1
|
ElSayed NA, McCoy RG, Aleppo G, Bajaj M, Balapattabi K, Beverly EA, Briggs Early K, Bruemmer D, Echouffo-Tcheugui JB, Ekhlaspour L, Gaglia JL, Garg R, Girotra M, Khunti K, Lal R, Lingvay I, Matfin G, Neumiller JJ, Pandya N, Pekas EJ, Pilla SJ, Polsky S, Segal AR, Seley JJ, Stanton RC, Bannuru RR. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2025. Diabetes Care 2025; 48:S181-S206. [PMID: 39651989 PMCID: PMC11635045 DOI: 10.2337/dc25-s009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
2
|
Chen B, Shen C, Sun B. Current landscape and comprehensive management of glycemic variability in diabetic retinopathy. J Transl Med 2024; 22:700. [PMID: 39075573 PMCID: PMC11287919 DOI: 10.1186/s12967-024-05516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Diabetic retinopathy (DR), a well-known microvascular complication of diabetes mellitus, remains the main cause of vision loss in working-age adults worldwide. Up to now, there is a shortage of information in the study regarding the contributing factors of DR in diabetes. Accumulating evidence has identified glycemic variability (GV), referred to fluctuations of blood glucose levels, as a risk factor for diabetes-related complications. Recent reports demonstrate that GV plays an important role in accounting for the susceptibility to DR development. However, its exact role in the pathogenesis of DR is still not fully understood. In this review, we highlight the current landscape and relevant mechanisms of GV in DR, as well as address the mechanism-based therapeutic strategies, aiming at better improving the quality of DR management in clinical practice.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pharmacy, The Central Hospital of Yongzhou, Yongzhou, China
| | - Chaozan Shen
- Department of Clinical Pharmacy, The Second People's Hospital of Huaihua, Lulin Road, Huaihua, Hunan, 418000, China.
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
| |
Collapse
|
3
|
Aung NL. A1C: Episode 3. Clin Diabetes 2024; 42:448-451. [PMID: 39015166 PMCID: PMC11247035 DOI: 10.2337/cd24-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
|
4
|
Kueh MTW, Chew NWS, Al-Ozairi E, le Roux CW. The emergence of obesity in type 1 diabetes. Int J Obes (Lond) 2024; 48:289-301. [PMID: 38092958 PMCID: PMC10896727 DOI: 10.1038/s41366-023-01429-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 02/28/2024]
Abstract
Obesity, a chronic low-grade inflammatory disease represented by multifactorial metabolic dysfunctions, is a significant global health threat for adults and children. The once-held belief that type 1 diabetes is a disease of people who are lean no longer holds. The mounting epidemiological data now establishes the connection between type 1 diabetes and the subsequent development of obesity, or vice versa. Beyond the consequences of the influx of an obesogenic environment, type 1 diabetes-specific biopsychosocial burden further exacerbates obesity. In the course of obesity management discussions, recurring challenges surfaced. The interplay between weight gain and escalating insulin dependence creates a vicious cycle from which patients struggle to break free. In the absence of weight management guidelines and regulatory approval for this population, healthcare professionals must navigate the delicate balance between benefits and risks. The gravity of this circumstance highlights the importance of bringing these topics to the forefront. In this Review, we discuss the changing trends and the biopsychosocial aspects of the intersection between type 1 diabetes and obesity. We highlight the evidence supporting the therapeutic means (i.e., exercise therapy, nutritional therapy, adjunct pharmacotherapy, and bariatric surgery) and directions for establishing a more robust and safer evidence-based approach.
Collapse
Affiliation(s)
- Martin T W Kueh
- UCD School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
- Royal College of Surgeons in Ireland & University College Dublin Malaysia Campus, Dublin, Malaysia.
| | - Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore
| | - Ebaa Al-Ozairi
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Medicine, College of Medicine, Jabriya, Kuwait
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland.
| |
Collapse
|
5
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Gaglia JL, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Gabbay RA. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S158-S178. [PMID: 38078590 PMCID: PMC10725810 DOI: 10.2337/dc24-s009] [Citation(s) in RCA: 265] [Impact Index Per Article: 265.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
6
|
Forner P, Snaith J, Greenfield JR. Prescribing patterns of adjunctive therapy for the treatment of type 1 diabetes mellitus among Australian endocrinologists. Intern Med J 2023. [PMID: 38158765 DOI: 10.1111/imj.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Many people living with type 1 diabetes (type 1 diabetes mellitus (T1DM)) do not meet glycaemic targets. Adjunctive therapies have both risks and metabolic benefits and may have a role in selected patients. AIM To review the prescribing patterns of adjunctive therapy for the treatment of T1DM diabetes in Australia. METHODS We conducted an online survey of Australian endocrinologists and endocrinology registrars. We surveyed the frequency of, motivations and concerns regarding the prescription of metformin, dipeptidyl peptidase-4 (DPP-IV) inhibitors, sodium-glucose transport protein 2 (SGLT-2) inhibitors and glucagon-like peptide 1 receptor agonist (GLP1RA) in T1DM. RESULTS Fifty-two practitioners participated. Most respondents (94%) had prescribed adjuncts for the treatment of T1DM in some form. Weight (89%), large insulin doses (73%), glycaemic variability (52%), high HbA1c (48%) and the presence of cardiovascular disease (48%) were the most common factors determining the use of adjuncts. The most commonly prescribed adjuncts were metformin (94%) and SGLT-2 inhibitors (65%). Respondents who had never prescribed an SGLT-2 inhibitor (n = 18) reported risk of diabetic ketoacidosis (DKA) (100%), off-label status (39%), lack of evidence (39%), withdrawal of support from the European Medicines Agency (17%) and cost (17%) as factors contributing to their decision. Thirty-one respondents (60%) had prescribed a GLP1RA. Among those who had never prescribed a GLP1RA (n = 21), off-label status (57%), lack of evidence (48%), cost (38%) and expected lack of efficacy (14%) were factors affecting their decision. Only five respondents (10%) had prescribed a DPP-IV inhibitor. CONCLUSION Australian endocrinologists commonly prescribe adjuncts to address cardiometabolic concerns in T1DM. DKA risk and off-label status are significant factors contributing to reluctance to prescribe.
Collapse
Affiliation(s)
- Patrice Forner
- Department of Diabetes and Endocrinology, St Vincent's Hospital, Sydney, New South Wales, Australia
- St Vincent's Healthcare Campus, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Jennifer Snaith
- Department of Diabetes and Endocrinology, St Vincent's Hospital, Sydney, New South Wales, Australia
- St Vincent's Healthcare Campus, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Clinical Diabetes, Appetite and Metabolism, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Jerry R Greenfield
- Department of Diabetes and Endocrinology, St Vincent's Hospital, Sydney, New South Wales, Australia
- St Vincent's Healthcare Campus, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Clinical Diabetes, Appetite and Metabolism, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Rodrigues EA, Rosa CM, Campos DHS, Damatto FC, Murata GM, Souza LM, Pagan LU, Gatto M, Brosler JY, Souza HOA, Martins MM, Bastos LM, Tanni SE, Okoshi K, Okoshi MP. The influence of dapagliflozin on cardiac remodeling, myocardial function and metabolomics in type 1 diabetes mellitus rats. Diabetol Metab Syndr 2023; 15:223. [PMID: 37908006 PMCID: PMC10617150 DOI: 10.1186/s13098-023-01196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Sodium-glucose cotransporter (SGLT)2 inhibitors have displayed beneficial effects on the cardiovascular system in diabetes mellitus (DM) patients. As most clinical trials were performed in Type 2 DM, their effects in Type 1 DM have not been established. OBJECTIVE To evaluate the influence of long-term treatment with SGLT2 inhibitor dapagliflozin on cardiac remodeling, myocardial function, energy metabolism, and metabolomics in rats with Type 1 DM. METHODS Male Wistar rats were divided into groups: Control (C, n = 15); DM (n = 15); and DM treated with dapagliflozin (DM + DAPA, n = 15) for 30 weeks. DM was induced by streptozotocin. Dapagliflozin 5 mg/kg/day was added to chow. STATISTICAL ANALYSIS ANOVA and Tukey or Kruskal-Wallis and Dunn. RESULTS DM + DAPA presented lower glycemia and higher body weight than DM. Echocardiogram showed DM with left atrium dilation and left ventricular (LV) hypertrophy, dilation, and systolic and diastolic dysfunction. In LV isolated papillary muscles, DM had reduced developed tension, +dT/dt and -dT/dt in basal condition and after inotropic stimulation. All functional changes were attenuated by dapagliflozin. Hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) activity was lower in DM than C, and PFK and PK activity higher in DM + DAPA than DM. Metabolomics revealed 21 and 5 metabolites positively regulated in DM vs. C and DM + DAPA vs. DM, respectively; 6 and 3 metabolites were negatively regulated in DM vs. C and DM + DAPA vs. DM, respectively. Five metabolites that participate in cell membrane ultrastructure were higher in DM than C. Metabolites levels of N-oleoyl glutamic acid, chlorocresol and N-oleoyl-L-serine were lower and phosphatidylethanolamine and ceramide higher in DM + DAPA than DM. CONCLUSION Long-term treatment with dapagliflozin attenuates cardiac remodeling, myocardial dysfunction, and contractile reserve impairment in Type 1 diabetic rats. The functional improvement is combined with restored pyruvate kinase and phosphofructokinase activity and attenuated metabolomics changes.
Collapse
Affiliation(s)
- Eder Anderson Rodrigues
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Camila Moreno Rosa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Dijon Henrique Salome Campos
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Felipe Cesar Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Gilson Masahiro Murata
- LIM29, Division of Nephrology, Medical School, University of Sao Paulo, USP, Sao Paulo, SP, Brazil
| | - Lidiane Moreira Souza
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luana Urbano Pagan
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mariana Gatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Jessica Yumi Brosler
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Hebreia Oliveira Almeida Souza
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mario Machado Martins
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Luciana Machado Bastos
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Suzana Erico Tanni
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marina Politi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
8
|
Tatovic D, Narendran P, Dayan CM. A perspective on treating type 1 diabetes mellitus before insulin is needed. Nat Rev Endocrinol 2023; 19:361-370. [PMID: 36914759 DOI: 10.1038/s41574-023-00816-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a progressive autoimmune disease that starts long before a clinical diagnosis is made. The American Diabetes Association recognizes three stages: stage 1 (normoglycaemic and positive for autoantibodies to β-cell antigens); stage 2 (asymptomatic with dysglycaemia); and stage 3, which is defined by glucose levels consistent with the definition of diabetes mellitus. This Perspective focuses on the management of the proportion of individuals with early stage 3 T1DM who do not immediately require insulin; a stage we propose should be termed stage 3a. To date, this period of non-insulin-dependent T1DM has been largely unrecognized. Importantly, it represents a window of opportunity for intervention, as remaining at this stage might delay the need for insulin by months or years. Extending the insulin-free period and/or avoiding unnecessary insulin therapy are important goals, as there is no risk of hypoglycaemia during this period and the adherence burden on patients of glycaemic monitoring and daily adjustments for diet and exercise is substantially reduced. Recognizing the pressing need for guidance on adequate management of children and adults with stage 3a T1DM, we present our perspective on the subject, which needs to be tested in formal and adequately powered clinical trials.
Collapse
Affiliation(s)
- Danijela Tatovic
- Diabetes Research Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Parth Narendran
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Colin M Dayan
- Diabetes Research Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| |
Collapse
|
9
|
Lupsa BC, Kibbey RG, Inzucchi SE. Ketones: the double-edged sword of SGLT2 inhibitors? Diabetologia 2023; 66:23-32. [PMID: 36255460 DOI: 10.1007/s00125-022-05815-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of medications used by individuals with type 2 diabetes that reduce hyperglycaemia by targeting glucose transport in the kidney, preventing its reabsorption, thereby inducing glucosuria. Besides improving HbA1c and reducing body weight and blood pressure, the SGLT2 inhibitors have also been demonstrated to improve cardiovascular and kidney outcomes, an effect largely independent of their effect on blood glucose levels. Indeed, the mechanisms underlying these benefits remain elusive. Treatment with SGLT2 inhibitors has been found to modestly increase systemic ketone levels. Ketone bodies are an ancillary fuel source substituting for glucose in some tissues and may also possess intrinsic anti-oxidative and anti-inflammatory effects. Some have proposed that ketones may in fact mediate the cardio-renal benefits of this drug category. However, a rare complication of SGLT2 inhibition is ketoacidosis, sometimes with normal or near-normal blood glucose concentrations, albeit occurring more frequently in patients with type 1 diabetes who are treated (predominately off-label) with one of these agents. We herein explore the notion that an underpinning of one of the more serious adverse effects of SGLT2 inhibitors may, in fact, explain, at least in part, some of their benefits-a potential 'double-edged sword' of this novel drug category.
Collapse
Affiliation(s)
- Beatrice C Lupsa
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, CT, USA.
| | - Richard G Kibbey
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Silvio E Inzucchi
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Rosa CM, Campos DHS, Reyes DRA, Damatto FC, Kurosaki LY, Pagan LU, Gomes MJ, Corrêa CR, Fernandes AAH, Okoshi MP, Okoshi K. Effects of the SGLT2 Inhibition on Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats, a Model of Type 1 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:982. [PMID: 35624845 PMCID: PMC9137562 DOI: 10.3390/antiox11050982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023] Open
Abstract
Clinical trials have shown that sodium glucose co-transporter 2 (SGLT2) inhibitors improve clinical outcomes in diabetes mellitus (DM) patients. As most studies were performed in Type 2 DM, the cardiovascular effects of SGLT2 inhibition still require clarification in Type 1 DM. We analyzed the effects of SGLT2 inhibitor dapagliflozin on cardiac remodeling in rats with streptozotocin-induced diabetes, an experimental model of Type 1 DM. Methods: Male Wistar rats were assigned into four groups: control (C, n = 14); control treated with dapagliflozin (C + DAPA, n = 14); diabetes (DM, n = 20); and diabetes treated with dapagliflozin (DM + DAPA, n = 20) for 8 weeks. Dapagliflozin dosage was 5 mg/kg/day. Statistical analyses: ANOVA and Tukey or Kruskal−Wallis and Dunn. Results: DM + DAPA presented decreased blood pressure and glycemia and increased body weight compared to DM (C 507 ± 52; C + DAPA 474 ± 50; DM 381 ± 52 *; DM + DAPA 430 ± 48 # g; * p < 0.05 vs. C; # p < 0.05 vs. C + DAPA and DM + DAPA). DM echocardiogram presented left ventricular and left atrium dilation with impaired systolic and diastolic function. Cardiac changes were attenuated by dapagliflozin. Myocardial hydroxyproline concentration and interstitial collagen fraction did not differ between groups. The expression of Type III collagen was lower in DM and DM + DAPA than their controls. Type I collagen expression and Type I-to-III collagen ratio were lower in DM + DAPA than C + DAPA. DM + DAPA had lower lipid hydroperoxide concentration (C 275 ± 42; C + DAPA 299 ± 50; DM 385 ± 54 *; DM + DAPA 304 ± 40 # nmol/g tissue; * p < 0.05 vs. C; # p < 0.05 vs. DM) and higher superoxide dismutase and glutathione peroxidase activity than DM. Advanced glycation end products did not differ between groups. Conclusion: Dapagliflozin is safe, increases body weight, decreases glycemia and oxidative stress, and attenuates cardiac remodeling in an experimental rat model of Type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Camila Moreno Rosa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Dijon Henrique Salome Campos
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - David Rafael Abreu Reyes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Felipe Cesar Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Lucas Yamada Kurosaki
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Luana Urbano Pagan
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | | | - Camila Renata Corrêa
- Department of Pathology, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-689, SP, Brazil;
| | - Ana Angelica Henrique Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences, Sao Paulo State University, UNESP, Botucatu 18618-970, SP, Brazil;
| | - Marina Politi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.M.R.); (D.H.S.C.); (D.R.A.R.); (F.C.D.); (L.Y.K.); (L.U.P.); (M.P.O.)
| |
Collapse
|
11
|
Seufert J, Lanzinger S, Danne T, Bramlage P, Schmid SM, Kopp F, Kress S, Fasching P, Schäfer C, Holl RW. Real-world data of 12-month adjunct sodium-glucose co-transporter-2 inhibitor treatment in type 1 diabetes from the German/Austrian DPV registry: Improved HbA1c without diabetic ketoacidosis. Diabetes Obes Metab 2022; 24:742-746. [PMID: 34897941 DOI: 10.1111/dom.14620] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022]
Affiliation(s)
- Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefanie Lanzinger
- Institute for Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Thomas Danne
- Diabetes Center for Children and Adolescents, Kinder- und Jugendkrankenhaus AUF DER BULT, Hannover, Germany
| | - Peter Bramlage
- Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany
| | - Sebastian M Schmid
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| | - Florian Kopp
- Diabetes Center, Augsburg Clinical Center, Augsburg, Germany
| | - Stephan Kress
- Medical Clinic I, Diabetes Center, Vinzentius-Hospital, Landau, Germany
| | - Peter Fasching
- Medical Division for Endocrinology, Rheumatology and Acute Geriatrics, Wilhelminen Hospital Vienna, Vienna, Austria
| | - Claus Schäfer
- Medical Clinic II, Klinikum Neumarkt, Neumarkt i.d. OPf., Neumarkt, Germany
| | - Reinhard W Holl
- Institute for Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
12
|
Affiliation(s)
- Revital Nimri
- Diabetes Technology Center, Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Phillip
- Diabetes Technology Center, Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boris Kovatchev
- University of Virginia Center for Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
13
|
Abstract
Sodium glucose cotransporter 2 (SGLT-2) inhibitors are the latest class of antidiabetic medications. They prevent glucose reabsorption in the proximal convoluted tubule to decrease blood sugar. Several animal studies revealed that SGLT-2 is profoundly involved in the inflammatory response, fibrogenesis, and regulation of numerous intracellular signaling pathways. Likewise, SGLT-2 inhibitors markedly attenuated inflammation and fibrogenesis and improved the function of damaged organ in animal studies, observational studies, and clinical trials. SGLT-2 inhibitors can decrease blood pressure and ameliorate hypertriglyceridemia and obesity. Likewise, they improve the outcome of cardiovascular diseases such as heart failure, arrhythmias, and ischemic heart disease. SGLT-2 inhibitors are associated with lower cardiovascular and all-cause mortality as well. Meanwhile, they protect against nonalcoholic fatty liver disease (NAFLD), chronic kidney disease, acute kidney injury, and improve micro- and macroalbuminuria. SGLT-2 inhibitors can reprogram numerous signaling pathways to improve NAFLD, cardiovascular diseases, and renal diseases. For instance, they enhance lipolysis, ketogenesis, mitochondrial biogenesis, and autophagy while they attenuate the renin-angiotensin-aldosterone system, lipogenesis, endoplasmic reticulum stress, oxidative stress, apoptosis, and fibrogenesis. This review explains the beneficial effects of SGLT-2 inhibitors on NAFLD and cardiovascular and renal diseases and dissects the underlying molecular mechanisms in detail. This narrative review explains the beneficial effects of SGLT-2 inhibitors on NAFLD and cardiovascular and renal diseases using the results of latest observational studies, clinical trials, and meta-analyses. Thereafter, it dissects the underlying molecular mechanisms involved in the clinical effects of SGLT-2 inhibitors on these diseases.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
14
|
Pintaudi B, Scatena A, Piscitelli G, Frison V, Corrao S, Manicardi V, Graziano G, Chiara Rossi M, Gallo M, Mannino D, Nicolucci A, Di Bartolo P. Clinical profiles and quality of care of adults with type 1 diabetes according to their cardiovascular Risk: A Multicenter, Observational, retrospective study. Diabetes Res Clin Pract 2021; 182:109131. [PMID: 34762997 DOI: 10.1016/j.diabres.2021.109131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022]
Abstract
AIMS The European Society of Cardiology (ESC) recently defined cardiovascular risk classes for subjects with diabetes. Aim of this study was to explore the distribution of subjects with type 1 diabetes (T1D) by cardiovascular risk groups according to the ESC classification and to describe the quality indicators of care. METHODS The study is based on data extracted from electronic medical records of patients treated at the 258 Italian diabetes centers participating in the AMD (Associazione Medici Diabetologi) Annals initiative. Patients with T1D were stratified by cardiovascular risk. Measures of intermediate outcomes, intensity/appropriateness of pharmacological treatment, and overall quality of care were evaluated. RESULTS Overall, 29.368 subjects with type 1 diabetes (64.7% at very high cardiovascular risk, 28.5% at high risk and 6.8% at moderate risk) were evaluated. A lack of use of drugs in case of high values and an inadequate control despite the antihypertensive and lipid-lowering treatment was recognized. The overall quality of care tended to be lower as the level of cardiovascular risk increased. CONCLUSION A large proportion of subjects with T1D is at high or very high risk. Antihypertensive and lipid-lowering treatment seem not adequately used. Several actions are necessary to improve the quality of care.
Collapse
Affiliation(s)
| | | | | | - Vera Frison
- Internal Medicine and Diabetology Service, ULSS6, Cittadella, Italy
| | - Salvatore Corrao
- Department of Internal Medicine, ARNAS Civico Benfratelli Hospital, University of Palermo, Palermo, Italy
| | - Valeria Manicardi
- Diabetes Clinic, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Giusi Graziano
- Center for Outcomes Research and Clinical Epidemiology, CORESEARCH, Pescara, Italy
| | - Maria Chiara Rossi
- Center for Outcomes Research and Clinical Epidemiology, CORESEARCH, Pescara, Italy
| | - Marco Gallo
- AOU Città Della Salute E Della Scienza, Molinette Hospital, Torino, Italy
| | | | - Antonio Nicolucci
- Center for Outcomes Research and Clinical Epidemiology, CORESEARCH, Pescara, Italy.
| | | |
Collapse
|