors without diabetes mellitus (CTL), with diabetes mellitus alone (DM), and with DR. Retinal expression of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba-1), the key markers of retinal inflammation, connexin43 (Cx43) which is involved in upstream inflammasome regulation, as well as NLRP3 and cleaved caspase-1, the main markers of inflammasome activation, were evaluated using immunohistochemistry and Western blotting. Vitreous interleukin (IL)-1β and IL-18, biomarkers of the activated inflammasome, were measured using a Luminex multiplex assay. Results showed a significant increase in the number and size of Iba-1+ cells and NLRP3 expression in DM, while a significant increase in GFAP, Cx43, cleaved caspase-1 and vitreous IL-18, as well as a further increase in Iba-1 and NLRP3 was found in DR. This suggests that the inflammasome is already primed in DM before its activation in DR. Furthermore, IL-18 may act as the major effector of inflammasome activation in DR while nuclear translocation of cleaved caspase-1 may play a role in gene transcription contributing to DR onset.
Collapse
|
14
|
Crystal Chan SH, Griffin JM, Clemett CA, Brimble MA, O’Carroll SJ, Harris PWR. Synthesis and Biological Evaluation of Termini-Modified and Cyclic Variants of the Connexin43 Inhibitor Peptide5. Front Chem 2022; 10:877618. [PMID: 36176893 PMCID: PMC9513234 DOI: 10.3389/fchem.2022.877618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Peptide5 is a 12–amino acid mimetic peptide that corresponds to a region of the extracellular loop 2 (EL2) of connexin43. Peptide5 regulates both cellular communication with the cytoplasm (hemichannels) and cell-to-cell communication (gap junctions), and both processes are implicated in neurological pathologies. To address the poor in vivo stability of native peptide5 and to improve its activity, twenty-five novel peptide5 mimetics were designed and synthesized. All the analogues underwent biological evaluation as a hemichannel blocker and as a gap junction disruptor, and several were assessed for stability in human serum. From this study, it was established that several acylations on the N-terminus were tolerated in the hemichannel assay. However, the replacement of the L-Lys with an N-methylated L-Lys to give H-VDCFLSRPTE-N-MeKT-OH showed good hemichannel and gap junction activity and was more stable in human serum. The cyclic peptide variants generally were not tolerated in either the hemichannel and gap junction assay although several possessed outstanding stability in human serum.
Collapse
Affiliation(s)
| | - Jarred M. Griffin
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Connor A. Clemett
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Simon J. O’Carroll
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Simon J. O’Carroll, ; Paul W. R. Harris,
| | - Paul W. R. Harris
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- *Correspondence: Simon J. O’Carroll, ; Paul W. R. Harris,
| |
Collapse
|
15
|
Pai HL, Hsieh SMT, Su YS, Sue XY, Chang HH, Lin DPC. Short-Term Hyperuricemia Leads to Structural Retinal Changes That Can be Reversed by Serum Uric Acid Lowering Agents in Mice. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 36098977 PMCID: PMC9482320 DOI: 10.1167/iovs.63.10.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Metabolic disorders have been implicated in ocular diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Recently, hyperuricemia (HUA) has been proposed as another risk factor for AMD, although no cause-and-effect experimental data have been published. In this study, we investigated whether HUA would initiate AMD or related retinal damages in hyperuricemic mice. Methods HUA was induced in male ICR mice by dietary supplements of uric acid and oxonic acid potassium salt, with or without treatments by allopurinol or benzbromarone for various durations. Serum uric acid and angiotensin II concentrations were measured by enzyme-linked immunosorbent assay (ELISA) at regular intervals. The retinal damages were assessed by hematoxylin and eosin staining, immunostaining, and TUNEL assay. The cause-and-effect of HUA was compared among the study groups. Results The results showed that the total thickness of photoreceptor inner and outer segments, as well as the thickness of the photoreceptor outer segment alone, were reduced under HUA. Furthermore, HUA elevated serum angiotensin II, which indicated activation of the renin–angiotensin system (RAS), leading to higher matrix metalloproteinase-2 (MMP-2) expression, and glial activation in the ganglion cell layer. HUA also led to the reduction of retinal pigment epithelium gap junction protein connexin-43 and apoptosis. Uric acid lowering agents, allopurinol or benzbromarone, were effective in ameliorating the impairments. Conclusions HUA may pose as a causative factor of retinal injuries. The reduction of serum uric acid may reduce the detrimental effects caused by HUA.
Collapse
Affiliation(s)
- Hung-Liang Pai
- Department of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Sophie Meng-Tien Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Yu-Shan Su
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Xin-Yuan Sue
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Han-Hsin Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - David Pei-Cheng Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, Republic of China.,Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan, Republic of China
| |
Collapse
|
16
|
Molins B, Mesquida M, Adan A. Bioengineering approaches for modelling retinal pathologies of the outer blood-retinal barrier. Prog Retin Eye Res 2022:101097. [PMID: 35840488 DOI: 10.1016/j.preteyeres.2022.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
Alterations of the junctional complex of the outer blood-retinal barrier (oBRB), which is integrated by the close interaction of the retinal pigment epithelium, the Bruch's membrane, and the choriocapillaris, contribute to the loss of neuronal signalling and subsequent vision impairment in several retinal inflammatory disorders such as age-related macular degeneration and diabetic retinopathy. Reductionist approaches into the mechanisms that underlie such diseases have been hindered by the absence of adequate in vitro models using human cells to provide the 3D dynamic architecture that enables expression of the in vivo phenotype of the oBRB. Conventional in vitro cell models are based on 2D monolayer cellular cultures, unable to properly recapitulate the complexity of living systems. The main drawbacks of conventional oBRB models also emerge from the cell sourcing, the lack of an appropriate Bruch's membrane analogue, and the lack of choroidal microvasculature with flow. In the last years, the advent of organ-on-a-chip, bioengineering, and stem cell technologies is providing more advanced 3D models with flow, multicellularity, and external control over microenvironmental properties. By incorporating additional biological complexity, organ-on-a-chip devices can mirror physiologically relevant properties of the native tissue while offering additional set ups to model and study disease. In this review we first examine the current understanding of oBRB biology as a functional unit, highlighting the coordinated contribution of the different components to barrier function in health and disease. Then we describe recent advances in the use of pluripotent stem cells-derived retinal cells, Bruch's membrane analogues, and co-culture techniques to recapitulate the oBRB. We finally discuss current advances and challenges of oBRB-on-a-chip technologies for disease modelling.
Collapse
Affiliation(s)
- Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain.
| | - Marina Mesquida
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Alfredo Adan
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Instituto Clínic de Oftalmología, Hospital Clínic Barcelona, C/ Sabino de Arana 1, 08028, Barcelona, Spain
| |
Collapse
|
17
|
Zhao H, Kong H, Wang W, Chen T, Zhang Y, Zhu J, Feng D, Cui Y. High Glucose Aggravates Retinal Endothelial Cell Dysfunction by Activating the RhoA/ROCK1/pMLC/Connexin43 Signaling Pathway. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 35881407 PMCID: PMC9339693 DOI: 10.1167/iovs.63.8.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This research aims to explore the mechanism underlying the relationship between RhoA/ROCK signaling and Connexin43 (Cx43) in retinal endothelial cell dysfunction and to evaluate the protective effect of ROCK inhibitors against retinal endothelial cell dysfunction in diabetic retinopathy (DR) models. Methods TUNEL staining, hematoxylin and eosin staining, a retinal digestion assay, and Evans blue assay were conducted to explore the effect of fasudil in alleviating retinal dysfunction induced by DR. ELISA, the CCK-8 assay, and flow cytometry were conducted to study inflammation, viability, and apoptosis of mouse retinal microvascular endothelial cells treated with high glucose and ROCK inhibitors. The qRT–PCR and Western blotting were used to evaluate the expression of RhoA, ROCK1, ROCK2, MLC, pMLC, and Cx43. Co-immunoprecipitation was used to verify the interaction between pMLC and Cx43. Immunofluorescence and scrape-loading and dye transfer were used to evaluate the expression and function of Cx43. Results Marked endothelial cell dysfunction resulting from the activation of RhoA/ROCK1 signaling was found in in vivo and in vitro models of DR. Via interaction with pMLC, which is downstream of RhoA/ROCK1, a significant downregulation of Cx43 was observed in retinal endothelial cells. Treatment with ROCK inhibitors ameliorated retinal endothelial dysfunction in vitro. The ROCK inhibitor, fasudil, significantly alleviated retinal dysfunction as shown by a decrease of retinal acellular capillaries, an improvement of vascular permeability, and a reduction of cell apoptosis in vivo. Conclusions Our study highlights a novel mechanism that high glucose could activate RhoA/ROCK1/pMLC signaling, which targets the expression and localization of Cx43 and is responsible for cell viability, apoptosis, and inflammation, resulting in retinal endothelial cell injury. ROCK inhibitors markedly ameliorate endothelial cell dysfunction, suggesting their therapeutic potential for diabetic retinopathy.
Collapse
Affiliation(s)
- Hongran Zhao
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China.,School of Medicine, Shandong University, Jinan, Shandong Province, China.,NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Hui Kong
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China.,Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China.,NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Wenjuan Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
| | - Tianran Chen
- School of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yuting Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
| | - Jing Zhu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
| | - Dandan Feng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Cui
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
18
|
Gao S, Zhang Y, Zhang M. Targeting Novel Regulated Cell Death: Pyroptosis, Necroptosis, and Ferroptosis in Diabetic Retinopathy. Front Cell Dev Biol 2022; 10:932886. [PMID: 35813208 PMCID: PMC9260392 DOI: 10.3389/fcell.2022.932886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the primary causes of visual impairment in the working-age population. Retinal cell death is recognized as a prominent feature in the pathological changes of DR. Several types of cell death occurrence have been confirmed in DR, which might be the underlying mechanisms of retinal cell loss. Regulated cell death (RCD) originates from too intense or prolonged perturbations of the intracellular or extracellular microenvironment for adaptative responses to cope with stress and restore cellular homeostasis. Pyroptosis, necroptosis, and ferroptosis represent the novel discovered RCD forms, which contribute to retinal cell death in the pathogenesis of DR. This evidence provides new therapeutic targets for DR. In this review, we summarize the mechanisms of three types of RCD and analyse recent advances on the association between novel RCD and DR, aiming to provide new insights into the underlying pathogenic mechanisms and propose a potential new strategy for DR therapy.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Meixia Zhang,
| |
Collapse
|
19
|
Hormetic Heat Shock Enhances Autophagy through HSF1 in Retinal Pigment Epithelium Cells. Cells 2022; 11:cells11111778. [PMID: 35681472 PMCID: PMC9179435 DOI: 10.3390/cells11111778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/18/2023] Open
Abstract
To maintain homeostasis, cells have evolved stress-response pathways to cope with exogenous and endogenous stress factors. Diverse stresses at high doses may be detrimental, albeit low doses of stress, known as hormesis, can be beneficial. Upon exposure to stress, such as temperature rise, the conventional heat shock response (HSR) regulated by the heat shock transcription factor 1 (HSF1) facilitates refolding of misfolded proteins with the help of heat shock proteins (HSPs). However, the role and molecular mechanisms underlying the beneficial effects of HSR with other clearance processes, such as autophagy, remain poorly understood. In this study, human ARPE-19 cells, an in vitro model of retinal pigment epithelium, were treated with hormetic heat shock (HHS) and the autophagy expression profile was examined using quantitative PCR (qPCR), immunoblotting, immunoprecipitation, and immunofluorescence. We demonstrate that HHS enhances the expression of fundamental autophagy-associated genes in ARPE-19 cells through the activation of HSF1. HHS transiently increases the level of SQSTM1 and LC3B-II and activates autophagy. These findings reveal a role for autophagic HSF1-regulated functions and demonstrate the contribution of autophagy to hormesis in the HSR by improving proteostasis.
Collapse
|
20
|
Cliff CL, Williams BM, Chadjichristos CE, Mouritzen U, Squires PE, Hills CE. Connexin 43: A Target for the Treatment of Inflammation in Secondary Complications of the Kidney and Eye in Diabetes. Int J Mol Sci 2022; 23:600. [PMID: 35054783 PMCID: PMC8776095 DOI: 10.3390/ijms23020600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Of increasing prevalence, diabetes is characterised by elevated blood glucose and chronic inflammation that precedes the onset of multiple secondary complications, including those of the kidney and the eye. As the leading cause of end stage renal disease and blindness in the working population, more than ever is there a demand to develop clinical interventions which can both delay and prevent disease progression. Connexins are membrane bound proteins that can form pores (hemichannels) in the cell membrane. Gated by cellular stress and injury, they open under pathophysiological conditions and in doing so release 'danger signals' including adenosine triphosphate into the extracellular environment. Linked to sterile inflammation via activation of the nod-like receptor protein 3 inflammasome, targeting aberrant hemichannel activity and the release of these danger signals has met with favourable outcomes in multiple models of disease, including secondary complications of diabetes. In this review, we provide a comprehensive update on those studies which document a role for aberrant connexin hemichannel activity in the pathogenesis of both diabetic eye and kidney disease, ahead of evaluating the efficacy of blocking connexin-43 specific hemichannels in these target tissues on tissue health and function.
Collapse
Affiliation(s)
- Chelsy L. Cliff
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| | - Bethany M. Williams
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| | - Christos E. Chadjichristos
- National Institutes for Health and Medical Research, UMR-S1155, Batiment Recherche, Tenon Hospital, 4 Rue de la Chine, 75020 Paris, France;
| | - Ulrik Mouritzen
- Ciana Therapeutics, Ole Maaloes Vej 3, 2200 Copenhagen N, Denmark;
| | - Paul E. Squires
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| | - Claire E. Hills
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| |
Collapse
|
21
|
Mugisho OO, Green CR. The NLRP3 inflammasome in age-related eye disease: Evidence-based connexin hemichannel therapeutics. Exp Eye Res 2021; 215:108911. [PMID: 34958779 DOI: 10.1016/j.exer.2021.108911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
Abstract
The inflammasome pathway is a fundamental component of the innate immune system, playing a key role especially in chronic age-related eye diseases (AREDs). The inflammasome is of particular interest because it is a common disease pathway that once instigated, can amplify and perpetuate itself leading to chronic inflammation. With aging, it becomes more difficult to shut down inflammation after an insult but the common pathway means that a shared solution may be feasible that could be effective across multiple disease indications. This review focusses on the NLRP3 inflammasome, the most studied and characterized inflammasome in the eye. It describes the two-step signalling required for NLRP3 inflammasome complex activation, and provides evidence for its role in AREDs. In the final section, the article gives an overview of potential NLRP3 inflammasome targeting therapies, before presenting evidence for connexin hemichannel regulators as upstream blockers of inflammasome activation. These have shown therapeutic efficacy in multiple ocular disease models.
Collapse
Affiliation(s)
- Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
22
|
Lyon H, Yin N, Rupenthal ID, Green CR, Mugisho OO. Blocking connexin43 hemichannels prevents TGF-β2 upregulation and epithelial-mesenchymal transition in retinal pigment epithelial cells. Cell Biol Int 2021; 46:323-330. [PMID: 34719065 DOI: 10.1002/cbin.11718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/23/2021] [Indexed: 12/14/2022]
Abstract
Epithelial-mesenchymal transition (EMT) occurs when polarised epithelial cells change to a mesenchymal phenotype. EMT plays a role in several chronic conditions, including ocular diseases with retinal pigment epithelium (RPE) EMT associated with retinal diseases such as diabetic retinopathy (DR). Here, EMT results in breakdown of the blood-retinal barrier (BRB) leading to sub-retinal fluid deposition and retinal detachment. Previous studies have shown that blocking connexin43 (Cx43) hemichannels can protect against RPE BRB breakdown, but the underlying mechanism is unknown. To determine whether open Cx43 hemichannels may enable EMT of RPE cells and thus result in BRB breakdown, ARPE-19 cells were either challenged with high glucose plus the inflammatory cytokines IL-1β and TNF-α (HG + Cyt) to simulate DR or treated with the Cx43 hemichannel blocker tonabersat alongside the HG + Cyt challenge. HG + Cyt induced a morphological change in RPE cells to a fibroblastic phenotype with a corresponding decrease in epithelial zonular occludens-1 and an increase in the fibroblastic marker α-SMA. The HG + Cyt challenge also induced loss of transepithelial electrical resistance while increasing dye passage between RPE cells. All of these changes were significantly reduced with tonabersat treatment, which also prevented HG + Cyt-induced transforming growth factor-β2 (TGF-β2) release. In conclusion, Cx43 hemichannel block with tonabersat attenuated both TGF-β2 release and RPE EMT under disease-mimicking conditions, offering the potential to ameliorate the progression of EMT-associated retinal diseases.
Collapse
Affiliation(s)
- Heather Lyon
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Naibo Yin
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Cell transdifferentiation in ocular disease: Potential role for connexin channels. Exp Cell Res 2021; 407:112823. [PMID: 34506760 DOI: 10.1016/j.yexcr.2021.112823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 11/22/2022]
Abstract
Cell transdifferentiation is the conversion of a cell type to another without requiring passage through a pluripotent cell state, and encompasses epithelial- and endothelial-mesenchymal transition (EMT and EndMT). EMT and EndMT are well defined processes characterized by a loss of epithelial/endothelial phenotype and gain in mesenchymal spindle shaped morphology, which results in increased cell migration and decreased apoptosis and cellular senescence. Such cells often develop invasive properties. Physiologically, these processes may occur during embryonic development and can resurface, for example, to promote wound healing in later life. However, they can also be a pathological process. In the eye, EMT, EndMT and cell transdifferentiation have all been implicated in development, homeostasis, and multiple diseases affecting different parts of the eye. Connexins, constituents of connexin hemichannels and intercellular gap junctions, have been implicated in many of these processes. In this review, we firstly provide an overview of the molecular mechanisms induced by transdifferentiation (including EMT and EndMT) and its involvement in eye diseases. We then review the literature for the role of connexins in transdifferentiation in the eye and eye diseases. The evidence presented in this review supports the need for more studies into the therapeutic potential for connexin modulators in prevention and treatment of transdifferentiation related eye diseases, but does indicate that connexin channel modulation may be an upstream and unifying approach for regulating these otherwise complex processes.
Collapse
|
24
|
Wan W, Zhu W, Wu Y, Long Y, Liu H, Wan W, Wan G, Yu J. Grape Seed Proanthocyanidin Extract Moderated Retinal Pigment Epithelium Cellular Senescence Through NAMPT/SIRT1/NLRP3 Pathway. J Inflamm Res 2021; 14:3129-3143. [PMID: 34285539 PMCID: PMC8286255 DOI: 10.2147/jir.s306456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Retinal pigment epithelium (RPE) cellular senescence is an important process in degenerative retinal disorders. Grape seed proanthocyanidin extract (GSPE) alleviates senescence-related degenerative disorders; however, the potential effects of GSPE intake on RPE cellular senescence through regulating NAMPT/SIRT1/NLRP3 pathway remain unclear. Methods The effects of GSPE on NAMPT expression and NAD+ contents were detected with Western blot and assay kit in both in-vivo and in-vitro AMD models. Senescence-related biomarkers, including p16, p21 expressions and β-gal staining, were conducted in different groups. The protective effects of GSPE treatment on the mitochondrial homeostasis and barrier function of RPE cells were detected using mtDNA lesions analyses, JC-1 staining, ZO1 staining and trans-epithelial cell resistance (TEER) detection. The expression of senescence-associated secretory phenotype (SASP) in different groups would be conducted with qPCR. To demonstrate the potential effects of NAMPT/SIRT1/NLRP3 pathway after GSPE treatment, the protein levels of relevant key regulators after applications of NAMPT inhibitor, Fk866, and SIRT1 inhibitor, EX-527. Results GSPE significantly improves the NAMPT expression and NAD+ content in aging mice, and thus alleviates the RPE cellular senescence. In advanced in-vitro studies, GSPE significantly up-regulated NAMPT content and thus relieved H2O2 induced NAD+ depression through analyzing the NAD+ contents in different groups. In advanced analyses, it was reported that GSPE could alleviate mitochondrial permeability, mtDNA damage, ZO1 expression and SASP levels in aging RPE cells. Thus, GSPE treatment significantly decreased senescence-related protein p16 and p21, as well as SASP levels in in-vitro aging model, and it was demonstrated that GSPE could illustrate a significant anti-aging effect. The Western blot data in GSPE treatment of aging RPE cells demonstrated that GSPE could significantly improve NAMPT and SIRT1 levels, and thus depressed NLRP3 expression. Conclusion This study indicated that GSPE alleviated RPE cellular senescence through NAMPT/SIRT1/NLRP3 pathway. This study highlighted the potential effects of GSPE on degenerative retinopathy through the crosstalk of NAD+ metabolism, SIRT1 function and NLRP3 activation.
Collapse
Affiliation(s)
- Wencui Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wei Zhu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, People's Republic of China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China.,Mois Biotech Company, Shanghai, People's Republic of China
| | - Yang Long
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hongzhuo Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Weiwei Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Li X, Yu Y, Liu X, Shi Y, Jin X, Zhang Y, Xu S, Zhang N, Dong L, Zhou S, Wang Y, Ding Y, Song Z, Zhang H. Quantitative analysis of retinal vessel density and thickness changes in diabetes mellitus evaluated using optical coherence tomography angiography: a cross-sectional study. BMC Ophthalmol 2021; 21:259. [PMID: 34130654 PMCID: PMC8207746 DOI: 10.1186/s12886-021-01988-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Background Diabetic retinopathy is the most common microvascular complication of diabetes; however, early changes in retinal microvessels are difficult to detect clinically, and a patient’s vision may have begun to deteriorate by the time a problem is identified. Optical coherence tomography angiography (OCTA) is an innovative tool for observing capillaries in vivo. The aim of this study was to analyze retinal vessel density and thickness changes in patients with diabetes. Methods This was a retrospective, observational cross-sectional study. Between August 2018 and February 2019, we collected OCTA data from healthy participants and diabetics from the First Affiliated Hospital of Harbin Medical University. Analyzed their retinal vessel density and thickness changes. Results A total of 97 diabetic patients with diabetes at different severity stages of diabetic retinopathy and 85 controls were involved in the experiment. Diabetic patients exhibited significantly lower retinal VD (particularly in the deep vascular complexes), thickening of the neurosensory retina, and thinning of the retinal pigment epithelium compared with controls. In the control group, nondiabetic retinopathy group and mild diabetic retinopathy group, superficial VD was significantly correlated with retinal thickness (r = 0.3886, P < 0.0001; r = 0.3276, P = 0.0019; r = 0.4614, P = 0.0024, respectively). Conclusions Patients with diabetes exhibit ischemia of the retinal capillaries and morphologic changes in vivo prior to vision loss. Therefore, OCTA may be useful as a quantitative method for the early detection of diabetic retinopathy. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-021-01988-2.
Collapse
Affiliation(s)
- Xinyue Li
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Yu
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueting Liu
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Shi
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanyan Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Xu
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Dong
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sujun Zhou
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingbin Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiheng Ding
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhen Song
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
26
|
Boal AM, Risner ML, Cooper ML, Wareham LK, Calkins DJ. Astrocyte Networks as Therapeutic Targets in Glaucomatous Neurodegeneration. Cells 2021; 10:1368. [PMID: 34199470 PMCID: PMC8228804 DOI: 10.3390/cells10061368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022] Open
Abstract
Astrocytes are intimately involved in the response to neurodegenerative stress and have become an attractive target for the development of neuroprotective therapies. However, studies often focus on astrocytes as single-cell units. Astrocytes are densely interconnected by gap junctions that are composed primarily of the protein connexin-43 (Cx43) and can function as a broader network of cells. Such networks contribute to a number of important processes, including metabolite distribution and extracellular ionic buffering, and are likely to play an important role in the progression of neurodegenerative disease. This review will focus on the pro-degenerative and pro-survival influence of astrocyte Cx43 in disease progression, with a focus on the roles of gap junctions and hemichannels in the spread of degenerative stress. Finally, we will highlight the specific evidence for targeting these networks in the treatment of glaucomatous neurodegeneration and other optic neuropathies.
Collapse
Affiliation(s)
- Andrew M. Boal
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - Michael L. Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - Melissa L. Cooper
- Skirball Institute for Biomolecular Medicine, NYU Langone Medical Center, New York, NY 10016, USA;
- Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Lauren K. Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| |
Collapse
|
27
|
Anitha RE, Janani R, Peethambaran D, Baskaran V. Lactucaxanthin protects retinal pigment epithelium from hyperglycemia-regulated hypoxia/ER stress/VEGF pathway mediated angiogenesis in ARPE-19 cell and rat model. Eur J Pharmacol 2021; 899:174014. [PMID: 33705802 DOI: 10.1016/j.ejphar.2021.174014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Hyperglycemia mediated perturbations in biochemical pathways induce angiogenesis in diabetic retinopathy (DR) pathogenesis. The present study aimed to investigate the protective effects of lactucaxanthin, a predominant lettuce carotenoid, on hyperglycemia-mediated activation of angiogenesis in vitro and in vivo diabetic model. ARPE-19 cells cultured in 30 mM glucose concentration were treated with lactucaxanthin (5 μM and 10 μM) for 48 h. They were assessed for antioxidant enzyme activity, mitochondrial membrane potential, reactive oxygen species, and cell migration. In the animal experiment, streptozotocin-induced diabetic male Wistar rats were gavaged with lactucaxanthin (200 μM) for 8 weeks. Parameters like animal weight gain, feed intake, water intake, urine output, and fasting blood glucose level were monitored. In both models, lutein-treated groups were considered as a positive control. Hyperglycemia-mediated angiogenic marker expressions in ARPE-19 and retina of diabetic rats were quantified through the western blot technique. Expression of hypoxia, endoplasmic reticulum stress markers, and vascular endothelial growth factor were found to be augmented in the hyperglycemia group compared to control (P < 0.05). Hyperglycemia plays a crucial role in increasing cellular migration and reactive oxygen species besides disrupting tight junction protein. Compared to lutein, lactucaxanthin aids retinal pigment epithelium (RPE) function from hyperglycemia-induced stress conditions via downregulating angiogenesis markers expression. Lactucaxanthin potentiality observed in protecting tight junction protein expression via modulating reactive oxygen species found to conserve RPE integrity. Results demonstrate that lactucaxanthin exhibits robust anti-angiogenic activity for the first time and, therefore, would be useful as an alternative therapy to prevent or delay DR progression.
Collapse
Affiliation(s)
- Rani Elavarasan Anitha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Rajasekar Janani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Divya Peethambaran
- CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Vallikannan Baskaran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
| |
Collapse
|
28
|
Role of pyroptosis in diabetic retinopathy and its therapeutic implications. Eur J Pharmacol 2021; 904:174166. [PMID: 33979651 DOI: 10.1016/j.ejphar.2021.174166] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022]
Abstract
Pyroptosis has recently been established as a term of programmed-inflammatory cell death. Pyroptosis is mainly divided into two molecular signaling pathways, including caspase-1-dependent canonical and caspase-4/5/11-dependent non-canonical inflammasome pathways. Extensive investigations have reported inflammasome activation facilitates the maturation and secretion of the inflammatory factors interleukin-1β/18 (IL-1β/18), cleavage of gasdermin D (GSDMD), and leading to the stimulation of pyroptosis-mediated cell death. Furthermore, accumulating studies report NLRP3 inflammasome activation plays a significant role in triggering the pyroptosis-mediated cell death and promotes the pathogenesis of diabetic retinopathy (DR). Our current review elaborates on the molecular mechanisms of pyroptosis-signaling pathways and their potential roles in the pathogenesis and impact of DR development. We also emphasize several investigational molecules regulating key steps in pyroptotic-cell death to create new comprehensions and findings to explore the pathogenesis of DR advancement. Our narrative review concisely suggests these potential pharmacological agents could be promising therapies to treat and manage DR in the future.
Collapse
|
29
|
Marsh SR, Williams ZJ, Pridham KJ, Gourdie RG. Peptidic Connexin43 Therapeutics in Cardiac Reparative Medicine. J Cardiovasc Dev Dis 2021; 8:52. [PMID: 34063001 PMCID: PMC8147937 DOI: 10.3390/jcdd8050052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Connexin (Cx43)-formed channels have been linked to cardiac arrhythmias and diseases of the heart associated with myocardial tissue loss and fibrosis. These pathologies include ischemic heart disease, ischemia-reperfusion injury, heart failure, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, and Duchenne muscular dystrophy. A number of Cx43 mimetic peptides have been reported as therapeutic candidates for targeting disease processes linked to Cx43, including some that have advanced to clinical testing in humans. These peptides include Cx43 sequences based on the extracellular loop domains (e.g., Gap26, Gap 27, and Peptide5), cytoplasmic-loop domain (Gap19 and L2), and cytoplasmic carboxyl-terminal domain (e.g., JM2, Cx43tat, CycliCX, and the alphaCT family of peptides) of this transmembrane protein. Additionally, RYYN peptides binding to the Cx43 carboxyl-terminus have been described. In this review, we survey preclinical and clinical data available on short mimetic peptides based on, or directly targeting, Cx43, with focus on their potential for treating heart disease. We also discuss problems that have caused reluctance within the pharmaceutical industry to translate peptidic therapeutics to the clinic, even when supporting preclinical data is strong. These issues include those associated with the administration, stability in vivo, and tissue penetration of peptide-based therapeutics. Finally, we discuss novel drug delivery technologies including nanoparticles, exosomes, and other nanovesicular carriers that could transform the clinical and commercial viability of Cx43-targeting peptides in treatment of heart disease, stroke, cancer, and other indications requiring oral or parenteral administration. Some of these newly emerging approaches to drug delivery may provide a path to overcoming pitfalls associated with the drugging of peptide therapeutics.
Collapse
Affiliation(s)
- Spencer R. Marsh
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Zachary J. Williams
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA 24016, USA
| | - Kevin J. Pridham
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Robert G. Gourdie
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Emergency Medicine, Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA
| |
Collapse
|
30
|
Collagen I Modifies Connexin-43 Hemichannel Activity via Integrin α2β1 Binding in TGFβ1-Evoked Renal Tubular Epithelial Cells. Int J Mol Sci 2021; 22:ijms22073644. [PMID: 33807408 PMCID: PMC8038016 DOI: 10.3390/ijms22073644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic Kidney Disease (CKD) is associated with sustained inflammation and progressive fibrosis, changes that have been linked to altered connexin hemichannel-mediated release of adenosine triphosphate (ATP). Kidney fibrosis develops in response to increased deposition of extracellular matrix (ECM), and up-regulation of collagen I is an early marker of renal disease. With ECM remodeling known to promote a loss of epithelial stability, in the current study we used a clonal human kidney (HK2) model of proximal tubular epithelial cells to determine if collagen I modulates changes in cell function, via connexin-43 (Cx43) hemichannel ATP release. HK2 cells were cultured on collagen I and treated with the beta 1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± the Cx43 mimetic Peptide 5 and/or an anti-integrin α2β1 neutralizing antibody. Phase microscopy and immunocytochemistry observed changes in cell morphology and cytoskeletal reorganization, whilst immunoblotting and ELISA identified changes in protein expression and secretion. Carboxyfluorescein dye uptake and biosensing measured hemichannel activity and ATP release. A Cytoselect extracellular matrix adhesion assay assessed changes in cell-substrate interactions. Collagen I and TGFβ1 synergistically evoked increased hemichannel activity and ATP release. This was paralleled by changes to markers of tubular injury, partly mediated by integrin α2β1/integrin-like kinase signaling. The co-incubation of the hemichannel blocker Peptide 5, reduced collagen I/TGFβ1 induced alterations and inhibited a positive feedforward loop between Cx43/ATP release/collagen I. This study highlights a role for collagen I in regulating connexin-mediated hemichannel activity through integrin α2β1 signaling, ahead of establishing Peptide 5 as a potential intervention.
Collapse
|
31
|
González-Casanova J, Schmachtenberg O, Martínez AD, Sanchez HA, Harcha PA, Rojas-Gomez D. An Update on Connexin Gap Junction and Hemichannels in Diabetic Retinopathy. Int J Mol Sci 2021; 22:ijms22063194. [PMID: 33801118 PMCID: PMC8004116 DOI: 10.3390/ijms22063194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the main causes of vision loss in the working age population. It is characterized by a progressive deterioration of the retinal microvasculature, caused by long-term metabolic alterations inherent to diabetes, leading to a progressive loss of retinal integrity and function. The mammalian retina presents an orderly layered structure that executes initial but complex visual processing and analysis. Gap junction channels (GJC) forming electrical synapses are present in each retinal layer and contribute to the communication between different cell types. In addition, connexin hemichannels (HCs) have emerged as relevant players that influence diverse physiological and pathological processes in the retina. This article highlights the impact of diabetic conditions on GJC and HCs physiology and their involvement in DR pathogenesis. Microvascular damage and concomitant loss of endothelial cells and pericytes are related to alterations in gap junction intercellular communication (GJIC) and decreased connexin 43 (Cx43) expression. On the other hand, it has been shown that the expression and activity of HCs are upregulated in DR, becoming a key element in the establishment of proinflammatory conditions that emerge during hyperglycemia. Hence, novel connexin HCs blockers or drugs to enhance GJIC are promising tools for the development of pharmacological interventions for diabetic retinopathy, and initial in vitro and in vivo studies have shown favorable results in this regard.
Collapse
Affiliation(s)
- Jorge González-Casanova
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.D.M.); (H.A.S.); (P.A.H.)
| | - Helmuth A. Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.D.M.); (H.A.S.); (P.A.H.)
| | - Paloma A. Harcha
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.D.M.); (H.A.S.); (P.A.H.)
| | - Diana Rojas-Gomez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370146, Chile
- Correspondence: ; Tel.: +56-2-26618559
| |
Collapse
|
32
|
Squires PE, Price GW, Mouritzen U, Potter JA, Williams BM, Hills CE. Danegaptide Prevents TGFβ1-Induced Damage in Human Proximal Tubule Epithelial Cells of the Kidney. Int J Mol Sci 2021; 22:2809. [PMID: 33802083 PMCID: PMC7999212 DOI: 10.3390/ijms22062809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a global health problem associated with a number of comorbidities. Recent evidence implicates increased hemichannel-mediated release of adenosine triphosphate (ATP) in the progression of tubulointerstitial fibrosis, the main underlying pathology of CKD. Here, we evaluate the effect of danegaptide on blocking hemichannel-mediated changes in the expression and function of proteins associated with disease progression in tubular epithelial kidney cells. Primary human proximal tubule epithelial cells (hPTECs) were treated with the beta1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± danegaptide. qRT-PCR and immunoblotting confirmed mRNA and protein expression, whilst a cytokine antibody array assessed the expression/secretion of proinflammatory and profibrotic cytokines. Carboxyfluorescein dye uptake and ATP biosensing measured hemichannel activity and ATP release, whilst transepithelial electrical resistance was used to assess paracellular permeability. Danegaptide negated carboxyfluorescein dye uptake and ATP release and protected against protein changes associated with tubular injury. Blocking Cx43-mediated ATP release was paralleled by partial restoration of the expression of cell cycle inhibitors, adherens and tight junction proteins and decreased paracellular permeability. Furthermore, danegaptide inhibited TGFβ1-induced changes in the expression and secretion of key adipokines, cytokines, chemokines, growth factors and interleukins. The data suggest that as a gap junction modulator and hemichannel blocker, danegaptide has potential in the future treatment of CKD.
Collapse
Affiliation(s)
- Paul E. Squires
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Gareth W. Price
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Ulrik Mouritzen
- Ciana Therapeutics, Ved Hegnet 2, 2960 Rungsted Kyst, Copenhagen, Denmark;
| | - Joe A. Potter
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Bethany M. Williams
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Claire E. Hills
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| |
Collapse
|
33
|
Harnessing the therapeutic potential of antibodies targeting connexin hemichannels. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166047. [PMID: 33418036 DOI: 10.1016/j.bbadis.2020.166047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Connexin hemichannels have been implicated in pathology-promoting conditions, including inflammation, numerous widespread human diseases, including cancer and diabetes, and several rare diseases linked to pathological point mutations. METHODS We analysed the literature focusing on antibodies capable of modulating hemichannel function, highlighting generation methods, applications to basic biomedical research and translational potential. RESULTS Anti-hemichannel antibodies generated over the past 3 decades targeted mostly connexin 43, with a focus on cancer treatment. A slow transition from relatively unselective polyclonal antibodies to more selective monoclonal antibodies resulted in few products with interesting characteristics that are under evaluation for clinical trials. Selection of antibodies from combinatorial phage-display libraries, has permitted to engineer a monoclonal antibody that binds to and blocks pathological hemichannels formed by connexin 26, 30 and 32. CONCLUSIONS All known antibodies that modulate connexin hemichannels target the two small extracellular loops of the connexin proteins. The extracellular region of different connexins is highly conserved, and few residues of each connexins are exposed. The search for new antibodies may develop an unprecedented potential for therapeutic applications, as it may benefit tremendously from novel whole-cell screening platforms that permit in situ selection of antibodies against membrane proteins in native state. The demonstrated efficacy of mAbs in reaching and modulating hemichannels in vivo, together with their relative specificity for connexins overlapping epitopes, should hopefully stimulate an interest for widening the scope of anti-hemichannel antibodies. There is no shortage of currently incurable diseases for which therapeutic intervention may benefit from anti-hemichannel antibodies capable of modulating hemichannel function selectively and specifically.
Collapse
|
34
|
Kang H, Yin N, Lyon H, Rupenthal ID, Thakur SS, Mugisho OO. The influence of hyperglycemia on the safety of ultrasound in retinal pigment epithelial cells. Cell Biol Int 2021; 45:558-568. [PMID: 33049086 DOI: 10.1002/cbin.11477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/13/2020] [Accepted: 10/10/2020] [Indexed: 11/07/2022]
Abstract
Ultrasound (US) assisted drug delivery is receiving interest in treating posterior eye diseases, such as diabetic retinopathy due to its ability to maximize drug penetration into difficult to reach tissues. Despite its promise, the technique has only been investigated using healthy cell and tissue models, with no evidence to date about its safety in active disease. As a result, the aim of this study was to evaluate the safety of US administration in vitro in retinal pigment epithelial cells under normal and high glucose conditions. US protocols within the presently accepted safety threshold were applied and their influence on cell membrane and tight junction integrity as well as intracellular inflammation was evaluated using lactate dehydrogenase (LDH), zona occludens-1 (ZO-1), fluorescein isothiocyanate (FITC)-dextran dye leak and nuclear factor-kappaB (NF-κB) assays, respectively. Under high glucose conditions, US application increased LDH release and resulted in loss of ZO-1 labeling at 2 h; however, normal levels were restored within 24 h. US within its safety parameters did not induce any FITC-dextran dye leak or NF-κB nuclear translocation in normal or high glucose conditions. In conclusion, our results suggest that while high glucose conditions increase cell susceptibility to US-mediated stress, basal conditions can be restored within 24 h without long-lasting cell damage.
Collapse
Affiliation(s)
- Heather Kang
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Naibo Yin
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Heather Lyon
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sachin S Thakur
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Tonabersat Inhibits Connexin43 Hemichannel Opening and Inflammasome Activation in an In Vitro Retinal Epithelial Cell Model of Diabetic Retinopathy. Int J Mol Sci 2020; 22:ijms22010298. [PMID: 33396676 PMCID: PMC7794685 DOI: 10.3390/ijms22010298] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 01/04/2023] Open
Abstract
This study was undertaken to evaluate the connexin hemichannel blocker tonabersat for the inhibition of inflammasome activation and use as a potential treatment for diabetic retinopathy. Human retinal pigment epithelial cells (ARPE-19) were stimulated with hyperglycemia and the inflammatory cytokines IL-1β and TNFα in order to mimic diabetic retinopathy molecular signs in vitro. Immunohistochemistry was used to evaluate the effect of tonabersat treatment on NLRP3, NLRP1, and cleaved caspase-1 expression and distribution. A Luminex cytokine release assay was performed to determine whether tonabersat affected proinflammatory cytokine release. NLRP1 was not activated in ARPE-19 cells, and IL-18 was not produced under disease conditions. However, NLRP3 and cleaved caspase-1 complex formation increased with hyperglycemia and cytokine challenge but was inhibited by tonabersat treatment. It also prevented the release of proinflammatory cytokines IL-1β, VEGF, and IL-6. Tonabersat therefore has the potential to reduce inflammasome-mediated inflammation in diabetic retinopathy.
Collapse
|
36
|
Louie HH, Shome A, Kuo CY, Rupenthal ID, Green CR, Mugisho OO. Connexin43 hemichannel block inhibits NLRP3 inflammasome activation in a human retinal explant model of diabetic retinopathy. Exp Eye Res 2020; 202:108384. [PMID: 33285185 DOI: 10.1016/j.exer.2020.108384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 01/26/2023]
Abstract
Diabetic retinopathy (DR), the most common ocular complication associated with diabetes, is a chronic vascular and inflammatory disease that leads to vision loss. The inflammasome pathway, a key part of the innate immune system, is required to activate chronic inflammation in DR. Unfortunately, current therapies for DR target pathological signs that are downstream of the inflammasome pathway, making them only partly effective in treating the disease. Using in vitro and in vivo DR models, it was discovered that connexin43 hemichannel blockers can inhibit activation of the inflammasome pathway. However, those studies were conducted using in vitro cell culture and in vivo animal disease models that are predictive but do not, of course, like any model, completely replicate the human condition. Here, we have developed an addition to our armamentarium of useful models, an ex vivo human organotypic retinal culture model of DR by exposing human donor retinal explants to a combination of high glucose (HG) and pro-inflammatory cytokines, interleukin-1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). We hypothesized that in this model, connexin43 hemichannel block would protect against NLRP3 inflammasome complex assembly which would in turn decrease signs of inflammation characteristic of DR. To test our hypothesis, molecular changes in the inflammatory and inflammasome pathway were assessed using immunohistochemistry and a Luminex cytokine release assay. Our results showed that the human retinal explant DR model was associated with increased inflammation and activation of the inflammasome pathway, characteristic of the human condition. Furthermore, we showed that by blocking connexin43 hemichannels with the hemichannel modulator, tonabersat, we were able to prevent NLRP3 inflammasome complex assembly, Müller cell activation, as well as release of pro-inflammatory cytokines and VEGF. This further supports the possible use of connexin43 hemichannel blockers as potential new therapies for DR.
Collapse
Affiliation(s)
- Henry H Louie
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand; Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Avik Shome
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand; Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Charisse Yj Kuo
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand; Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand; Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand; Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand.
| |
Collapse
|
37
|
Feldman LA, Haldankar S, O'Carroll SJ, Liu K, Fackelmeier B, Broaddus WC, Anene-Maidoh T, Green CR, Garbow JR, Guan J. Connexin43 Expression and Associated Chronic Inflammation Presages the Development of Cerebral Radiation Necrosis. J Neuropathol Exp Neurol 2020; 79:791-799. [PMID: 32447392 DOI: 10.1093/jnen/nlaa037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/09/2020] [Accepted: 04/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cerebral radiation necrosis (CRN) is a delayed complication of radiosurgery that can result in severe neurological deficits. The biological changes leading to necrotic damage may identify therapeutic targets for this complication. Connexin43 expression associated with chronic inflammation may presage the development of CRN. A mouse model of delayed CRN was used. The left hemispheres of adult female mice were irradiated with single-fraction, high-dose radiation using a Leksell Gamma Knife. The brains were collected 1 and 4 days, and 1-3 weeks after the radiation. The expression of connexin43, interleukin-1β (IL-1β), GFAP, isolectin B-4, and fibrinogen was evaluated using immunohistochemical staining and image analysis. Compared with the baseline, the area of connexin43 and IL-1β staining was increased in ipsilateral hemispheres 4 days after radiation. Over the following 3 weeks, the density of connexin43 gradually increased in parallel with progressive increases in GFAP, isolectin B-4, and fibrinogen labeling. The overexpression of connexin43 in parallel with IL-1β spread into the affected brain regions first. Further intensified upregulation of connexin43 was associated with escalated astrocytosis, microgliosis, and blood-brain barrier breach. Connexin43-mediated inflammation may underlie radiation necrosis and further investigation of connexin43 hemichannel blockage is merited for the treatment of CRN.
Collapse
Affiliation(s)
- Lisa A Feldman
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Shewta Haldankar
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Simon J O'Carroll
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Karen Liu
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Barbara Fackelmeier
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - William C Broaddus
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia
| | - Tony Anene-Maidoh
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia
| | - Colin R Green
- Department of Ophthalmology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Joel R Garbow
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Jian Guan
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Protective Effects of Fucoxanthin on High Glucose- and 4-Hydroxynonenal (4-HNE)-Induced Injury in Human Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2020; 9:antiox9121176. [PMID: 33255669 PMCID: PMC7760030 DOI: 10.3390/antiox9121176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
The incidence of diabetes mellitus is increasing due to the eating and living habits of modern people. As the disease progresses, the long-term effects of diabetes can cause microvascular disease, causing dysfunction in different parts of the body, which, in turn, leads to different complications, such as diabetic neuropathy, diabetic nephropathy, and diabetic retinopathy (DR). DR is the main cause of vision loss and blindness in diabetic patients. Persistent hyperglycemia may cause damage to the retina, induce the accumulation of inflammatory factors, and destroy the blood–retinal barrier function. Fucoxanthin (Fx) is a marine carotenoid extracted from seaweed. It accounts for more than 10% of the total carotenoids in nature. Fx is mainly found in brown algae and has strong antioxidant properties, due to its unique biologically active structure. This carotenoid also has the effects of reducing lipid peroxidation, reducing DNA damage, and preventing cardiovascular diseases as well as anti-inflammatory and anti-tumor effects. However, there is no relevant research on the protective effect of Fx in DR. Therefore, in this study, we explore the protective effect of Fx on the retina. Human retinal epithelial cells (ARPE-19) are used to investigate the protective effect of Fx on high glucose stress- (glucose 75 mM) and high lipid peroxidation stress (4-hydroxynonenal, 4-HNE (30 μM))-induced DR. The cell viability test shows that Fx recovered the cell damage, and Western blotting shows that Fx reduced the inflammation response and maintained the integrity of the blood–retinal barrier by reducing its apoptosis and cell adhesion factor protein expression. Using an antioxidant enzyme assay kit, we find that the protective effect of Fx may be related to the strong antioxidant properties of Fx, which increases catalase and reduces oxidative stress to produce a protective effect on the retina.
Collapse
|
39
|
Eyre JJ, Williams RL, Levis HJ. A human retinal microvascular endothelial-pericyte co-culture model to study diabetic retinopathy in vitro. Exp Eye Res 2020; 201:108293. [PMID: 33039459 DOI: 10.1016/j.exer.2020.108293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 11/24/2022]
Abstract
This human primary co-culture model using human retinal microvascular endothelial cells (hREC) and human retinal pericyte cells (hRP) aims to improve current understanding of the cellular changes occurring in the retinal microvasculature during diabetic retinopathy (DR). Currently, patients often present in clinic with late-stage DR, only when vision becomes impaired. Therefore, new strategies for earlier detection in clinic, combined with novel pharmaceutical and cellular interventions are essential in order to slow or halt the progression of DR from background to sight-threatening stage. This co-culture model can be used as a simple, replicable in vitro tool to discover and assess novel drug therapies and improve fundamental understanding of alterations to cell behaviour in the human retinal microvasculature during DR. hRP and hREC were cultured for up to 21 days in normoxic (20%) or hypoxic (2%) oxygen levels and physiological (5.5 mM) or very high (33 mM) glucose, to maintain a healthy, or induce a diabetic-like phenotype in vitro. Mono- or co-cultured hREC and hRP were seeded 1:1 in healthy (20% oxygen and 5.5 mM glucose) or diabetic-like (2% oxygen and 33 mM glucose) conditions, on either side of untreated polyethylene terephthalate (PET) transwell inserts, and cultured for 21 days. Mono- and co-cultures were analysed for changes in metabolic activity, angiogenic response and junctional protein expression, using immunofluorescence antibody labelling, flow cytometry and multiplex ELISA technology. hRP and hREC were successfully co-cultured, and the glucose and oxygen concentrations selected for the in vitro healthy and diabetic-like conditions were sufficient for cell viability and EC monolayer integrity, with evidence of an angiogenic response in diabetic-like conditions within the 21 day timeframe. Angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) secretion were all increased, whilst hepatocyte growth factor (hHGF), tissue inhibitor for metalloproteinase-2 (TIMP-2) and interleukin-8 (IL-8) secretion were all reduced in the in vitro diabetic-like conditions. The secretion profile of co-cultures was different to mono-cultures, highlighting the importance of using co-culture models to collect data more reflective of the close relationship between hRP-hREC in vivo. Previous groups have developed useful co-culture models utilising non-human, immortalised or large vessel-sourced cells to explore changes to the vasculature during hypoxia and/or high glucose insult. In this study the use of human primary, retina-specific microvascular cells, mono- and co-cultured, collected over a longer culture period, has enabled detection of changes that may have been missed in previous models.
Collapse
Affiliation(s)
- Jessica J Eyre
- Department of Eye and Vision Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool, United Kingdom.
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool, United Kingdom.
| | - Hannah J Levis
- Department of Eye and Vision Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool, United Kingdom.
| |
Collapse
|
40
|
Autophagy in Age-Related Macular Degeneration: A Regulatory Mechanism of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2896036. [PMID: 32831993 PMCID: PMC7429811 DOI: 10.1155/2020/2896036] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of severe visual loss and irreversible blindness in the elderly population worldwide. Retinal pigment epithelial (RPE) cells are the major site of pathological alterations in AMD. They are responsible for the phagocytosis of shed photoreceptor outer segments (POSs) and clearance of cellular waste under physiological conditions. Age-related, cumulative oxidative stimuli contribute to the pathogenesis of AMD. Excessive oxidative stress induces RPE cell degeneration and incomplete digestion of POSs, leading to the continuous accumulation of cellular waste (such as lipofuscin). Autophagy is a major system of degradation of damaged or unnecessary proteins. However, degenerative RPE cells in AMD patients cannot perform autophagy sufficiently to resist oxidative damage. Increasing evidence supports the idea that enhancing the autophagic process can properly alleviate oxidative injury in AMD and protect RPE and photoreceptor cells from degeneration and death, although overactivated autophagy may lead to cell death at early stages of retinal degenerative diseases. The crosstalk among the NFE2L2, PGC-1, p62, AMPK, and PI3K/Akt/mTOR pathways may play a crucial role in improving disturbed autophagy and mitigating the progression of AMD. In this review, we discuss how autophagy prevents oxidative damage in AMD, summarize potential neuroprotective strategies for therapeutic interventions, and provide an overview of these neuroprotective mechanisms.
Collapse
|
41
|
Maruyama S, Akanuma SI, Kubo Y, Hosoya KI. Characteristics of Hemichannel-Mediated Substrate Transport in Human Retinal Pigment Epithelial Cells under Deprivation of Extracellular Ca 2. Biol Pharm Bull 2020; 43:1241-1247. [PMID: 32741944 DOI: 10.1248/bpb.b20-00290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinal pigment epithelial (RPE) cells form the outer blood-retinal barrier (BRB) and regulate drug/compound exchange between the neural retina and blood in the fenestrated blood vessels of retinal choroid via membrane transporters. Recent studies have elucidated that RPE cells express hemichannels, which are opened by extracellular Ca2+ depletion and accept several drugs/compounds as a transporting substrate. The objective of this study was to elucidate the hemichannel-mediated compound transport properties of the outer BRB. In human RPE cells, namely ARPE-19 cells, time-dependent uptake of fluorescent hemichannel substrates, such as Lucifer Yellow, sulforhodamine-101 (SR-101), and propidium iodide (PI) was promoted under Ca2+-depleted conditions. The uptake of these substrates under Ca2+-depleted conditions exhibited saturable kinetics with a Michaelis-Menten constant (Km) of 87-109 µM. In addition, SR-101 and PI uptake by ARPE-19 cells was dependent of extracellular Ca2+ concentration, and that under Ca2+-depleted conditions was significantly decreased by typical substrates and/or inhibitors for hemichannels. Moreover, Ca2+-depleted conditions promoted the efflux transport of calcein from ARPE-19 cells, and the promoted calcein efflux transport was significantly inhibited by a typical hemichannel inhibitor. These results suggested that hemichannels at the outer BRB were involved in the influx and efflux transport of drugs/compounds.
Collapse
Affiliation(s)
- Souhei Maruyama
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
42
|
Sáez JC, Vargas AA, Hernández DE, Ortiz FC, Giaume C, Orellana JA. Permeation of Molecules through Astroglial Connexin 43 Hemichannels Is Modulated by Cytokines with Parameters Depending on the Permeant Species. Int J Mol Sci 2020; 21:ijms21113970. [PMID: 32492823 PMCID: PMC7312936 DOI: 10.3390/ijms21113970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recent studies indicate that connexin hemichannels do not act as freely permeable non-selective pores, but they select permeants in an isoform-specific manner with cooperative, competitive and saturable kinetics. The aim of this study was to investigate whether the treatment with a mixture of IL-1β plus TNF-α, a well-known pro-inflammatory condition that activates astroglial connexin 43 (Cx43) hemichannels, could alter their permeability to molecules. We found that IL-1β plus TNF-α left-shifted the dye uptake rate vs. dye concentration relationship for Etd and 2-NBDG, but the opposite took place for DAPI or YO-PRO-1, whereas no alterations were observed for Prd. The latter modifications were accompanied of changes in Kd (Etd, DAPI, YO-PRO-1 or 2-NBDG) and Hill coefficients (Etd and YO-PRO-1), but not in alterations of Vmax. We speculate that IL-1β plus TNF-α may distinctively affect the binding sites to permeants in astroglial Cx43 hemichannels rather than their number in the cell surface. Alternatively, IL-1β plus TNF-α could induce the production of endogenous permeants that may favor or compete for in the pore-lining residues of Cx43 hemichannels. Future studies shall elucidate whether the differential ionic/molecule permeation of Cx43 hemichannels in astrocytes could impact their communication with neurons in the normal and inflamed nervous system.
Collapse
Affiliation(s)
- Juan C. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.C.S.); (D.E.H.)
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - Aníbal A. Vargas
- Instituto de Ciencias de la Salud, Universidad de O′Higgins, Rancagua 2820000, Chile;
| | - Diego E. Hernández
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.C.S.); (D.E.H.)
| | - Fernando C. Ortiz
- Mechanisms on Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France;
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Correspondence: ; Tel.: +56-2-968399128
| |
Collapse
|
43
|
Price GW, Chadjichristos CE, Kavvadas P, Tang SCW, Yiu WH, Green CR, Potter JA, Siamantouras E, Squires PE, Hills CE. Blocking Connexin-43 mediated hemichannel activity protects against early tubular injury in experimental chronic kidney disease. Cell Commun Signal 2020; 18:79. [PMID: 32450899 PMCID: PMC7249671 DOI: 10.1186/s12964-020-00558-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tubulointerstitial fibrosis represents the key underlying pathology of Chronic Kidney Disease (CKD), yet treatment options remain limited. In this study, we investigated the role of connexin43 (Cx43) hemichannel-mediated adenosine triphosphate (ATP) release in purinergic-mediated disassembly of adherens and tight junction complexes in early tubular injury. METHODS Human primary proximal tubule epithelial cells (hPTECs) and clonal tubular epithelial cells (HK2) were treated with Transforming Growth Factor Beta1 (TGF-β1) ± apyrase, or ATPγS for 48 h. For inhibitor studies, cells were co-incubated with Cx43 mimetic Peptide 5, or purinergic receptor antagonists Suramin, A438079 or A804598. Immunoblotting, single-cell force spectroscopy and trans-epithelial electrical resistance assessed protein expression, cell-cell adhesion and paracellular permeability. Carboxyfluorescein uptake and biosensing measured hemichannel activity and real-time ATP release, whilst a heterozygous Cx43+/- mouse model with unilateral ureteral obstruction (UUO) assessed the role of Cx43 in vivo. RESULTS Immunohistochemistry of biopsy material from patients with diabetic nephropathy confirmed increased expression of purinergic receptor P2X7. TGF-β1 increased Cx43 mediated hemichannel activity and ATP release in hPTECs and HK2 cells. The cytokine reduced maximum unbinding forces and reduced cell-cell adhesion, which translated to increased paracellular permeability. Changes were reversed when cells were co-incubated with either Peptide 5 or P2-purinoceptor inhibitors. Cx43+/- mice did not exhibit protein changes associated with early tubular injury in a UUO model of fibrosis. CONCLUSION Data suggest that Cx43 mediated ATP release represents an initial trigger in early tubular injury via its actions on the adherens and tight junction complex. Since Cx43 is highly expressed in nephropathy, it represents a novel target for intervention of tubulointerstitial fibrosis in CKD. Video Abstract In proximal tubular epithelial cells (PTECs), tight junction proteins, including zona occuludens-1 (ZO-1), contribute to epithelial integrity, whilst the adherens junction protein epithelial (E)-cadherin (ECAD) maintains cell-cell coupling, facilitating connexin 43 (Cx43) gap junction-mediated intercellular communication (GJIC) and the direct transfer of small molecules and ions between cells. In disease, such as diabetic nephropathy, the pro-fibrotic cytokine transforming growth factor beta1 (TGF-β1) binds to its receptor and recruits SMAD2/3 signalling ahead of changes in gene transcription and up-regulation of Cx43-mediated hemichannels (HC). Uncoupled hemichannels permit the release of adenosine triphosphate (ATP) in to the extracellular space (↑[ATP]e), where ATP binds to the P2X7 purinoreceptor and activates the nucleotide-binding domain and leucine-rich repeat containing (NLR) protein-3 (NLRP3) inflammasome. Inflammation results in epithelial-to-mesenchymal transition (EMT), fibrosis and tubular injury. A major consequence is further loss of ECAD and reduced stickiness between cells, which can be functionally measured as a decrease in the maximum unbinding force needed to uncouple two adherent cells (Fmax). Loss of ECAD feeds forward to further lessen cell-cell coupling exacerbating the switch from GJIC to HC-mediated release of ATP. Reduction in ZO-1 impedes tight junction effectiveness and decreases trans-epithelial resistance (↓TER), resulting in increased paracellular permeability.
Collapse
Affiliation(s)
- Gareth W. Price
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Green Lane, Lincoln, UK
| | - Christos E. Chadjichristos
- National Institutes for Health and Medical Research Unite Mixte de Recherche S1155, Batiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020 Paris, France
| | - Panagiotis Kavvadas
- National Institutes for Health and Medical Research Unite Mixte de Recherche S1155, Batiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020 Paris, France
| | - Sydney C. W. Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Colin R. Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Joe A. Potter
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Green Lane, Lincoln, UK
| | - Eleftherios Siamantouras
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Green Lane, Lincoln, UK
| | - Paul E. Squires
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Green Lane, Lincoln, UK
| | - Claire E. Hills
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Green Lane, Lincoln, UK
| |
Collapse
|
44
|
Price GW, Potter JA, Williams BM, Cliff CL, Squires PE, Hills CE. Connexin-mediated cell communication in the kidney: A potential therapeutic target for future intervention of diabetic kidney disease?: Joan Mott Prize Lecture. Exp Physiol 2020; 105:219-229. [PMID: 31785013 DOI: 10.1113/ep087770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
The ability of cells to communicate and synchronise their activity is essential for the maintenance of tissue structure, integrity and function. A family of membrane-bound proteins called connexins are largely responsible for mediating the local transfer of information between cells. Assembled in the cell membrane as a hexameric connexon, they either function as a conduit for paracrine signalling, forming a transmembrane hemi-channel, or, if aligned with connexons on neighbouring cells, form a continuous aqueous pore or gap junction, which allows for the direct transmission of metabolic and electrical signals. Regulation of connexin synthesis and activity is critical to cellular function, and a number of diseases are attributed to changes in the expression and/or function of these important proteins. A link between hyperglycaemia, connexin expression, altered nucleotide concentrations and impaired function highlights a potential role for connexin-mediated cell communication in complications of diabetes. In the diabetic kidney, glycaemic injury is the leading cause of end-stage renal failure, reflecting multiple aetiologies including glomerular hyperfiltration, albuminuria, increased deposition of extracellular matrix and tubulointerstitial fibrosis. Loss of connexin-mediated cell-to-cell communication in diabetic nephropathy may represent an early sign of disease progression, but our understanding of the process remains severely limited. This review focuses on recent evidence demonstrating that glucose-evoked changes in connexin-mediated cell communication and associated purinergic signalling may contribute to the pathogenesis of kidney disease in diabetes, highlighting the tantalising potential of targeting these proteins as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Gareth W Price
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Joe A Potter
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Bethany M Williams
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Chelsy L Cliff
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Paul E Squires
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Claire E Hills
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| |
Collapse
|
45
|
Mugisho OO, Rupenthal ID, Paquet-Durand F, Acosta ML, Green CR. Targeting connexin hemichannels to control the inflammasome: the correlation between connexin43 and NLRP3 expression in chronic eye disease. Expert Opin Ther Targets 2019; 23:855-863. [PMID: 31554417 DOI: 10.1080/14728222.2019.1673368] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Chronic inflammatory diseases, including retinal diseases that are a major cause of vision loss, are associated with activation of the nucleotide-binding domain and leucine-rich repeat containing (NLR) protein-3 (NLRP3) inflammasome pathway. In chronic disease, the inflammasome becomes self-perpetuating, indicating a common pathway in such diseases irrespective of underlying etiology, and implying a shared solution is feasible. Connexin43 hemichannels correlate directly with NLRP3 inflammasome complex assembly (shown here in models of retinal disease). Connexin43 hemichannel-mediated ATP release is proposed to be the principal activator signal for inflammasome complex assembly in primary signal-sensitized cells. Connexin hemichannel block on its own is sufficient to inhibit the inflammasome pathway. Areas covered: We introduce chronic retinal disease, discuss available preclinical models and examine findings from these models regarding the targeting of connexin43 hemichannels and its effects on the inflammasome. Expert opinion: In over 25 animal disease models, connexin hemichannel regulation has shown therapeutic benefit, and one oral connexin hemichannel blocker, tonabersat (Xiflam), is Phase II ready with safety evidence in over 1000 patients. Regulating the connexin hemichannel provides a means to move quickly into clinical trials designed to ameliorate the progression of devastating chronic diseases of the eye, but also elsewhere in the body.
Collapse
Affiliation(s)
- Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland , New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland , New Zealand
| | - Francois Paquet-Durand
- Cell Death Mechanisms Lab, Institute for Ophthalmic Research, University of Tübingen , Tübingen , Germany
| | - Monica L Acosta
- School of Optometry and Vision Science and the New Zealand National Eye Centre, University of Auckland , Auckland , New Zealand
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland , Auckland , New Zealand
| |
Collapse
|