1
|
Falahi S, Kubiak A, Voronkina A, Ehrlich H, Joseph Y, Rahimi P. Simultaneous Electrochemical Detection of Dopamine and Tryptophan Using 3D Goethite-Spongin Composites. Biomimetics (Basel) 2024; 9:357. [PMID: 38921236 PMCID: PMC11202307 DOI: 10.3390/biomimetics9060357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, a facile approach for simultaneous determination of dopamine (DA) and tryptophan (TRP) using a 3D goethite-spongin-modified carbon paste electrode is reported. The prepared electrode exhibited excellent electrochemical catalytic activity towards DA and TRP oxidation. The electrochemical sensing of the modified electrode was investigated using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. Through differential pulse voltammetry analysis, two well-separated oxidation peaks were observed at 28 and 77 mV, corresponding to the oxidation of DA and TRP at the working electrode, with a large peak separation of up to 490 mV. DA and TRP were determined both individually and simultaneously in their dualistic mixture. As a result, the anodic peak currents and the concentrations of DA and TRP were found to exhibit linearity within the ranges of 4-246 μM for DA and 2 to 150 μM for TRP. The detection limits (S/N = 3) as low as 1.9 μM and 0.37 μM were achieved for DA and TRP, respectively. The proposed sensor was successfully applied to the simultaneous determination of DA and TRP in human urine samples with satisfactory recoveries (101% to 116%).
Collapse
Affiliation(s)
- Sedigheh Falahi
- Institute of Nanoscale and Biobased Materials, Faculty of Materials Science and Material Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany; (S.F.); (Y.J.)
| | - Anita Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (A.K.); (H.E.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Pyrogov Street 56, 21018 Vinnytsia, Ukraine;
| | - Hermann Ehrlich
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (A.K.); (H.E.)
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Yvonne Joseph
- Institute of Nanoscale and Biobased Materials, Faculty of Materials Science and Material Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany; (S.F.); (Y.J.)
- Freiberg Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Parvaneh Rahimi
- Institute of Nanoscale and Biobased Materials, Faculty of Materials Science and Material Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany; (S.F.); (Y.J.)
- Freiberg Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
2
|
Ahmad HMN, Andrade A, Song E. Continuous Real-Time Detection of Serotonin Using an Aptamer-Based Electrochemical Biosensor. BIOSENSORS 2023; 13:983. [PMID: 37998158 PMCID: PMC10669129 DOI: 10.3390/bios13110983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Serotonin (5-HT) is a critical neurotransmitter involved in many neuronal functions, and 5-HT depletion has been linked to several mental diseases. The fast release and clearance of serotonin in the extracellular space, low analyte concentrations, and a multitude of interfering species make the detection of serotonin challenging. This work presents an electrochemical aptamer-based biosensing platform that can monitor 5-HT continuously with high sensitivity and selectivity. Our electrochemical sensor showed a response time of approximately 1 min to a step change in the serotonin concentration in continuous monitoring using a single-frequency EIS (electrochemical impedance spectroscopy) technique. The developed sensing platform was able to detect 5-HT in the range of 25-150 nM in the continuous sample fluid flow with a detection limit (LOD) of 5.6 nM. The electrochemical sensor showed promising selectivity against other species with similar chemical structures and redox potentials, including dopamine (DA), norepinephrine (NE), L-tryptophan (L-TP), 5-hydroxyindoleacetic acid (5-HIAA), and 5-hydroxytryptophan (5-HTP). The proposed sensing platform is able to achieve high selectivity in the nanomolar range continuously in real-time, demonstrating the potential for monitoring serotonin from neurons in organ-on-a-chip or brain-on-a-chip-based platforms.
Collapse
Affiliation(s)
- Habib M. N. Ahmad
- Department of Electrical & Computer Engineering, University of New Hampshire, Durham, NH 03824, USA;
| | - Arturo Andrade
- Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA;
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Edward Song
- Department of Electrical & Computer Engineering, University of New Hampshire, Durham, NH 03824, USA;
| |
Collapse
|
3
|
Fiori S, Della Pelle F, Silveri F, Scroccarello A, Cozzoni E, Del Carlo M, Compagnone D. Nanofibrillar biochar from industrial waste as hosting network for transition metal dichalcogenides. Novel sustainable 1D/2D nanocomposites for electrochemical sensing. CHEMOSPHERE 2023; 317:137884. [PMID: 36657583 DOI: 10.1016/j.chemosphere.2023.137884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Industrial wastes have become elective sustainable sources to obtain materials for electronic/electroanalytical purposes; on the other hand, easy and green strategies to include semiconductor 2D graphene-like materials in conductive networks are highly required. In this work, 1D/2D nanocomposites (NCs) based on nanofibrillar biochar (BH) from paper industry waste and transition metal dichalcogenides (TMDs: MoS2, WS2, MoSe2, and WSe2), were prepared in water via liquid phase exfoliation (LPE) using sodium cholate as bioderived surfactant. The TMD amount in the NCs has been carefully optimized, searching for the best compromise between electron transfer ability and electroanalytical performances. Four different water-dispersed BH-TMD NCs have been selected and comprehensively studied from the electrochemical point of view and morphologically characterized. The BH-TMDs potentiality have been demonstrated in model solutions and real samples towards different analytes of biological and agri-food interest. The most performing NCs have been selected and used for the simultaneous determination of the neurotransmitters dopamine (DP) and serotonin (SR), and the flavonoids quercetin (QR) and rutin (RT), obtaining good linearity (R2 ≥ 0.9956) with limits of detection ranging from 10 to 200 nM. Reproducible quantitative recovery values (90-112%, RSD ≤6%, n = 3) were obtained analyzing simultaneously DP and SR in synthetic biological fluid and drugs, and QR and RT in food supplements, proving the usability of the proposed materials for real analyses. This work proves that BH-nanofibers act as a sustainable conductive hosting network for 2D-TMDs, allowing full exploit their electroanalytical potential. The proposed BH-TMD NCs represent a sustainable, affordable, and captivating opportunity for the electrochemical and (bio)sensoristic field.
Collapse
Affiliation(s)
- Selene Fiori
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy
| | - Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy.
| | - Filippo Silveri
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy
| | - Annalisa Scroccarello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy
| | - Enrico Cozzoni
- BEES S.r.l., Via Napoli 141, Palazzo TecnoCity, 80013, Casalnuovo, NA, Italy
| | - Michele Del Carlo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy.
| |
Collapse
|
4
|
Smajdor J, Paczosa-Bator B, Piech R. Advances on Hormones and Steroids Determination: A Review of Voltammetric Methods since 2000. MEMBRANES 2022; 12:1225. [PMID: 36557132 PMCID: PMC9782681 DOI: 10.3390/membranes12121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This article presents advances in the electrochemical determination of hormones and steroids since 2000. A wide spectrum of techniques and working electrodes have been involved in the reported measurements in order to obtain the lowest possible limits of detection. The voltammetric and polarographic techniques, due to their sensitivity and easiness, could be used as alternatives to other, more complicated, analytical assays. Still, growing interest in designing a new construction of the working electrodes enables us to prepare new measurement procedures and obtain lower limits of detection. A brief description of the measured compounds has been presented, along with a comparison of the obtained results.
Collapse
|
5
|
Boonkaew S, Dettlaff A, Sobaszek M, Bogdanowicz R, Jönsson-Niedziółka M. Electrochemical determination of neurotransmitter serotonin using boron/nitrogen co-doped diamond-graphene nanowall-structured particles. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Kumar P, Soni I, Jayaprakash GK, Flores-Moreno R. Studies of Monoamine Neurotransmitters at Nanomolar Levels Using Carbon Material Electrodes: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5782. [PMID: 36013918 PMCID: PMC9415512 DOI: 10.3390/ma15165782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Neurotransmitters (NTs) with hydroxyl groups can now be identified electrochemically, utilizing a variety of electrodes and voltammetric techniques. In particular, in monoamine, the position of the hydroxyl groups might alter the sensing properties of a certain neurotransmitter. Numerous research studies using electrodes modified on their surfaces to better detect specific neurotransmitters when other interfering factors are present are reviewed to improve the precision of these measures. An investigation of the monoamine neurotransmitters at nanoscale using electrochemical methods is the primary goal of this review article. It will be used to determine which sort of electrode is ideal for this purpose. The use of carbon materials, such as graphite carbon fiber, carbon fiber micro-electrodes, glassy carbon, and 3D printed electrodes are only some of the electrodes with surface modifications that can be utilized for this purpose. Electrochemical methods for real-time detection and quantification of monoamine neurotransmitters in real samples at the nanomolar level are summarized in this paper.
Collapse
Affiliation(s)
- Pankaj Kumar
- Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Solan 173229, India
| | - Isha Soni
- Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Solan 173229, India
| | - Gururaj Kudur Jayaprakash
- Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Solan 173229, India
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Bangalore 560064, India
| | - Roberto Flores-Moreno
- Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Mexico
| |
Collapse
|
7
|
Mohiuddin AK, Jeon S. Highly efficient Ag doped δ-MnO 2 decorated graphene: Comparison and application in electrochemical detection of H 2O 2. APPLIED SURFACE SCIENCE 2022; 592:153162. [PMID: 35370331 PMCID: PMC8959659 DOI: 10.1016/j.apsusc.2022.153162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Cytotoxic H2O2 is an inevitable part of our life, even during this contemporary pandemic COVID-19. Personal protective equipment of the front line fighter against coronavirus could be sterilized easily by H2O2 for reuse. In this study, Ag doped δ-MnO2 nanorods supported graphene nanocomposite (denoted as Ag@δ-MnO2/G) was synthesized as a nonenzymatic electrochemical sensor for the sensitive detection of H2O2. The ternary nanocomposite has overcome the poor electrical conductivity of δ-MnO2 and also the severe aggregation of Ag NPs. Furthermore, δ-MnO2/G provided a rougher surface and large numbers of functional groups for doping more numbers of Ag atoms, which effectively modulate the electronic properties of the nanocomposite. As a result, electroactive surface area and electrical conductivity of Ag@δ-MnO2/G increased remarkably as well as excellent catalytic activity observed towards H2O2 reduction. The modified glassy carbon electrode exhibited fast amperometric response time (<2 s) in H2O2 determination. The limit of detection was calculated as 68 nM in the broad linear range (0.005-90.64 mM) with high sensitivity of 104.43 µA mM-1 cm-2. No significant interference, long-term stability, excellent reproducibility, satisfactory repeatability, practical applicability towards food samples and wastewater proved the efficiency of the proposed sensor.
Collapse
Affiliation(s)
- Abdul Kader Mohiuddin
- Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seungwon Jeon
- Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
8
|
Zheng Y, Zhou Q, Yang Y, Chen X, Wang C, Zheng X, Gao L, Yang C. Full-Color Long-Lived Room Temperature Phosphorescence in Aqueous Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201223. [PMID: 35373912 DOI: 10.1002/smll.202201223] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Long-lived room temperature phosphorescence (RTP) materials are widely utilized in the field of biological and chemical sensing, due to their unique characteristics of long-lived luminescence and no background autofluorescence. However, the realization of full-color RTP in aqueous solution still remains a great challenge. Herein, a feasible strategy for achieving high stability and full-color RTP of carbon dots (CDs)-based composite materials in aqueous environment is reported by constructing a rigid hydrogen bonds' network. The obtained m,p-CDs@CA composite materials exhibit deep-blue RTP with phosphorescence quantum yield of 23.2% and lifetime of 1.74 s, and the afterglow can last for over 12 s. More importantly, the m,p-CDs@CA composite materials are desirable in the detection of biomarkers, because of excellent stability, dispersion, and long-lived RTP properties. The m,p-CDs@CA suspension also displays excellent sensitivity, and a limitation of detection as low as 5.61 and 550 nm for biomarkers 5-hydroxyindole-3-acetic acid (HIAA) and serotonin (5-hydroxytryptamine, HT), respectively. Meanwhile, the sensing performance exhibits excellent selectivity even in the presence of other competitive species in blood plasma and urine. With superior selectivity, the long-lived phosphorescence probe based on m,p-CDs@CA suspension can be as an effective biomarker for carcinoid identification, which has potential application in clinical analysis.
Collapse
Affiliation(s)
- Yan Zheng
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Qian Zhou
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Yan Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Xiaohong Chen
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Chang Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Xian Zheng
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Liang Gao
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
9
|
Joseph T, Thomas T, Thomas J, Thomas N. The effect of different GO reduction strategies on the lower level electrochemical determination of Epinephrine and Serotonin in quaternary mixtures. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Şimşek N, Tığ GA. Graphene Quantum Dot‐poly(L‐lysine)‐gold Nanoparticles Nanocomposite for Electrochemical Determination of Dopamine and Serotonin. ELECTROANAL 2021. [DOI: 10.1002/elan.202100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nazlı Şimşek
- Ankara University Faculty of Science, Department of Chemistry Ankara 06100 Turkey
| | - Gözde Aydoğdu Tığ
- Ankara University Faculty of Science, Department of Chemistry Ankara 06100 Turkey
| |
Collapse
|
11
|
Yin B, Zhai HL, Zhao BQ, Bi KX, Mi JY. Chemometrics-assisted simultaneous voltammetric determination of multiple neurotransmitters in human serum. Bioelectrochemistry 2021; 139:107739. [PMID: 33485156 DOI: 10.1016/j.bioelechem.2021.107739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
An electrochemical method combining chemometrics was developed for simultaneous quantification of multiple neurotransmitters including Dopamine (DA), Epinephrine (EP), Norepinephrine (NE) and serotonin (5-hydroxytryptamine, 5-HT) in human blood serum. A reduced graphene oxide modified glassy carbon electrode (RGO/GCE) was prepared via electrodeposition method. Differential pulse voltammetry (DPV) measurement of the four neurotransmitters showed that the voltammetric signals of the four targets overlapped significantly. To facilitate the simultaneous determination of the neurotransmitters, a chemometric tool of Tchebichef curve moment (TcM) method was proposed. The TcMs calculated from the voltammograms were used to establish the quantitative models by stepwise regression. The intra-day and inter-day precisions of the proposed method were less than 3.5% and 8.1%, respectively, and the recoveries were from 87.4% to 124%. The limit of detection (LOD) for DA, EP, NE and 5-HT were 74 nM, 104 nM, 84 nM and 97 nM, respectively. The above results indicated that the proposed approach is simple and reliable for the simultaneous determination of multiple neurotransmitters in human serum.
Collapse
Affiliation(s)
- Bo Yin
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; College of Chemistry & Chemical Engineering, Qinghai Normal University, Xining 810000, PR China
| | - Hong Lin Zhai
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| | - Bing Qiang Zhao
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Ke Xin Bi
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jia Ying Mi
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
12
|
Joseph T, Thomas J, Thomas T, Thomas N. Selective nanomolar electrochemical detection of serotonin, dopamine and tryptophan using TiO 2/RGO/CPE – influence of reducing agents. NEW J CHEM 2021. [DOI: 10.1039/d1nj03697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TiO2/RGO nanocomposites were synthesised via a simple one-pot hydrothermal method and used as a modifier in carbon paste electrode for the sensitive determination of serotonin.
Collapse
Affiliation(s)
- Teena Joseph
- Department of Chemistry, Nirmalagiri College, Kannur, Kerala, India
| | - Jasmine Thomas
- Department of Chemistry, Nirmalagiri College, Kannur, Kerala, India
| | - Tony Thomas
- Department of Chemistry, Deva Matha College, Kuravilangad, Kottayam, Kerala, India
| | - Nygil Thomas
- Department of Chemistry, Nirmalagiri College, Kannur, Kerala, India
| |
Collapse
|
13
|
Elugoke SE, Adekunle AS, Fayemi OE, Mamba BB, Sherif ESM, Ebenso EE. Carbon-Based Quantum Dots for Electrochemical Detection of Monoamine Neurotransmitters-Review. BIOSENSORS 2020; 10:E162. [PMID: 33142771 PMCID: PMC7693402 DOI: 10.3390/bios10110162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
Imbalance in the levels of monoamine neurotransmitters have manifested in severe health issues. Electrochemical sensors have been designed for their determination, with good sensitivity recorded. Carbon-based quantum dots have proven to be an important component of electrochemical sensors due to their high conductivity, low cytotoxicity and opto-electronic properties. The quest for more sensitive electrodes with cheaper materials led to the development of electrochemical sensors based on carbon-based quantum dots for the detection of neurotransmitters. The importance of monoamine neurotransmitters (NTs) and the good electrocatalytic activity of carbon and graphene quantum dots (CQDs and GQDs) make the review of the efforts made in the design of such sensors for monoamine NTs of huge necessity. The differences and the similarities between these two quantum dots are highlighted prior to a discussion of their application in electrochemical sensors over the last ten years. Compared to other monoamine NTs, dopamine (DA) was the most studied with GQDs and CQD-based electrochemical sensors.
Collapse
Affiliation(s)
- Saheed E. Elugoke
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa; (S.E.E.); (A.S.A.); (O.E.F.)
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
| | - Abolanle S. Adekunle
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa; (S.E.E.); (A.S.A.); (O.E.F.)
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife 220005, Nigeria
| | - Omolola E. Fayemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa; (S.E.E.); (A.S.A.); (O.E.F.)
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
| | - Bhekie B. Mamba
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa;
| | - El-Sayed M. Sherif
- Center of Excellence for Research in Engineering Materials (CEREM), King Saud University, P.O. Box 800, Al-Riyadh 11421, Saudi Arabia;
- Electrochemistry and Corrosion Laboratory, Department of Physical Chemistry, National Research Centre, Cairo 12622, Egypt
| | - Eno E. Ebenso
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa; (S.E.E.); (A.S.A.); (O.E.F.)
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Roodepoort 1710, South Africa
| |
Collapse
|
14
|
Elugoke SE, Adekunle AS, Fayemi OE, Mamba BB, Nkambule TT, Sherif EM, Ebenso EE. Progress in electrochemical detection of neurotransmitters using carbon nanotubes/nanocomposite based materials: A chronological review. NANO SELECT 2020. [DOI: 10.1002/nano.202000082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Saheed E. Elugoke
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Abolanle S. Adekunle
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry Obafemi Awolowo University PMB Ile‐Ife Nigeria
| | - Omolola E. Fayemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Bhekie B. Mamba
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - Thabo T.I. Nkambule
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - El‐Sayed M. Sherif
- Center of Excellence for Research in Engineering Materials (CEREM) King Saud University Al‐Riyadh Saudi Arabia
- Electrochemistry and Corrosion Laboratory Department of Physical Chemistry National Research Centre Dokki Cairo Egypt
| | - Eno E. Ebenso
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| |
Collapse
|
15
|
Mullani SB, Dhodamani AG, Shellikeri A, Mullani NB, Tawade AK, Tayade SN, Biscay J, Dennany L, Delekar SD. Structural refinement and electrochemical properties of one dimensional (ZnO NRs) 1-x(CNs) x functional hybrids for serotonin sensing studies. Sci Rep 2020; 10:15955. [PMID: 32994507 PMCID: PMC7524834 DOI: 10.1038/s41598-020-72756-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Herein, the efficient serotonin (5-HT) sensing studies have been conducted using the (ZnO NRs)1-x(CNs)x nanocomposites (NCs) having appropriate structural and electrochemical properties. Initially, the different compositions of ZnO nanorods (NRs), with varying content of carbon nanostructures (CNs=MWCNTs and RGO), are prepared using simple in-situ wet chemical method and thereafter these NCs have been characterized for physico-chemical properties in correlation to the 5-HT sensing activity. XRD Rietveld refinement studies reveal the hexagonal Wurtzite ZnO NRs oriented in (101) direction with space group 'P63mc' and both orientation as well as phase of ZnO NRs are also retained in the NCs due to the small content of CNs. The interconnectivity between the ZnO NRs with CNs through different functional moieties is also studied using FTIR analysis; while phases of the constituents are confirmed through Raman analysis. FESEM images of the bare/NCs show hexagonal shaped rods with higher aspect ratio (4.87) to that of others. BET analysis and EIS measurements reveal the higher surface area (97.895 m2/g), lower charge transfer resistance (16.2 kΩ) for the ZCNT 0.1 NCs to that of other NCs or bare material. Thereafter, the prepared NCs are deposited on the screen printed carbon electrode (SPCE) using chitosan as cross-linked agent for 5-HT sensing studies; conducted through cyclic voltammetry (CV) and square wave voltammetry (SWV) measurements. Among the various composites, ZCNT0.1 NCs based electrodes exhibit higher sensing activity towards 5-HT in accordance to its higher surface area, lower particle size and lower charge transfer resistance. SWV measurements provide a wide linear response range (7.5-300 μM); lower limit of detection (0.66 μM), excellent limit of quantification (2.19 μM) and good reproducibility to ZCNT 0.1 NCs as compared to others for 5-HT sensing studies.
Collapse
Affiliation(s)
- Sajid B Mullani
- Department of Chemistry, Shivaji University, Kolhapur, MS, 416004, India
| | - Ananta G Dhodamani
- Department of Chemistry, Shivaji University, Kolhapur, MS, 416004, India
| | - Annadanesh Shellikeri
- Department of Electrical and Computer Engineering, Florida A&M University-Florida State University, Tallahassee, FL, 32310-6046, USA
- Aero-Propulsion, Mechatronics and Energy Centre, Florida State University, Tallahassee, FL, 32310-6046, USA
| | - Navaj B Mullani
- Department of Advanced Materials and Chemical Engineering, Hanyang University (ERICA), Ansan, 15588, South Korea
| | - Anita K Tawade
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, MS, India
| | - Shivaji N Tayade
- Department of Chemistry, Shivaji University, Kolhapur, MS, 416004, India
| | - Julien Biscay
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK
| | - Lynn Dennany
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK
| | - Sagar D Delekar
- Department of Chemistry, Shivaji University, Kolhapur, MS, 416004, India.
| |
Collapse
|
16
|
Zhihua L, Xue Z, Xiaowei H, Xiaobo Z, Jiyong S, Yiwei X, Xuetao H, Yue S, Xiaodong Z. Hypha-templated synthesis of carbon/ZnO microfiber for dopamine sensing in pork. Food Chem 2020; 335:127646. [PMID: 32731123 DOI: 10.1016/j.foodchem.2020.127646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 11/19/2022]
Abstract
Carbon/ZnO coaxial microfibers were synthesized with the hypha of Penicillium expansum as low-cost and green template. The SEM images, XRD and Raman spectra were used to characterize the morphology and chemical components of the prepared microfibers. The formation of the coaxial structure could be attributed to the attachment of Zn2+ onto the hypha surface through coordination and electrostatic interactions. Sensing performance of the carbon/ZnO microfibers toward Dopamine (DA) were evaluated by dropping method. Results showed that the proposed sensor exhibited good selectivity, reproducibility, and stability with a detection limit of 0.106 μM. Two linear ranges were obtained from 0 to 50 and 50 to 300 μM. The practicality of the carbon/ZnO microfibers was supported by the successful detection of DA in pork with recovery ranging from 96.85% to 104.51%. Based on the excellent electrochemical performance and easy preparation, the proposed sensor provides a promising method for determination of DA.
Collapse
Affiliation(s)
- Li Zhihua
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhang Xue
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Huang Xiaowei
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Zou Xiaobo
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Shi Jiyong
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xu Yiwei
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Hu Xuetao
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Sun Yue
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhai Xiaodong
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| |
Collapse
|
17
|
Enhancement of fast scan cyclic voltammetry detection of dopamine with tryptophan-modified electrodes. PLoS One 2020; 15:e0235407. [PMID: 32649670 PMCID: PMC7351191 DOI: 10.1371/journal.pone.0235407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/15/2020] [Indexed: 11/19/2022] Open
Abstract
Fast scan cyclic voltammetry (FSCV) allows for real -time analysis of phasic neurotransmitter levels. Tryptophan (TRP) is an aromatic amino acid responsible for facilitating electron transfer kinetics in oxidoreductase enzymes. Previous work with TRP-modified electrodes showed increased sensitivity for cyclic voltammetry detection of dopamine (DA) when used with slower scan rates (0.05 V/s). Here, we outline an in vitro proof of concept for TRP-modified electrodes in FSCV detection of DA, and decreased sensitivity for ascorbic acid (AA). TRP-modified electrodes had a limit of detection (LOD) for DA of 2.480 ± 0.343 nM compared to 8.348 ± 0.405 nM for an uncoated electrode. Selectivity for DA/ascorbic acid (AA) was 1.107 ± 0.3643 for uncoated and 15.57 ± 4.184 for TRP-modified electrodes. Additionally, these TRP-modified electrodes demonstrated reproducibility when exposed to extended cycling. TRP-modified electrodes will provide an effective modification to increase sensitivity for DA.
Collapse
|
18
|
Ghanbari K, Bonyadi S. An electrochemical sensor based on Pt nanoparticles decorated over-oxidized polypyrrole/reduced graphene oxide nanocomposite for simultaneous determination of two neurotransmitters dopamine and 5-Hydroxy tryptamine in the presence of ascorbic acid. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1766785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Khadijeh Ghanbari
- Department of Chemistry, Faculty of Physics and Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Sepideh Bonyadi
- Department of Chemistry, Faculty of Physics and Chemistry, School of Science, Alzahra University, Tehran, Iran
| |
Collapse
|
19
|
Graphene oxide and electropolymerized p-aminobenzenesulfonic acid mixed film used as dopamine and serotonin electrochemical sensor. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02559-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Gorduk O. Differential Pulse Voltammetric Determination of Serotonin Using an Acid-Activated Multiwalled Carbon Nanotube – Over-Oxidized Poly(3,4-ethylenedioxythiophene) Modified Pencil Graphite Electrode. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1693583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ozge Gorduk
- Faculty of Arts & Science, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
21
|
Shahid MM, Rameshkumar P, Numan A, Shahabuddin S, Alizadeh M, Khiew PS, Chiu WS. A cobalt oxide nanocubes interleaved reduced graphene oxide nanocomposite modified glassy carbon electrode for amperometric detection of serotonin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:388-395. [DOI: 10.1016/j.msec.2019.02.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 12/27/2022]
|
22
|
A review on electrochemical detection of serotonin based on surface modified electrodes. Biosens Bioelectron 2018; 107:76-93. [DOI: 10.1016/j.bios.2018.02.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022]
|
23
|
Dinesh B, Veeramani V, Chen SM, Saraswathi R. In situ electrochemical synthesis of reduced graphene oxide-cobalt oxide nanocomposite modified electrode for selective sensing of depression biomarker in the presence of ascorbic acid and dopamine. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Veselova IA, Sergeeva EA, Makedonskaya MI, Eremina OE, Kalmykov SN, Shekhovtsova TN. Methods for determining neurotransmitter metabolism markers for clinical diagnostics. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934816120108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Ran G, Chen X, Xia Y. Electrochemical detection of serotonin based on a poly(bromocresol green) film and Fe3O4 nanoparticles in a chitosan matrix. RSC Adv 2017. [DOI: 10.1039/c6ra25639b] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A composite film containing poly(bromocresol green), magnetic nanoparticles and multiwalled carbon nanotubes was fabricated for the sensitive determination of serotonin.
Collapse
Affiliation(s)
- Gu Ran
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir
- Chongqing Three Georges University
- Wanzhou 404100
- P. R. China
| | - Xing Chen
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir
- Chongqing Three Georges University
- Wanzhou 404100
- P. R. China
| | - Ying Xia
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir
- Chongqing Three Georges University
- Wanzhou 404100
- P. R. China
| |
Collapse
|
26
|
Ribeiro JA, Fernandes PM, Pereira CM, Silva F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 2016; 160:653-679. [DOI: 10.1016/j.talanta.2016.06.066] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
|
27
|
Reddaiah K, Madhusudana Reddy T, Venkata Ramana D, Subba Rao Y. Poly-Alizarin red S/multiwalled carbon nanotube modified glassy carbon electrode for the boost up of electrocatalytic activity towards the investigation of dopamine and simultaneous resolution in the presence of 5-HT: A voltammetric study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:506-17. [PMID: 26952453 DOI: 10.1016/j.msec.2015.12.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
|
28
|
Zhihua L, Xucheng Z, Kun W, Xiaobo Z, Jiyong S, Xiaowei H, Holmes M. A novel sensor for determination of dopamine in meat based on ZnO-decorated reduced graphene oxide composites. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Uzun D, Balaban Gündüzalp A, Hasdemir E. Selective determination of dopamine in the presence of uric acid and ascorbic acid by N,N′-bis(indole-3-carboxaldimine)-1,2-diaminocyclohexane thin film modified glassy carbon electrode by differential pulse voltammetry. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.03.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Detection of 5-hydroxytryptamine (5-HT) in vitro using a hippocampal neuronal network-based biosensor with extracellular potential analysis of neurons. Biosens Bioelectron 2015; 66:572-8. [DOI: 10.1016/j.bios.2014.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 11/23/2022]
|
31
|
Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly(p-aminobenzenesulfonate). Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1454-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Cesarino I, Galesco HV, Machado SA. Determination of serotonin on platinum electrode modified with carbon nanotubes/polypyrrole/silver nanoparticles nanohybrid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:49-54. [DOI: 10.1016/j.msec.2014.03.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/17/2014] [Accepted: 03/17/2014] [Indexed: 11/30/2022]
|
33
|
Gupta P, Goyal RN. Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonin. Talanta 2014; 120:17-22. [DOI: 10.1016/j.talanta.2013.11.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 10/26/2022]
|
34
|
Patel AN, Tan SY, Miller TS, Macpherson JV, Unwin PR. Comparison and Reappraisal of Carbon Electrodes for the Voltammetric Detection of Dopamine. Anal Chem 2013; 85:11755-64. [DOI: 10.1021/ac401969q] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anisha N. Patel
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Sze-yin Tan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Thomas S. Miller
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Patrick R. Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
35
|
Hasanzadeh M, Shadjou N, Omidinia E. A novel electroanalytical method for simultaneous detection of two neurotransmitter dopamine and serotonin in human serum. J Neurosci Methods 2013; 219:52-60. [DOI: 10.1016/j.jneumeth.2013.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 11/26/2022]
|
36
|
Babaei A, Taheri AR, Aminikhah M. Nanomolar simultaneous determination of levodopa and serotonin at a novel carbon ionic liquid electrode modified with Co(OH)2 nanoparticles and multi-walled carbon nanotubes. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.11.121] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
A simple but highly sensitive and selective calixarene-based voltammetric sensor for serotonin. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.09.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Patel AN, Unwin PR, Macpherson JV. Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond. Phys Chem Chem Phys 2013; 15:18085-92. [DOI: 10.1039/c3cp53513d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Glassy carbon electrode modified with poly(dibromofluorescein) for the selective determination of dopamine and uric acid in the presence of ascorbic acid. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0821-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
YU ZHANGYU, LI XIAOCHUN, WANG XUELIANG, MA XINYING, LI XIA, CAO KEWEI. Voltammetric determination of dopamine and norepinphrine on a glassy carbon electrode modified with poly (L-aspartic acid). J CHEM SCI 2012. [DOI: 10.1007/s12039-011-0179-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Iqbal Z, Lai EP, Avis TJ. Antimicrobial effect of polydopamine coating on Escherichia coli. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34825j] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Hu L, Huo K, Chen R, Gao B, Fu J, Chu PK. Recyclable and High-Sensitivity Electrochemical Biosensing Platform Composed of Carbon-Doped TiO2 Nanotube Arrays. Anal Chem 2011; 83:8138-44. [DOI: 10.1021/ac201639m] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Liangsheng Hu
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Kaifu Huo
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Rongsheng Chen
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Biao Gao
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jijiang Fu
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Paul K. Chu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
43
|
Abbaspour A, Noori A. A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens Bioelectron 2011; 26:4674-80. [PMID: 21715153 DOI: 10.1016/j.bios.2011.04.061] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 02/05/2023]
Abstract
An electrochemical sensor for simultaneous quantification of serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA) using a β-cyclodextrin/poly(N-acetylaniline)/carbon nanotube composite modified carbon paste electrode has been developed. Synergistic effect of multi-walled carbon nanotube (MWCNT) in addition to the pre-concentrating effect of β-cyclodextrin (β-CD) as well as its different inclusion complex stability with 5-HT and DA was used to construct an electrochemical sensor for quantification of these important neurotransmitters. The overlapping anodic peaks of 5-HT and DA at 428 mV on bare electrode resolved in two well-defined voltammetric peaks at 202 and 363 mV vs. Ag/AgCl respectively. The oxidation mechanism of 5-HT and DA on the surface of the electrode was investigated by cyclic voltammetry and it was found that the electrode processes are pH dependent and electrochemical oxidation of 5-HT is totally irreversible while the electrode gave a more reversible process to DA. Under optimized conditions, linear calibration curves were obtained in the range of about 4-200 μM with a detection limits down to sub-μM levels (S/N=3) after 20-s accumulation, for both. The proposed sensor was shown to be remarkably selective for 5-HT and DA in matrices containing different species including ascorbic acid and uric acid. The suitability of the developed method was tested for the determination of 5-HT and DA in the Randox Synthetic Plasma samples and acceptable recoveries were obtained for a set of spiked samples.
Collapse
Affiliation(s)
- Abdolkarim Abbaspour
- Chemistry Department, College of Sciences, Shiraz University, Shiraz 7145685464, Iran.
| | | |
Collapse
|
44
|
Łuczak T, Bełtowska-Brzezinska M. Gold electrodes modified with gold nanoparticles and thio compounds for electrochemical sensing of dopamine alone and in presence of potential interferents. A comparative study. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0614-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Enhanced conductivity of a glassy carbon electrode modified with a graphene-doped film of layered double hydroxides for selectively sensing of dopamine. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0593-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Perry M, Li Q, Kennedy RT. Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta 2009; 653:1-22. [PMID: 19800472 PMCID: PMC2759352 DOI: 10.1016/j.aca.2009.08.038] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 12/18/2022]
Abstract
Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluble gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest.
Collapse
Affiliation(s)
- Maura Perry
- University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|
47
|
Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Mikrochim Acta 2009. [DOI: 10.1007/s00604-009-0147-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|