1
|
Scholpp S, Hoffmann L, Schätzlein E, Gries T, Emonts C, Blaeser A. Interlacing biology and engineering: An introduction to textiles and their application in tissue engineering. Mater Today Bio 2025; 31:101617. [PMID: 40124339 PMCID: PMC11926717 DOI: 10.1016/j.mtbio.2025.101617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Tissue engineering (TE) aims to provide personalized solutions for tissue loss caused by trauma, tumors, or congenital defects. While traditional methods like autologous and homologous tissue transplants face challenges such as donor shortages and risk of donor site morbidity, TE provides a viable alternative using scaffolds, cells, and biologically active molecules. Textiles represent a promising scaffold option for both in-vitro and in-situ TE applications. Textile engineering is a broad field and can be divided into fiber-based textiles and yarn-based textiles. In fiber-based textiles the textile fabric is produced in the same step as the fibers (e.g. non-wovens, electrospun mats and 3D-printed). For yarn-based textiles, yarns are produced from fibers or filaments first and then, a textile fabric is produced (e.g. woven, weft-knitted, warp-knitted and braided fabrics). The selection of textile scaffold technology depends on the target tissue, mechanical requirements, and fabrication methods, with each approach offering distinct advantages. Braided scaffolds, with their high tensile strength, are ideal for load-bearing tissues like tendons and ligaments, while their ability to form stable hollow lumens makes them suitable for vascular applications. Weaving, weft-, and warp-knitting provide tunable structural properties, with warp-knitting offering the greatest design flexibility. Spacer fabrics enable complex 3D architecture, benefiting applications such as skin grafts and multilayered tissues. Electrospinning, though highly effective in mimicking the ECM, is structurally limited. The complex interactions between materials, fiber properties, and textile technologies allows for scaffolds with a wide range of morphological and mechanical characteristics (e.g., tensile strength of woven textiles ranging from 0.64 to 180.4 N/mm2). With in-depth knowledge, textiles can be tailored to obtain specific mechanical properties as accurately as possible and aid the formation of functional tissue. However, as textile structures inherently differ from biological tissues, careful optimization is required to enhance cell behavior, mechanical performance, and clinical applicability. This review is intended for TE experts interested in using textiles as scaffolds and provides a detailed analysis of the available options, their characteristics and known applications. For this, first the major fiber formation methods are introduced, then subsequent used automated textile technologies are presented, highlighting their strengths and limitations. Finally, we analyze how these textile and fiber structures are utilized in TE, organized by the use of textiles in TE across major organ systems, including the nervous, skin, cardiovascular, respiratory, urinary, digestive, and musculoskeletal systems.
Collapse
Affiliation(s)
- S. Scholpp
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - L.A. Hoffmann
- Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - E. Schätzlein
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - T. Gries
- Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - C. Emonts
- Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - A. Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
2
|
Almeida GHDR, da Silva-Júnior LN, Gibin MS, Dos Santos H, de Oliveira Horvath-Pereira B, Pinho LBM, Baesso ML, Sato F, Hernandes L, Long CR, Relly L, Miglino MA, Carreira ACO. Perfusion and Ultrasonication Produce a Decellularized Porcine Whole-Ovary Scaffold with a Preserved Microarchitecture. Cells 2023; 12:1864. [PMID: 37508528 PMCID: PMC10378497 DOI: 10.3390/cells12141864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 07/30/2023] Open
Abstract
The application of decellularized scaffolds for artificial tissue reconstruction has been an approach with great therapeutic potential in regenerative medicine. Recently, biomimetic ovarian tissue reconstruction was proposed to reestablish ovarian endocrine functions. Despite many decellularization methods proposed, there is no established protocol for whole ovaries by detergent perfusion that is able to preserve tissue macro and microstructure with higher efficiency. This generated biomaterial may have the potential to be applied for other purposes beyond reproduction and be translated to other areas in the tissue engineering field. Therefore, this study aimed to establish and standardize a protocol for porcine ovaries' decellularization based on detergent perfusion and ultrasonication to obtain functional whole-ovary scaffolds. For that, porcine ovaries (n = 5) were perfused with detergents (0.5% SDS and 1% Triton X-100) and submitted to an ultrasonication bath to produce acellular scaffolds. The decellularization efficiency was evaluated by DAPI staining and total genomic DNA quantification. ECM morphological evaluation was performed by histological, immunohistochemistry, and ultrastructural analyses. ECM physico-chemical composition was evaluated using FTIR and Raman spectroscopy. A cytocompatibility and cell adhesion assay using murine fibroblasts was performed. Results showed that the proposed method was able to remove cellular components efficiently. There was no significant ECM component loss in relation to native tissue, and the scaffolds were cytocompatible and allowed cell attachment. In conclusion, the proposed decellularization protocol produced whole-ovaries scaffolds with preserved ECM composition and great potential for application in tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Henrique Dos Santos
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil
| | | | - Leticia Beatriz Mazo Pinho
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | | | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringa, Maringá 87020-900, Brazil
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Luciana Relly
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
3
|
Almeida GHDR, Iglesia RP, Rinaldi JDC, Murai MK, Calomeno CVAQ, da Silva Junior LN, Horvath-Pereira BDO, Pinho LBM, Miglino MA, Carreira ACO. Current Trends on Bioengineering Approaches for Ovarian Microenvironment Reconstruction. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36355603 DOI: 10.1089/ten.teb.2022.0171] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ovarian tissue has a unique microarchitecture and a complex cellular and molecular dynamics that are essential for follicular survival and development. Due to this great complexity, several factors may lead to ovarian insufficiency, and therefore to systemic metabolic disorders and female infertility. Techniques currently used in the reproductive clinic such as oocyte cryopreservation or even ovarian tissue transplant, although effective, have several limitations, which impair their wide application. In this scenario, mimetic ovarian tissue reconstruction comes as an innovative alternative to develop new methodologies for germ cells preservation and ovarian functions restoration. The ovarian extracellular matrix (ECM) is crucial for oocyte viability maintenance, once it acts actively in folliculogenesis. One of the key components of ovarian bioengineering is biomaterials application that mimics ECM and provides conditions for cell anchorage, proliferation, and differentiation. Therefore, this review aims at describing ovarian tissue engineering approaches and listing the main limitations of current methods for preservation and reestablishment of ovarian fertility. In addition, we describe the main elements that structure this study field, highlighting the main advances and the challenges to overcome to develop innovative methodologies to be applied in reproductive medicine. Impact Statement This review presents the main advances in the application of tissue bioengineering in the ovarian tissue reconstruction to develop innovative solutions for ovarian fertility reestablishment.
Collapse
Affiliation(s)
| | - Rebeca Piatniczka Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Mikaelly Kiemy Murai
- Department of Morphological Sciences, State University of Maringa, Maringá, Brazil
| | | | | | | | - Letícia Beatriz Mazo Pinho
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Center of Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
4
|
Toprakhisar B, Verfaillie CM, Kumar M. Advances in Recellularization of Decellularized Liver Grafts with Different Liver (Stem) Cells: Towards Clinical Applications. Cells 2023; 12:301. [PMID: 36672236 PMCID: PMC9856398 DOI: 10.3390/cells12020301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Liver transplantation is currently the only curative therapy for patients with acute or chronic liver failure. However, a dramatic gap between the number of available liver grafts and the number of patients on the transplantation waiting list emphasizes the need for valid liver substitutes. Whole-organ engineering is an emerging field of tissue engineering and regenerative medicine. It aims to generate transplantable and functional organs to support patients on transplantation waiting lists until a graft becomes available. It comprises two base technologies developed in the last decade; (1) organ decellularization to generate a three-dimensional (3D) extracellular matrix scaffold of an organ, and (2) scaffold recellularization to repopulate both the parenchymal and vascular compartments of a decellularized organ. In this review article, recent advancements in both technologies, in relation to liver whole-organ engineering, are presented. We address the potential sources of hepatocytes and non-parenchymal liver cells for repopulation studies, and the role of stem-cell-derived liver progeny is discussed. In addition, different cell seeding strategies, possible graft modifications, and methods used to evaluate the functionality of recellularized liver grafts are outlined. Based on the knowledge gathered from recent transplantation studies, future directions are summarized.
Collapse
Affiliation(s)
- Burak Toprakhisar
- Stem Cell Institute, Department of Stem Cell and Developmental Biology, KU Leuven, 3000 Leuven, Belgium
| | | | | |
Collapse
|
5
|
Wang P, Xiao S, Fu W, Wang Z, Zhang X. A Preliminary Study on the Promotion of Canine Adipose-Derived Stem Cell Differentiation by Perfusion-Decellularized Ureter Matrix. Transplant Proc 2021; 53:2052-2059. [PMID: 34247859 DOI: 10.1016/j.transproceed.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/10/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND This study was to assess the possibility of the perfusing decellularized ureters (DUs) promoting the differentiation of the canine adipose stem cell (cASCs). METHODS cASCs were isolated and cultured in different induction media to determine their multidirectional differentiation potential. The perfusion system was used to prepare the DUs, and the prepared DUs were systematically evaluated. The DU coating was prepared by enzymatic digestion for cell culture. The cASCs were seeded on the coverslips covered with DU coating and samples were collected on days 3, 7, and 10. Immunofluorescence staining and molecular biology testing were used to examine the differentiation of cASCs seeded on the DU coating. RESULTS The cASCs were isolated and identified by flow cytometry. The prepared DUs removed the nuclear materials, and the 3-dimensional structure and biological compositions of the ureter were well preserved. Immunofluorescence staining showed the expression of anti-alpha smooth muscle actin (α-SMA). Western blot results suggested that the content of α-SMA in the experimental group was significantly higher than that in the control group at 3 different time points, and the mRNA expressions of α-SMA in the experimental group gradually increased with extended the culture time, whereas there was no significant change in the control group. CONCLUSION The cASCs seeded on the coverslips of DU coating could differentiate into smooth muscle cells, and the number of differentiated cASCs increased significantly with extended incubation time.
Collapse
Affiliation(s)
- Pengchao Wang
- Department of Urology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Shuwei Xiao
- Department of Urology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weijun Fu
- Department of Urology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Zhongxin Wang
- Department of Urology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xu Zhang
- Department of Urology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Kara A, Koçtürk S, Bilici G, Havitcioglu H. Development of biological meniscus scaffold: Decellularization method and recellularization with meniscal cell population derived from mesenchymal stem cells. J Biomater Appl 2021; 35:1192-1207. [PMID: 33444085 DOI: 10.1177/0885328220981189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering approaches which include a combination of cells and scaffold materials provide an alternative treatment for meniscus regeneration. Decellularization and recellularization techniques are potential treatment options for transplantation. Maintenance of the ultrastructure composition of the extracellular matrix and repopulation with cells are important factors in constructing a biological scaffold and eliminating immunological reactions.The aim of the study is to develop a method to obtain biological functional meniscus scaffolds for meniscus regeneration. For this purpose, meniscus tissue was decellularized by our modified method, a combination of physical, chemical, and enzymatic methods and then recellularized with a meniscal cell population composed of fibroblasts, chondrocytes and fibrochondrocytes that obtained from mesenchymal stem cells. Decellularized and recellularized meniscus scaffolds were analysed biochemically, biomechanically and histologically. Our results revealed that cellular components of the meniscus were successfully removed by preserving collagen and GAG structures without any significant loss in biomechanical properties. Recellularization results showed that the meniscal cells were localized in the empty lacuna on the decellularized meniscus, and also well distributed and proliferated consistently during the cell culture period (p < 0.05). Furthermore, a high amount of DNA, collagen, and GAG contents (p < 0.05) were obtained with the meniscal cell population in recellularized meniscus tissue.The study demonstrates that our decellularization and recellularization methods were effective to develop a biological functional meniscus scaffold and can mimic the meniscus tissue with structural and biochemical features. We predict that the obtained biological meniscus scaffolds may provide avoidance of adverse immune reactions and an appropriate microenvironment for allogeneic or xenogeneic recipients in the transplantation process. Therefore, as a promising candidate, the obtained biological meniscus scaffolds might be verified with a transplantation experiment.
Collapse
Affiliation(s)
- Aylin Kara
- Department of Bioengineering, İzmir Institute of Technology, İzmir, Turkey
| | - Semra Koçtürk
- Faculty of Medicine, Department of Biochemistry, Dokuz Eylül University, İzmir, Turkey
| | - Gokcen Bilici
- Faculty of Medicine, Department of Biochemistry, Dokuz Eylül University, İzmir, Turkey
| | - Hasan Havitcioglu
- Department of Bioengineering, İzmir Institute of Technology, İzmir, Turkey
| |
Collapse
|
7
|
Vasanthan J, Gurusamy N, Rajasingh S, Sigamani V, Kirankumar S, Thomas EL, Rajasingh J. Role of Human Mesenchymal Stem Cells in Regenerative Therapy. Cells 2020; 10:E54. [PMID: 33396426 PMCID: PMC7823630 DOI: 10.3390/cells10010054] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells which can proliferate and replace dead cells in the body. MSCs also secrete immunomodulatory molecules, creating a regenerative microenvironment that has an excellent potential for tissue regeneration. MSCs can be easily isolated and grown in vitro for various applications. For the past two decades, MSCs have been used in research, and many assays and tests have been developed proving that MSCs are an excellent cell source for therapy. This review focusses on quality control parameters required for applications of MSCs including colony formation, surface markers, differentiation potentials, and telomere length. Further, the specific mechanisms of action of MSCs under various conditions such as trans-differentiation, cell fusion, mitochondrial transfer, and secretion of extracellular vesicles are discussed. This review aims to underline the applications and benefits of MSCs in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Jayavardini Vasanthan
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai 600036, India
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
| | - Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
| | - Shivaani Kirankumar
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai 600036, India
| | - Edwin L. Thomas
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.V.); (N.G.); (S.R.); (V.S.); (S.K.); (E.L.T.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Ohno M, Fuchimoto Y, Higuchi M, Yamaoka T, Komura M, Umezawa A, Hsu HC, Enosawa S, Kuroda T. Long-term observation of airway reconstruction using decellularized tracheal allografts in micro-miniature pigs at growing stage. Regen Ther 2020; 15:64-69. [PMID: 33426203 PMCID: PMC7770338 DOI: 10.1016/j.reth.2020.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction Decellularized tissue exhibits cell matrix-like properties, along with reduced antigenicity. We explored the potential of decellularized allogeneic trachea to restore the upper respiratory tract, focusing on pediatric application. This study specifically aimed at long-term observation of tissue regeneration using a micro-miniature pig model. Methods Artificial defects (15 × 15 mm) in the subglottis and trachea of micro-miniature pigs were repaired by transplantation of either allogeneic decellularized or fresh (control) tracheal patches. Pigs were evaluated in situ, by bronchoscopy, every three months, and sacrificed for histological examination at six and twelve months after transplantation. Results No airway symptom was observed in any pig during the observation period. Bronchoscopy revealed the tracheal lumen to be restored by fresh grafts, showing an irregular surface with remarkable longitudinal compression; these changes were mild after restoration with decellularized grafts. Histologically, while fresh graft patches were denatured and replaced by calcified tissue, decellularized patches remained unchanged throughout the observation period. There were regeneration foci of cartilage adjacent to the grafts, and some foci joined the decellularized graft uniformly, suggesting the induction of tracheal reconstitution. Conclusion Allogeneic decellularized tracheal tissue could serve as a promising biomaterial for tracheal restoration, especially for pediatric patients at the growing stage.
Collapse
Affiliation(s)
- Michinobu Ohno
- Department of Pediatric Surgery, Saitama City Hospital, 2460 Mimuro, Midori-ku, Saitama-shi, Saitama 336-8522, Japan.,Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yasushi Fuchimoto
- Department of Pediatric Surgery, International University of Health and Welfare School of Medicine, 2600-1 Kitakanemaru, Ohtawara-shi, Tochigi 324-8501, Japan.,Department of Pediatric Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | - Masataka Higuchi
- Division of Pulmonology, Department of Medical Specialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Makoto Komura
- Department of Pediatric Surgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Huai-Che Hsu
- Division for Advanced Medical Sciences, National Center for Child Health and Development, 2-10-1 Okura,Setagaya-ku, Tokyo 157-8535, Japan
| | - Shin Enosawa
- Division for Advanced Medical Sciences, National Center for Child Health and Development, 2-10-1 Okura,Setagaya-ku, Tokyo 157-8535, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
9
|
Whole Organ Engineering: Approaches, Challenges, and Future Directions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124277] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
End-stage organ failure remains a leading cause of morbidity and mortality across the globe. The only curative treatment option currently available for patients diagnosed with end-stage organ failure is organ transplantation. However, due to a critical shortage of organs, only a fraction of these patients are able to receive a viable organ transplantation. Those patients fortunate enough to receive a transplant must then be subjected to a lifelong regimen of immunosuppressant drugs. The concept of whole organ engineering offers a promising alternative to organ transplantation that overcomes these limitations. Organ engineering is a discipline that merges developmental biology, anatomy, physiology, and cellular interactions with enabling technologies such as advanced biomaterials and biofabrication to create bioartificial organs that recapitulate native organs in vivo. There have been numerous developments in bioengineering of whole organs over the past two decades. Key technological advancements include (1) methods of whole organ decellularization and recellularization, (2) three-dimensional bioprinting, (3) advanced stem cell technologies, and (4) the ability to genetically modify tissues and cells. These advancements give hope that organ engineering will become a commercial reality in the next decade. In this review article, we describe the foundational principles of whole organ engineering, discuss key technological advances, and provide an overview of current limitations and future directions.
Collapse
|
10
|
Dzobo K, Motaung KSCM, Adesida A. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. Int J Mol Sci 2019; 20:E4628. [PMID: 31540457 PMCID: PMC6788195 DOI: 10.3390/ijms20184628] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/01/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
The promise of regenerative medicine and tissue engineering is founded on the ability to regenerate diseased or damaged tissues and organs into functional tissues and organs or the creation of new tissues and organs altogether. In theory, damaged and diseased tissues and organs can be regenerated or created using different configurations and combinations of extracellular matrix (ECM), cells, and inductive biomolecules. Regenerative medicine and tissue engineering can allow the improvement of patients' quality of life through availing novel treatment options. The coupling of regenerative medicine and tissue engineering with 3D printing, big data, and computational algorithms is revolutionizing the treatment of patients in a huge way. 3D bioprinting allows the proper placement of cells and ECMs, allowing the recapitulation of native microenvironments of tissues and organs. 3D bioprinting utilizes different bioinks made up of different formulations of ECM/biomaterials, biomolecules, and even cells. The choice of the bioink used during 3D bioprinting is very important as properties such as printability, compatibility, and physical strength influence the final construct printed. The extracellular matrix (ECM) provides both physical and mechanical microenvironment needed by cells to survive and proliferate. Decellularized ECM bioink contains biochemical cues from the original native ECM and also the right proportions of ECM proteins. Different techniques and characterization methods are used to derive bioinks from several tissues and organs and to evaluate their quality. This review discusses the uses of decellularized ECM bioinks and argues that they represent the most biomimetic bioinks available. In addition, we briefly discuss some polymer-based bioinks utilized in 3D bioprinting.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | | | - Adetola Adesida
- Department of Surgery, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
11
|
Chen Y, Devalliere J, Bulutoglu B, Yarmush ML, Uygun BE. Repopulation of intrahepatic bile ducts in engineered rat liver grafts. TECHNOLOGY 2019; 7:46-55. [PMID: 31388515 PMCID: PMC6684151 DOI: 10.1142/s2339547819500043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Engineered liver grafts for transplantation with sufficient hepatic function have been developed both in small and large animal models using the whole liver engineering approach. However, repopulation of the bile ducts in the whole liver scaffolds has not been addressed yet. In this study, we show the feasibility of repopulating the bile ducts in decellularized rat livers. Biliary epithelial cells were introduced into the bile ducts of the decellularized liver scaffolds with or without hepatocytes in the parenchymal space. The recellularized grafts were cultured under perfusion for up to 2 days and histological analysis revealed that the biliary epithelial cells formed duct-like structures, with the viable hepatocyte mass residing in the parenchymal space, in an arrangement highly comparable to the native tissue. The grafts were viable and functional as confirmed by both albumin and urea assay results and the gene expression analysis of biliary epithelial cells in recellularized liver grafts. This study provides the proof-of-concept results for rat liver grafts co-populated with parenchymal and biliary epithelial cells.
Collapse
Affiliation(s)
- Yibin Chen
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Julie Devalliere
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Beyza Bulutoglu
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| |
Collapse
|
12
|
Dzobo K, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara C, Pillay M, Motaung KSCM. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells Int 2018; 2018:2495848. [PMID: 30154861 PMCID: PMC6091336 DOI: 10.1155/2018/2495848] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/22/2018] [Accepted: 07/08/2018] [Indexed: 02/08/2023] Open
Abstract
Humans and animals lose tissues and organs due to congenital defects, trauma, and diseases. The human body has a low regenerative potential as opposed to the urodele amphibians commonly referred to as salamanders. Globally, millions of people would benefit immensely if tissues and organs can be replaced on demand. Traditionally, transplantation of intact tissues and organs has been the bedrock to replace damaged and diseased parts of the body. The sole reliance on transplantation has created a waiting list of people requiring donated tissues and organs, and generally, supply cannot meet the demand. The total cost to society in terms of caring for patients with failing organs and debilitating diseases is enormous. Scientists and clinicians, motivated by the need to develop safe and reliable sources of tissues and organs, have been improving therapies and technologies that can regenerate tissues and in some cases create new tissues altogether. Tissue engineering and/or regenerative medicine are fields of life science employing both engineering and biological principles to create new tissues and organs and to promote the regeneration of damaged or diseased tissues and organs. Major advances and innovations are being made in the fields of tissue engineering and regenerative medicine and have a huge impact on three-dimensional bioprinting (3D bioprinting) of tissues and organs. 3D bioprinting holds great promise for artificial tissue and organ bioprinting, thereby revolutionizing the field of regenerative medicine. This review discusses how recent advances in the field of regenerative medicine and tissue engineering can improve 3D bioprinting and vice versa. Several challenges must be overcome in the application of 3D bioprinting before this disruptive technology is widely used to create organotypic constructs for regenerative medicine.
Collapse
Affiliation(s)
- Kevin Dzobo
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Dimakatso Alice Senthebane
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Hendrina Shipanga
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Arielle Rowe
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Collet Dandara
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Michael Pillay
- Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, South Africa
| | | |
Collapse
|
13
|
Mojtabaee M, Sadegh Beigee F, Ghorbani F. Deceased Organ Donation From Pediatric Donors: Does the Literature Really Help Us? Implication for More Powerful Guidelines. Transplant Proc 2018; 49:1708-1711. [PMID: 28923612 DOI: 10.1016/j.transproceed.2017.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/01/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Brain-dead pediatric donors have always been the focus of attention because of the higher quality, utility, and possibility of their organ donation. However, donors under the age of 5 years always necessitate making more challenging management efforts, which are not clearly implied in most parts of the guidelines. METHODS The data obtained from 79 brain-dead pediatric donors of the Organ Procurement Unit of Masih Daneshvari Hospital, Tehran, Iran, were assessed. The donors were divided into 2 groups, including donors under 5 years of age (group A) and those between 5 and 12 years of age (group B). Metabolic, hemodynamic, hematologic, and electrolyte status as well as the suitability for donation were compared in the study groups. RESULTS Of 1252 donors, 6.3% were under 12 years of age. Trauma and drug toxicity were the two primary causes of brain death in group A. In comparison, trauma and brain tumor were the leading causes of brain death in group B. The prevalence of both hyperglycemia and respiratory acidosis was significantly higher in group A (P < .05). However, severe anemia and coagulopathy were more prevalent in group B (P < .05). The high-dose inotropic administration was used for 42.4% of the donors in group A, whereas only 26% of the donors in group B needed a high dose of inotropes (P < .05). The mean quantity of organ harvested per donor was 2.1 and 2.25 in groups A and B, respectively. Furthermore, donor loss was not significantly different in both groups. CONCLUSIONS The occurrence of different complications in donors under the age of 5 years requires special treatment considerations that should be the center of attention in the related guidelines. Organ donation per donor indicates that donors under the age of 5 years are a valuable resource for organ procurement.
Collapse
Affiliation(s)
- M Mojtabaee
- Lung Transplantation Research Center (LTRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Sadegh Beigee
- Lung Transplantation Research Center (LTRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - F Ghorbani
- Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Dholakia S, Royston E, Quiroga I, Sinha S, Reddy S, Gilbert J, Friend PJ. The rise and potential fall of pancreas transplantation. Br Med Bull 2017; 124:171-179. [PMID: 29088319 DOI: 10.1093/bmb/ldx039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The aim of this review is to bring pancreatic transplantation out of the specialist realm, informing practitioners about this important procedure, so that they feel better equipped to refer suitable patients for transplantation and manage, counsel and support when encountering them within their own speciality. SOURCES OF DATA Narrative review conducted in May 2017. OVID interface searching EMBASE and MEDLINE databases, using Timeframe: Inception to June 1, 2017. Articles were assessed for clinical relevance and most up to date content with articles written in english as the only inclusion criteria. Other sources, used included conference proceedings/presentations, unpublished data from our institution (Oxford Transplant Centre). AREAS OF AGREEMENT Pancreas transplantation has evolved from an experimental procedure to the gold standard of care for patients with type 1 diabetes and uraemia. Currently, it remains the most effective method of establishing and maintaining euglycemia over the longer term, halting and potentially reversing many of the secondary complications associated with diabetes. Significant improvements to quality of life and better life expectancy make it in the longer term, a lifesaving procedure compared to waiting candidates. AREAS OF CONTROVERSY The future of solid organ pancreas transplantation remains uncertain, with extensive comorbidity and advances in alternative therapies makes the long-term growth of the procedure questionable. GROWING POINTS AND AREAS TIMELY FOR DEVELOPING RESEARCH Therapies to alleviate problems associated with ischaemia reperfusion injury, graft pancreatitis and more effective monitoring methods for detecting and treating organ rejection are the key areas of growth.
Collapse
Affiliation(s)
- S Dholakia
- Oxford Transplant Centre, Nuffield Department of Surgical Science, University of Oxford, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - E Royston
- Oxford Transplant Centre, Nuffield Department of Surgical Science, University of Oxford, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - I Quiroga
- Oxford Transplant Centre, Nuffield Department of Surgical Science, University of Oxford, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - S Sinha
- Oxford Transplant Centre, Nuffield Department of Surgical Science, University of Oxford, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - S Reddy
- Oxford Transplant Centre, Nuffield Department of Surgical Science, University of Oxford, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - J Gilbert
- Oxford Transplant Centre, Nuffield Department of Surgical Science, University of Oxford, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - P J Friend
- Oxford Transplant Centre, Nuffield Department of Surgical Science, University of Oxford, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| |
Collapse
|
15
|
Figueiredo GS, Bojic S, Rooney P, Wilshaw SP, Connon CJ, Gouveia RM, Paterson C, Lepert G, Mudhar HS, Figueiredo FC, Lako M. Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells. Acta Biomater 2017; 61:124-133. [PMID: 28760619 PMCID: PMC5598144 DOI: 10.1016/j.actbio.2017.07.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 11/25/2022]
Abstract
The gold standard substrate for the ex vivo expansion of human limbal stem cells (LSCs) remains the human amniotic membrane (HAM) but this is not a defined substrate and is subject to biological variability and the potential to transmit disease. To better define HAM and mitigate the risk of disease transmission, we sought to determine if decellularisation and/or γ-irradiation have an adverse effect on culture growth and LSC phenotype. Ex vivo limbal explant cultures were set up on fresh HAM, HAM decellularised with 0.5M NaOH, and 0.5% (w/v) sodium dodecyl sulfate (SDS) with or without γ-irradiation. Explant growth rate was measured and LSC phenotype was characterised by histology, immunostaining and qRT-PCR (ABCG2, ΔNp63, Ki67, CK12, and CK13). Ƴ-irradiation marginally stiffened HAM, as measured by Brillouin spectromicroscopy. HAM stiffness and γ-irradiation did not significantly affect the LSC phenotype, however LSCs expanded significantly faster on Ƴ-irradiated SDS decellularised HAM (p<0.05) which was also corroborated by the highest expression of Ki67 and putative LSC marker, ABCG2. Colony forming efficiency assays showed a greater yield and proportion of holoclones in cells cultured on Ƴ-irradiated SDS decellularised HAM. Together our data indicate that SDS decellularised HAM may be a more efficacious substrate for the expansion of LSCs and the use of a γ-irradiated HAM allows the user to start the manufacturing process with a sterile substrate, potentially making it safer. STATEMENT OF SIGNIFICANCE Despite its disadvantages, including its biological variability and its ability to transfer disease, human amniotic membrane (HAM) remains the gold standard substrate for limbal stem cell (LSC) culture. To address these disadvantages, we used a decellularised HAM sterilised by gamma-irradiation for LSC culture. We cultured LSCs on fresh HAM, HAM decellularised with NaOH, HAM decellularised with sodium dodecyl sulfate (SDS) and HAM decellularised with SDS and sterilised with gamma-irradiation. We demonstrated that although HAM decellularised with SDS and sterilised with gamma-irradiation is significantly stiffer this does not affect LSC culture growth rate or the phenotype of cultured LSCs. We therefore recommend the use of SDS decellularised gamma-irradiated HAM in future LSC clinical trials.
Collapse
Affiliation(s)
- G S Figueiredo
- Institute for Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; Department of Ophthalmology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK.
| | - S Bojic
- Institute for Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.
| | - P Rooney
- Tissue Services, NHS Blood and Transplant, 14 Estuary Banks, Speke, Liverpool L24 8RB, UK.
| | - S-P Wilshaw
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
| | - C J Connon
- Institute for Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.
| | - R M Gouveia
- Institute for Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.
| | - C Paterson
- The Blackett Laboratory, South Kensington Campus, Imperial College, London SW7 2AZ, UK.
| | - G Lepert
- The Blackett Laboratory, South Kensington Campus, Imperial College, London SW7 2AZ, UK.
| | - H S Mudhar
- National Specialist Ophthalmic Pathology Service, Department of Histopathology, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK.
| | - F C Figueiredo
- Institute for Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; Department of Ophthalmology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK.
| | - M Lako
- Institute for Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.
| |
Collapse
|
16
|
Hussey GS, Cramer MC, Badylak SF. Extracellular Matrix Bioscaffolds for Building Gastrointestinal Tissue. Cell Mol Gastroenterol Hepatol 2017; 5:1-13. [PMID: 29276748 PMCID: PMC5736871 DOI: 10.1016/j.jcmgh.2017.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Regenerative medicine is a rapidly advancing field that uses principles of tissue engineering, developmental biology, stem cell biology, immunology, and bioengineering to reconstruct diseased or damaged tissues. Biologic scaffolds composed of extracellular matrix have shown great promise as an inductive substrate to facilitate the constructive remodeling of gastrointestinal (GI) tissue damaged by neoplasia, inflammatory bowel disease, and congenital or acquired defects. The present review summarizes the preparation and use of extracellular matrix scaffolds for bioengineering of the GI tract, identifies significant advances made in regenerative medicine for the reconstruction of functional GI tissue, and describes an emerging therapeutic approach.
Collapse
Affiliation(s)
- George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, School of Medicine, University of Pittsburgh Medical Center Presbyterian Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madeline C. Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, School of Medicine, University of Pittsburgh Medical Center Presbyterian Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
- Correspondence Address correspondence to: Stephen F. Badylak, DVM, PhD, MD, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, Pennsylvania 15219-3110. fax: (412) 624-5256.McGowan Institute for Regenerative MedicineUniversity of Pittsburgh450 Technology Drive, Suite 300PittsburghPennsylvania15219-3110
| |
Collapse
|
17
|
Jakus AE, Laronda MM, Rashedi AS, Robinson CM, Lee C, Jordan SW, Orwig KE, Woodruff TK, Shah RN. "Tissue Papers" from Organ-Specific Decellularized Extracellular Matrices. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1700992. [PMID: 29104526 PMCID: PMC5665058 DOI: 10.1002/adfm.201700992] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Using an innovative, tissue-independent approach to decellularized tissue processing and biomaterial fabrication, the development of a series of "tissue papers" derived from native porcine tissues/organs (heart, kidney, liver, muscle), native bovine tissue/organ (ovary and uterus), and purified bovine Achilles tendon collagen as a control from decellularized extracellular matrix particle ink suspensions cast into molds is described. Each tissue paper type has distinct microstructural characteristics as well as physical and mechanical properties, is capable of absorbing up to 300% of its own weight in liquid, and remains mechanically robust (E = 1-18 MPa) when hydrated; permitting it to be cut, rolled, folded, and sutured, as needed. In vitro characterization with human mesenchymal stem cells reveals that all tissue paper types support cell adhesion, viability, and proliferation over four weeks. Ovarian tissue papers support mouse ovarian follicle adhesion, viability, and health in vitro, as well as support, and maintain the viability and hormonal function of nonhuman primate and human follicle-containing, live ovarian cortical tissues ex vivo for eight weeks postmortem. "Tissue papers" can be further augmented with additional synthetic and natural biomaterials, as well as integrated with recently developed, advanced 3D-printable biomaterials, providing a versatile platform for future multi-biomaterial construct manufacturing.
Collapse
Affiliation(s)
- Adam E Jakus
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA. Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Monica M Laronda
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexandra S Rashedi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christina M Robinson
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA. Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Chris Lee
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA. Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Sumanas W Jordan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Teresa K Woodruff
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ramille N Shah
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA. Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA. Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA. Divsion of Organ Transplantation, Comprehensive Transplant Center, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
18
|
Yesmin S, Paget MB, Murray HE, Downing R. Bio-scaffolds in organ-regeneration: Clinical potential and current challenges. Curr Res Transl Med 2017; 65:103-113. [PMID: 28916449 DOI: 10.1016/j.retram.2017.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022]
Abstract
Cadaveric organ transplantation represents the definitive treatment option for end-stage disease but is restricted by the shortage of clinically-viable donor organs. This limitation has, in part, driven current research efforts for in vitro generation of transplantable tissue surrogates. Recent advances in organ reconstruction have been facilitated by the re-purposing of decellularized whole organs to serve as three-dimensional bio-scaffolds. Notably, studies in rodents indicate that such scaffolds retain native extracellular matrix components that provide appropriate biochemical, mechanical and physical stimuli for successful tissue/organ reconstruction. As such, they support the migration, adhesion and differentiation of reseeded primary and/or pluripotent cell populations, which mature and achieve functionality through short-term conditioning within specialized tissue bioreactors. Whilst these findings are encouraging, significant challenges remain to up-scale the present technology to accommodate human-sized organs and thereby further the translation of this approach towards clinical use. Of note, the diverse structural and cellular composition of large mammalian organ systems mean that a "one-size fits all" approach cannot be adopted either to the methods used for their decellularization or the cells required for subsequent re-population, to create fully functional entities. The present review seeks to highlight the clinical potential of decellularized organ bio-scaffolds as a route to further advance the field of tissue- and organ-regeneration, and to discuss the challenges which are yet to be addressed if such a technology is ever to become a credible rival to conventional organ allo-transplantation.
Collapse
Affiliation(s)
- S Yesmin
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK
| | - M B Paget
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK
| | - H E Murray
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK.
| | - R Downing
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK
| |
Collapse
|
19
|
Ferng AS, Connell AM, Marsh KM, Qu N, Medina AO, Bajaj N, Palomares D, Iwanski J, Tran PL, Lotun K, Johnson K, Khalpey Z. Acellular porcine heart matrices: whole organ decellularization with 3D-bioscaffold & vascular preservation. J Clin Transl Res 2017; 3:260-270. [PMID: 30873477 PMCID: PMC6410671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/27/2017] [Accepted: 03/10/2017] [Indexed: 12/03/2022] Open
Abstract
Regenerative medicine, particularly decellularization-recellularization methods via whole-organ tissue engineering, has been increasingly studied due to the growing donor organ shortage. Though numerous decellularization protocols exist, the ideal decellularization protocol for optimal recellularization is unclear. This study was performed to optimize existing heart decellularization protocols and compare current methods using the detergents SDS (sodium dodecyl sulfate), Triton X-100, OGP (octyl β-D-glucopyranoside), and CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate) through retrograde aortic perfusion via aortic cannulation of a whole porcine heart. The goal of decellularization is to preserve extracellular matrix integrity and architecture, which was analyzed in this study through histology, microscopy, DNA analysis, hydroxyproline content analysis, materials analysis and angiography. Effective decellularization was determined by analyzing the tissue organization, geometry, and biological properties of the resultant extracellular matrix scaffold. Using these parameters, optimal decellularization was achieved between 90 and 120 mmHg pressure with 3% SDS as a detergent. Relevance for patients: This study provides important information about whole heart decellularization, which will ultimately contribute to heart bioengineering.
Collapse
Affiliation(s)
- Alice S. Ferng
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States,University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Alana M. Connell
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States,University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Katherine M. Marsh
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States,University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Ning Qu
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Annalisa O. Medina
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Naing Bajaj
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Daniel Palomares
- Department of Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Jessika Iwanski
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States,University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Phat L. Tran
- Department of Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona, United States,Department of Internal Medicine, Division of Cardiology, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Kapil Lotun
- University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Kitsie Johnson
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Zain Khalpey
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States,University of Arizona College of Medicine, Tucson, Arizona, United States,Banner, University Medical Center, Tucson, Arizona, United States
| |
Collapse
|
20
|
Dholakia S, Mittal S, Quiroga I, Gilbert J, Sharples EJ, Ploeg RJ, Friend PJ. Pancreas Transplantation: Past, Present, Future. Am J Med 2016; 129:667-73. [PMID: 26965300 DOI: 10.1016/j.amjmed.2016.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 01/07/2023]
Abstract
Diabetes is the pandemic disease of the modern era, with 10% of these patients having type 1 diabetes mellitus. Despite the prevalence, morbidities, and associated financial burden, treatment options have not changed since the introduction of injectable insulin. To date, over 40,000 pancreas transplants have been performed globally. It remains the only known method for restoring glycemic control and thus curing type 1 diabetes mellitus. The aim of this review is to bring pancreatic transplantation out of the specialist realm, informing practitioners about this important procedure, so that they feel better equipped to refer suitable patients for transplantation and manage, counsel, and support when encountering them within their own specialty. This study was a narrative review conducted in October 2015, with OVID interface searching EMBASE and MEDLINE databases, using Timeframe: Inception to October 2015. Articles were assessed for clinical relevance and most up-to-date content, with articles written in English as the only inclusion criterion. Other sources used included conference proceedings/presentations and unpublished data from our institution (Oxford Transplant Centre). Pancreatic transplantation is growing and has quickly become the gold standard of care for patients with type 1 diabetes mellitus and renal failure. Significant improvements in quality of life and life expectancy make pancreatic transplant a viable and economically feasible intervention. It remains the most effective method of establishing and maintaining euglycemia, halting and potentially reversing complications associated with diabetes.
Collapse
Affiliation(s)
- Shamik Dholakia
- Nuffield Department of Surgical Sciences and Oxford Transplant Centre, University of Oxford and Oxford University Hospitals NHS Trust, UK.
| | - Shruti Mittal
- Nuffield Department of Surgical Sciences and Oxford Transplant Centre, University of Oxford and Oxford University Hospitals NHS Trust, UK
| | - Isabel Quiroga
- Nuffield Department of Surgical Sciences and Oxford Transplant Centre, University of Oxford and Oxford University Hospitals NHS Trust, UK
| | - James Gilbert
- Nuffield Department of Surgical Sciences and Oxford Transplant Centre, University of Oxford and Oxford University Hospitals NHS Trust, UK
| | - Edward J Sharples
- Nuffield Department of Surgical Sciences and Oxford Transplant Centre, University of Oxford and Oxford University Hospitals NHS Trust, UK
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences and Oxford Transplant Centre, University of Oxford and Oxford University Hospitals NHS Trust, UK
| | - Peter J Friend
- Nuffield Department of Surgical Sciences and Oxford Transplant Centre, University of Oxford and Oxford University Hospitals NHS Trust, UK
| |
Collapse
|
21
|
Katsuki Y, Yagi H, Okitsu T, Kitago M, Tajima K, Kadota Y, Hibi T, Abe Y, Shinoda M, Itano O, Takeuchi S, Kitagawa Y. Endocrine pancreas engineered using porcine islets and partial pancreatic scaffolds. Pancreatology 2016; 16:922-30. [PMID: 27350058 DOI: 10.1016/j.pan.2016.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/12/2016] [Accepted: 06/16/2016] [Indexed: 02/09/2023]
Abstract
OBJECTIVES Because therapeutic options for severe diabetes are currently limited, there is a continuing need for new therapeutic strategies, especially in the field of regenerative medicine. Collaborative efforts across the fields of tissue engineering technology and islet biology may be able to create functionally engineered islets capable of restoring endocrine function in patients with insulin-dependent diabetes. METHODS This engineered scaffold was seeded with isolated primary porcine islets via the pancreatic duct using a multi-step infusion technique. Endocrine function of perfusion-cultured islets in the native scaffold was analyzed by immunohistochemical staining of insulin and glucagon as well as by the insulin stimulation test. RESULTS The pancreas in this large animal could be uniformly decellularized by perfusion with trypsin and TritonX-100 via the pancreatic duct, as shown by positive staining of extracellular matrix (ECM) components. These scaffolds derived from porcine pancreas were able to maintain the cellular integrity of islets that had repopulated the parenchymal space, which is fundamental for the restoration of endocrine function. Insulin release up to four days after islet infusion was maintained. CONCLUSIONS This scaffold from a large animal maintained islet survival and function in the short-term, retaining the cells as a solid organ in the parenchymal space after infusion through the pancreatic duct. These results suggest that this scaffold is suitable for further fabrication of fully functional bioengineered endocrine pancreases when implanted in vivo. Therefore, it may represent a key improvement in the field of beta-cell replacement therapy. Nonetheless, the facilitation of longer-term islet survival and studies of implantation in vivo is required for successful clinical translation.
Collapse
Affiliation(s)
- Yusuke Katsuki
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Teru Okitsu
- Center for International Research on Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo 153-8505, Japan.
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Kazuki Tajima
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Yoshie Kadota
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Taizo Hibi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Masahiro Shinoda
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Osamu Itano
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Shoji Takeuchi
- Center for International Research on Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo 153-8505, Japan.
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| |
Collapse
|
22
|
Okita K, Mizuguchi T, Shigenori O, Ishii M, Nishidate T, Ueki T, Meguro M, Kimura Y, Tanimizu N, Ichinohe N, Torigoe T, Kojima T, Mitaka T, Sato N, Sawada N, Hirata K. Pancreatic regeneration: basic research and gene regulation. Surg Today 2016; 46:633-640. [PMID: 26148809 DOI: 10.1007/s00595-015-1215-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/19/2015] [Indexed: 12/28/2022]
Abstract
Pancreatic regeneration (PR) is an interesting phenomenon that could provide clues as to how the control of diabetes mellitus might be achieved. Due to the different regenerative abilities of the pancreas and liver, the molecular mechanism responsible for PR is largely unknown. In this review, we describe five representative murine models of PR and thirteen humoral mitogens that stimulate β-cell proliferation. We also describe pancreatic ontogenesis, including the molecular transcriptional differences between α-cells and β-cells. Furthermore, we review 14 murine models which carry defects in genes related to key transcription factors for pancreatic ontogenesis to gain further insight into pancreatic development.
Collapse
Affiliation(s)
- Kenji Okita
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan
| | - Toru Mizuguchi
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan.
| | - Ota Shigenori
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan
| | - Masayuki Ishii
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan
| | - Toshihiko Nishidate
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan
| | - Tomomi Ueki
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan
| | - Makoto Meguro
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan
| | - Yasutoshi Kimura
- Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido, 060-8543, Japan
| | - Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Toshihiko Torigoe
- Department of Pathology I, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Noriyuki Sato
- Department of Pathology I, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Norimasa Sawada
- Department of Surgical Pathology II, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Koichi Hirata
- Department of Surgery, JR Sapporo Hospital, N-3, E-1, Chuo-Ku, Sapporo, Hokkaido, 060-0033, Japan
| |
Collapse
|
23
|
Hussein KH, Park KM, Kang KS, Woo HM. Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:766-778. [PMID: 27287176 DOI: 10.1016/j.msec.2016.05.068] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 04/07/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022]
Abstract
Biomaterials based on seeding of cells on decellularized scaffolds have gained increasing interest in the last few years and suggested to serve as an alternative approach to bioengineer artificial organs and tissues for transplantation. The reaction of the host toward the decellularized scaffold and transplanted cells depends on the biocompatibility of the construct. Before proceeding to the clinical application step of decellularized scaffolds, it is greatly important to apply a number of biocompatibility tests in vitro and in vivo. This review describes the different methodology involved in cytotoxicity, pathogenicity, immunogenicity and biodegradability testing for evaluating the biocompatibility of various decellularized matrices obtained from human or animals.
Collapse
Affiliation(s)
- Kamal Hany Hussein
- Stem Cell Institute, Kangwon National University, Chuncheon, Gangwon 200-701, Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea; Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Kyung-Mee Park
- Stem Cell Institute, Kangwon National University, Chuncheon, Gangwon 200-701, Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea; Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Institue of Veterinary Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, South Korea
| | - Heung-Myong Woo
- Stem Cell Institute, Kangwon National University, Chuncheon, Gangwon 200-701, Korea; Institue of Veterinary Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, South Korea; Harvard Stem Cell Institute, Renal Division, Brigham and Women's Hospital, Harvard Medical School, MA 02115, USA.
| |
Collapse
|
24
|
Abstract
The potential to reverse diabetes has to be balanced against the morbidity of long-term immunosuppression associated with transplantation. For a patient with renal failure, the treatment of choice is often a simultaneous transplant of the pancreas and kidney or pancreas after kidney. For a patient with glycaemic instability, choices between a solid organ or islet transplant have to be weighed against benefits and risks of remaining on insulin. Results of simultaneous transplant of the pancreas and kidney transplantation are comparable to other solid-organ transplants, and there is evidence of improved quality of life and life expectancy. There is some evidence of benefit with respect to the progression of secondary diabetic complications in patients with functioning transplants for several years.
Collapse
Affiliation(s)
- Shamik Dholakia
- Imperial College Healthcare NHS Trust, West London Renal and Transplant Centre, London W12 0HS, UK
| | - Youssof Oskrochi
- Department of Public Health and Primary Care, Imperial College, London W6 8RP, UK
| | - Graham Easton
- Department of Public Health and Primary Care, Imperial College, London W6 8RP, UK
| | - Vassilios Papalois
- Imperial College Healthcare NHS Trust, West London Renal and Transplant Centre, London W12 0HS, UK
| |
Collapse
|
25
|
Stabler CT, Lecht S, Mondrinos MJ, Goulart E, Lazarovici P, Lelkes PI. Revascularization of decellularized lung scaffolds: principles and progress. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1273-85. [PMID: 26408553 DOI: 10.1152/ajplung.00237.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023] Open
Abstract
There is a clear unmet clinical need for novel biotechnology-based therapeutic approaches to lung repair and/or replacement, such as tissue engineering of whole bioengineered lungs. Recent studies have demonstrated the feasibility of decellularizing the whole organ by removal of all its cellular components, thus leaving behind the extracellular matrix as a complex three-dimensional (3D) biomimetic scaffold. Implantation of decellularized lung scaffolds (DLS), which were recellularized with patient-specific lung (progenitor) cells, is deemed the ultimate alternative to lung transplantation. Preclinical studies demonstrated that, upon implantation in rodent models, bioengineered lungs that were recellularized with airway and vascular cells were capable of gas exchange for up to 14 days. However, the long-term applicability of this concept is thwarted in part by the failure of current approaches to reconstruct a physiologically functional, quiescent endothelium lining the entire vascular tree of reseeded lung scaffolds, as inferred from the occurrence of hemorrhage into the airway compartment and thrombosis in the vasculature in vivo. In this review, we explore the idea that successful whole lung bioengineering will critically depend on 1) preserving and/or reestablishing the integrity of the subendothelial basement membrane, especially of the ultrathin respiratory membrane separating airways and capillaries, during and following decellularization and 2) restoring vascular physiological functionality including the barrier function and quiescence of the endothelial lining following reseeding of the vascular compartment. We posit that physiological reconstitution of the pulmonary vascular tree in its entirety will significantly promote the clinical translation of the next generation of bioengineered whole lungs.
Collapse
Affiliation(s)
- Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Shimon Lecht
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Mark J Mondrinos
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ernesto Goulart
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; and
| | - Philip Lazarovici
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania;
| |
Collapse
|
26
|
Ko IK, Peng L, Peloso A, Smith CJ, Dhal A, Deegan DB, Zimmerman C, Clouse C, Zhao W, Shupe TD, Soker S, Yoo JJ, Atala A. Bioengineered transplantable porcine livers with re-endothelialized vasculature. Biomaterials 2015; 40:72-9. [DOI: 10.1016/j.biomaterials.2014.11.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/01/2014] [Accepted: 11/08/2014] [Indexed: 02/08/2023]
|
27
|
Cieślar-Pobuda A, Wiechec E. Research on liver regeneration as an answer to the shortage of donors for liver transplantation. Hepatol Res 2014; 44:944-6. [PMID: 25224133 DOI: 10.1111/hepr.12265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Artur Cieślar-Pobuda
- Department of Clinical & Experimental Medicine (IKE), Division of Cell Biology, Integrative Regenerative Medicine Center (IGEN), Linköping University, Linkoping, Sweden; Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | | |
Collapse
|
28
|
Tsuchiya T, Sivarapatna A, Rocco K, Nanashima A, Nagayasu T, Niklason LE. Future prospects for tissue engineered lung transplantation: decellularization and recellularization-based whole lung regeneration. Organogenesis 2014; 10:196-207. [PMID: 24488093 PMCID: PMC4154954 DOI: 10.4161/org.27846] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 01/16/2023] Open
Abstract
The shortage of donor lungs for transplantation causes a significant number of patient deaths. The availability of laboratory engineered, functional organs would be a major advance in meeting the demand for organs for transplantation. The accumulation of information on biological scaffolds and an increased understanding of stem/progenitor cell behavior has led to the idea of generating transplantable organs by decellularizing an organ and recellularizing using appropriate cells. Recellularized solid organs can perform organ-specific functions for short periods of time, which indicates the potential for the clinical use of engineered solid organs in the future. The present review provides an overview of progress and recent knowledge about decellularization and recellularization-based approaches for generating tissue engineered lungs. Methods to improve decellularization, maturation of recellularized lung, candidate species for transplantation and future prospects of lung bioengineering are also discussed.
Collapse
Affiliation(s)
- Tomoshi Tsuchiya
- Division of Surgical Oncology; Department of Surgery; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki, Japan
| | - Amogh Sivarapatna
- Departments of Anesthesia and Biomedical Engineering; Yale University; New Haven, CT USA
| | - Kevin Rocco
- Departments of Anesthesia and Biomedical Engineering; Yale University; New Haven, CT USA
| | - Atsushi Nanashima
- Division of Surgical Oncology; Department of Surgery; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki, Japan
| | - Takeshi Nagayasu
- Division of Surgical Oncology; Department of Surgery; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki, Japan
| | - Laura E Niklason
- Departments of Anesthesia and Biomedical Engineering; Yale University; New Haven, CT USA
| |
Collapse
|
29
|
Abstract
The liver is a target of in vitro tissue engineering despite its capability to regenerate in vivo. The construction of liver tissues in vitro remains challenging. In this review, conventional 3D cultures of hepatocytes are first discussed. Recent advances in the 3D culturing of liver cells are then summarized in the context of in vitro liver tissue reconstruction at the micro- and macroscales. The application of microfluidics technology to liver tissue engineering has been introduced as a bottom-up approach performed at the microscale, whereas whole-organ bioengineering technology was introduced as a top-down approach performed at the macroscale. Mesoscale approaches are also discussed in considering the integration of micro- and macroscale approaches. Multiple parallel multiscale liver tissue engineering studies are ongoing; however, no tissue-engineered liver that is appropriate for clinical use has yet been realized. The integration of multiscale tissue engineering studies is essential for further understanding of liver reconstruction strategies.
Collapse
Affiliation(s)
- Ryo Sudo
- Department of System Design Engineering; Keio University; Yokohama, Japan
| |
Collapse
|
30
|
|