1
|
Drobysh M, Liustrovaite V, Kanetski Y, Brasiunas B, Zvirbliene A, Rimkute A, Gudas D, Kucinskaite-Kodze I, Simanavicius M, Ramanavicius S, Slibinskas R, Ciplys E, Plikusiene I, Ramanavicius A. Electrochemical biosensing based comparative study of monoclonal antibodies against SARS-CoV-2 nucleocapsid protein. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168154. [PMID: 37923263 DOI: 10.1016/j.scitotenv.2023.168154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
In this study, we are reporting an electrochemical biosensor for the determination of three different clones of monoclonal antibodies (mAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recombinant nucleocapsid protein (rN). The nucleocapsid protein was chosen as a system component identifying and discriminating antibodies that occur after virus infection instead of S protein used in serological tests to measure antibodies raised after vaccination and infection. The sensing platform was based on a screen-printed carbon electrode (SPCE) covered with gold nanoparticles (AuNP) and subsequently modified with a self-assembled monolayer (SAM) to ensure the covalent immobilization of the rN. The interaction between the protein and three clones of mAbs against SARS-CoV-2 rN with clone numbers 4G6, 7F10, and 1A6, were electrochemically registered in the range of concentrations. Three techniques, cyclic voltammetry (CV), differential pulse voltammetry (DPV), and pulse amperometric detection (PAD) were used for the detection. A gradual change in the responses with an increase in mAbs concentration for all techniques was observed. To assess the performance of the developed electrochemical biosensor, 'complexation constant' (KC), limit of detection (LOD), and limit of quantification (LOQ) were calculated for all assessed clones of mAbs and all used techniques. Our results indicated that DPV possessing higher fitting accuracy illustrated more significant differences in KC constants and LOD/LOQ values. According to the DPV results, 7F10 clone was characterized with the highest KC value of 1.47 ± 0.07 μg/mL while the lowest LOD and LOQ values belonged to the 4G6 clone and equaled 0.08 ± 0.01 and 0.25 ± 0.01 μg/mL, respectively. Overall, these results demonstrate the potential of electrochemical techniques for the detection and distinguishing of different clones of mAbs against SARS-CoV-2 nucleocapsid protein.
Collapse
Affiliation(s)
- Maryia Drobysh
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Viktorija Liustrovaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Yahor Kanetski
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Benediktas Brasiunas
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Aurelija Zvirbliene
- Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | - Agne Rimkute
- Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | - Dainius Gudas
- Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | | | | | - Simonas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Rimantas Slibinskas
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania; Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | - Evaldas Ciplys
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania; Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | - Ieva Plikusiene
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania.
| |
Collapse
|
2
|
Khiari O, Bouzemi N, Sánchez-Montero JM, Alcántara AR. Easy and Versatile Technique for the Preparation of Stable and Active Lipase-Based CLEA-like Copolymers by Using Two Homofunctional Cross-Linking Agents: Application to the Preparation of Enantiopure Ibuprofen. Int J Mol Sci 2023; 24:13664. [PMID: 37686470 PMCID: PMC10487927 DOI: 10.3390/ijms241713664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
An easy and versatile method was designed and applied successfully to obtain access to lipase-based cross-linked-enzyme aggregate-like copolymers (CLEA-LCs) using one-pot, consecutive cross-linking steps using two types of homobifunctional cross-linkers (glutaraldehyde and putrescine), mediated with amine activation through pH alteration (pH jump) as a key step in the process. Six lipases were utilised in order to assess the effectiveness of the technique, in terms of immobilization yields, hydrolytic activities, thermal stability and application in kinetic resolution. A good retention of catalytic properties was found for all cases, together with an important thermal and storage stability improvement. Particularly, the CLEA-LCs derived from Candida rugosa lipase showed an outstanding behaviour in terms of thermostability and capability for catalysing the enantioselective hydrolysis of racemic ibuprofen ethyl ester, furnishing the eutomer (S)-ibuprofen with very high conversion and enantioselectivity.
Collapse
Affiliation(s)
- Oussama Khiari
- Eco Compatible Asymmetric Catalysis Laboratory (LCAE), Department of Chemistry, Badji Mokhtar University, Annaba 23000, Algeria; (O.K.); (N.B.)
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy Faculty, Complutense University of Madrid (UCM), Ciudad Universitaria, Plaza de Ramon y Cajal, s/n., 28040 Madrid, Spain
| | - Nassima Bouzemi
- Eco Compatible Asymmetric Catalysis Laboratory (LCAE), Department of Chemistry, Badji Mokhtar University, Annaba 23000, Algeria; (O.K.); (N.B.)
| | - José María Sánchez-Montero
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy Faculty, Complutense University of Madrid (UCM), Ciudad Universitaria, Plaza de Ramon y Cajal, s/n., 28040 Madrid, Spain
| | - Andrés R. Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy Faculty, Complutense University of Madrid (UCM), Ciudad Universitaria, Plaza de Ramon y Cajal, s/n., 28040 Madrid, Spain
| |
Collapse
|
3
|
Gangwar R, Ray D, Rao KT, Khatun S, Subrahmanyam C, Rengan AK, Vanjari SRK. Plasma Functionalized Carbon Interfaces for Biosensor Application: Toward the Real-Time Detection of Escherichia coli O157: H7. ACS OMEGA 2022; 7:21025-21034. [PMID: 35755381 PMCID: PMC9219096 DOI: 10.1021/acsomega.2c01802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nonthermal plasma, a nondestructive, fast, and highly reproducible surface functionalization technique, was used to introduce desired functional groups onto the surface of carbon powder. The primary benefit is that it is highly scalable, with a high throughput, making it easily adaptable to bulk production. The plasma functionalized carbon powder was later used to create highly specific and low-cost electrochemical biosensors. The functional groups on the carbon surface were confirmed using NH3-temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) analysis. In addition, for biosensing applications, a novel, cost-effective, robust, and scalable electrochemical sensor platform comprising in-house-fabricated carbon paste electrodes and a miniaturized E-cell was developed. Biotin-Streptavidin was chosen as a model ligand-analyte combination to demonstrate its applicability toward biosensor application, and then, the specific identification of the target Escherchia coli O157:H7 was accomplished using an anti-E. coli O157:H7 antibody-modified electrode. The proposed biosensing platform detected E. coli O157:H7 in a broad linear range of (1 × 10-1-1 × 106) CFU/mL, with a limit of detection (LOD) of 0.1 CFU/mL. In addition, the developed plasma functionalized carbon paste electrodes demonstrated high specificity for the target E. coli O157:H7 spiked in pond water, making them ideal for real-time bacterial detection.
Collapse
Affiliation(s)
- Rahul Gangwar
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Debjyoti Ray
- Department
of Chemistry, Indian Institute of Technology
Hyderabad, Hyderabad 502284, India
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, NT 00000, Hong Kong SAR, China
| | - Karri Trinadha Rao
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Sajmina Khatun
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | | | - Aravind Kumar Rengan
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Siva Rama Krishna Vanjari
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| |
Collapse
|
4
|
Savin R, Blanck C, Benzaamia NO, Boulmedais F. Optimization of Nanohybrid Biosensors Based on Electro-Crosslinked Tannic Acid Capped Nanoparticles/Enzyme. Molecules 2022; 27:molecules27103309. [PMID: 35630787 PMCID: PMC9144895 DOI: 10.3390/molecules27103309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Enzymes/Nanoparticles (NPs) bioconjugates are massively used nowadays to develop thin films for optical and electrochemical biosensors. Nevertheless, their full characterization as a thin coating onto electrodes remains little discussed, in particular the influence of NPs size and enzyme/NPs ratio used in the electrodeposition solution. In this study, GOx (160 kDa) and HRP (44 kDa) were used in association with tannic acid capped gold NPs (a series with sizes from 7 to 40 nm) to electrodeposit biosensor coatings, sensitive towards glucose and H2O2, respectively. The electrodeposition process was based on a mussel-inspired electro-crosslinking between gallol moieties of tannic acid (at the surface of NPs) and amine moieties of the enzymes. On one hand, the sensitivity of the GOx/NPs coatings depends strongly on the NP size and the enzyme/NPs molar ratio of the electrodeposition solution. An optimal sensitivity was obtained by electrodeposition of 11 nm NPs at a GOx/NPs molar ratio close to the theoretical value of the enzyme monolayer. On the other hand, a modest influence of the NPs size was found on the sensitivity in the case of the electrodeposited HRP/NPs coatings, reaching a plateau at the HRP/NPs molar ratio close to the value of the theoretical enzyme monolayer. In both cases, the enzyme/NPs molar ratio played a role in the sensitivity. To fully understand the parameters driving the biosensor sensitivity, a comprehensive evaluation of the colloidal state of the bioconjugates is proposed here.
Collapse
Affiliation(s)
- Rémy Savin
- Institut Charles Sadron, University of Strasbourg CNRS, UPR 22, 67034 Strasbourg, France; (R.S.); (C.B.); (N.-O.B.)
| | - Christian Blanck
- Institut Charles Sadron, University of Strasbourg CNRS, UPR 22, 67034 Strasbourg, France; (R.S.); (C.B.); (N.-O.B.)
| | - Nour-Ouda Benzaamia
- Institut Charles Sadron, University of Strasbourg CNRS, UPR 22, 67034 Strasbourg, France; (R.S.); (C.B.); (N.-O.B.)
| | - Fouzia Boulmedais
- Institut Charles Sadron, University of Strasbourg CNRS, UPR 22, 67034 Strasbourg, France; (R.S.); (C.B.); (N.-O.B.)
- International Center for Frontier Research in Chemistry, 67083 Strasbourg, France
- Correspondence:
| |
Collapse
|
5
|
Sakalauskiene L, Popov A, Kausaite-Minkstimiene A, Ramanavicius A, Ramanaviciene A. The Impact of Glucose Oxidase Immobilization on Dendritic Gold Nanostructures on the Performance of Glucose Biosensors. BIOSENSORS 2022; 12:bios12050320. [PMID: 35624621 PMCID: PMC9139151 DOI: 10.3390/bios12050320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/01/2022]
Abstract
In recent years, many efforts have been made to develop rapid, sensitive and user-friendly glucose biosensors for monitoring blood glucose concentration in patients. In this study, the electrochemical glucose biosensors based on graphite rod (GR) electrode electrochemically modified with dendritic gold nanostructures (DGNs) and glucose oxidase (GOx) were developed. Phenazine methosulfate was used as a soluble redox mediator. Three GOx immobilization methods: adsorption on DGNs and cross-linking with glutaraldehyde (GA) vapour (GA-GOx/DGNs/GR), covalent immobilization on DGNs modified with 11-mercaptoundecanoic acid self-assembled monolayer (SAM) (GOx-SAM/DGNs/GR) and covalent immobilization on SAM with additional cross-linking with GA vapour (GA-GOx-SAM/DGNs/GR), were used. It was determined that GA significantly improved the stability of the enzyme layer. The difference of maximal current generated during the enzymatic reaction (ΔImax) equal to 272.06 ± 8.69 µA was obtained using a biosensor based on GA-GOx/DGNs/GR electrodes. However, the highest ΔImax equal to 384.20 ± 16.06 µA was obtained using GA-GOx-SAM/DGNs/GR electrode. ΔImax for biosensors based on the GA-GOx-SAM/DGNs/GR electrode was 1.41 times higher than for the GA-GOx/DGNs/GR, whereas the linear dynamic range from 0.1 to 10 mM was the same using all three GOx immobilization methods. The limit of detection using GA-GOx-SAM/DGNs/GR and GA-GOx/DGNs/GR electrodes was 0.019 and 0.022 mM, respectively. The ability to detect glucose in the serum by developed biosensors was evaluated.
Collapse
Affiliation(s)
- Laura Sakalauskiene
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (L.S.); (A.P.); (A.K.-M.); (A.R.)
| | - Anton Popov
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (L.S.); (A.P.); (A.K.-M.); (A.R.)
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu Str. 5, LT-08406 Vilnius, Lithuania
| | - Asta Kausaite-Minkstimiene
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (L.S.); (A.P.); (A.K.-M.); (A.R.)
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu Str. 5, LT-08406 Vilnius, Lithuania
| | - Arunas Ramanavicius
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (L.S.); (A.P.); (A.K.-M.); (A.R.)
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (L.S.); (A.P.); (A.K.-M.); (A.R.)
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu Str. 5, LT-08406 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
6
|
Glucose Biosensor Based on Dendritic Gold Nanostructures Electrodeposited on Graphite Electrode by Different Electrochemical Methods. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080188] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this research, we have demonstrated a one-step electrochemical deposition of dendritic gold nanostructures (DGNs) on a graphite rod (GR) electrode without any template, seeds, surfactants, or stabilizers. Three electrochemical methods, namely, constant potential amperometry (CPA), pulse amperometry, and differential pulse voltammetry, were used for DGN synthesis on GR electrode and further application in enzymatic glucose biosensors. Formed gold nanostructures, including DGNs, were characterized by a field emission scanning electron microscopy. The optimal concentration of HAuCl4 (6.0 mmol L−1), duration of DGNs synthesis (400 s), electrodeposition potential (−0.4 V), and the best electrochemical method (CPA) were determined experimentally. Then the enzyme, glucose oxidase, was adsorbed on the surface of DGNs and covalently cross-linked with glutaraldehyde vapor. The enzymatic glucose biosensor based on DGNs electrodeposited at optimal conditions and modified with glucose oxidase showed a quick response (less than 3 s), a high saturation current (291 μA), appropriate linear range (up to 9.97 mmol L−1 of glucose, R2 = 0.9994), good repeatability (RSD 2.4, 2.2 and 1.5% for 2, 30, 97 mmol L−1 of glucose), low limit of detection (0.059 mmol L−1, S/N = 3) and good stability. Additionally, this biosensor could be successfully applied for glucose determination in real samples with good accuracy. These results proved the principle of enzymatic glucose biosensor development based on DGNs as the basis for further investigations.
Collapse
|
7
|
Dronina J, Bubniene US, Ramanavicius A. The application of DNA polymerases and Cas9 as representative of DNA-modifying enzymes group in DNA sensor design (review). Biosens Bioelectron 2020; 175:112867. [PMID: 33303323 DOI: 10.1016/j.bios.2020.112867] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022]
Abstract
Rapid detection of nucleic acids (DNA or RNA) by inexpensive, selective, accurate, and highly sensitive methods is very important for biosensors. DNA-sensors based on DNA-modifying enzymes for fast determination and monitoring of pathogenic (Zika, Dengue, SARS-Cov-2 (inducer of COVID-19), human papillomavirus, HIV, etc.) viruses and diagnosis of virus-induced diseases is a key factor of this overview. Recently, DNA-modifying enzymes (Taq DNA polymerase, Phi29 DNA polymerase) have been widely used for the diagnosis of virus or pathogenic disease by gold standard (PCR, qPCR, RT-qPCR) methods, therefore, alternative methods have been reviewed. The main mechanisms of DNA metabolism (replication cycle, amplification) and the genomeediting tool CRISPR-Cas9 are purposefully discussed in order to address strategic possibility to design DNA-sensors based on immobilized DNA-enzymes. However, the immobilization of biologically active proteins on a gold carrier technique with the ability to detect viral or bacterial nucleic acids is individual for each DNA-modifying enzyme group, due to a different number of active sites, C and N terminal locations and arrangement, therefore, individual protocols based on the 'masking' of active sites should be elaborated for each enzyme.
Collapse
Affiliation(s)
- Julija Dronina
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, LT-03225, Vilnius, Lithuania
| | - Urte Samukaite Bubniene
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, LT-03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, LT-03225, Vilnius, Lithuania.
| |
Collapse
|
8
|
Sabu C, Henna T, Raphey V, Nivitha K, Pramod K. Advanced biosensors for glucose and insulin. Biosens Bioelectron 2019; 141:111201. [DOI: 10.1016/j.bios.2019.03.034] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
|
9
|
Ning YN, Xiao BL, Niu NN, Moosavi-Movahedi AA, Hong J. Glucose Oxidase Immobilized on a Functional Polymer Modified Glassy Carbon Electrode and Its Molecule Recognition of Glucose. Polymers (Basel) 2019; 11:E115. [PMID: 30960099 PMCID: PMC6401679 DOI: 10.3390/polym11010115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 11/25/2022] Open
Abstract
In the present study, a glucose oxidase (GluOx) direct electron transfer was realized on an aminated polyethylene glycol (mPEG), carboxylic acid functionalized multi-walled carbon nanotubes (fMWCNTs), and ionic liquid (IL) composite functional polymer modified glassy carbon electrode (GCE). The amino groups in PEG, carboxyl groups in multi-walled carbon nanotubes, and IL may have a better synergistic effect, thus more effectively adjust the hydrophobicity, stability, conductivity, and biocompatibility of the composite functional polymer film. The composite polymer membranes were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectrophotometer, fluorescence spectroscopy, electrochemical impedance spectroscopy (EIS), and transmission electron microscopy (TEM), respectively. In 50 mM, pH 7.0 phosphate buffer solution, the formal potential and heterogeneous electron transfer constant (ks) of GluOx on the composite functional polymer modified GCE were -0.27 V and 6.5 s-1, respectively. The modified electrode could recognize and detect glucose linearly in the range of 20 to 950 μM with a detection limit of 0.2 μM. The apparent Michaelis-Menten constant (Kmapp) of the modified electrode was 143 μM. The IL/mPEG-fMWCNTs functional polymer could preserve the conformational structure and catalytic activity of GluOx and lead to high sensitivity, stability, and selectivity of the biosensors for glucose recognition and detection.
Collapse
Affiliation(s)
- Yan-Na Ning
- School of Life Sciences, Henan University, JinMing Road, Kaifeng 475000, China.
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, JinMing Road, Kaifeng 475000, China.
| | - Nan-Nan Niu
- School of Life Sciences, Henan University, JinMing Road, Kaifeng 475000, China.
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Enquelab Avenue, Tehran 1417614418, Iran.
| | - Jun Hong
- School of Life Sciences, Henan University, JinMing Road, Kaifeng 475000, China.
| |
Collapse
|
10
|
Radomska M, Rutkowska IA, Kowalewska B, Cox JA, Kulesza PJ. Development and kinetic characterization of hierarchical bioelectrocatalytic system utilizing a redox mediator, functionalized carbon nanotubes and an enzyme for glucose oxidation. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
A highly sensitive electrochemical detection of human chorionic gonadotropin on a carbon nano-onions/gold nanoparticles/polyethylene glycol nanocomposite modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Mohammadi F, Vesali-Naseh M, Khodadadi AA, Mortazavi Y. A Comparison of a Nanostructured Enzymeless Au/Fe2
O3
/MWCNTs/GCE Electrode and a GOx Modified One in Electrocatalytic Detection of Glucose. ELECTROANAL 2018. [DOI: 10.1002/elan.201800164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fatemeh Mohammadi
- Catalysis and Nanostructured Research Laboratory, School of Chemical Engineering; University of Tehran; Tehran Iran
| | - Masoud Vesali-Naseh
- Department of Chemical Engineering; Hamedan University of Technology (HUT); 65155 Hamedan Iran
| | - Abbas Ali Khodadadi
- Catalysis and Nanostructured Research Laboratory, School of Chemical Engineering; University of Tehran; Tehran Iran
| | - Yadollah Mortazavi
- Catalysis and Nanostructured Research Laboratory, School of Chemical Engineering; University of Tehran; Tehran Iran
| |
Collapse
|
13
|
Samoilova N, Krayukhina M, Naumkin A, Yamskov I. Eco-friendly preparation of a magnetic catalyst for glucose oxidation combining the properties of nanometal particles and specific enzyme. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2156-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Zeng X, Zhang Y, Du X, Li Y, Tang W. A highly sensitive glucose sensor based on a gold nanoparticles/polyaniline/multi-walled carbon nanotubes composite modified glassy carbon electrode. NEW J CHEM 2018. [DOI: 10.1039/c7nj04327a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The PTFE/GOx/AuNPs/PANI/MWCNTs/GCE glucose sensor possesses wide linear range, low detection limit, high sensitivity, which can measure the glucose in human serum and holds application potential.
Collapse
Affiliation(s)
- Xinping Zeng
- School of Life Science and Technology
- Tongji University
- Shanghai
- China
| | - Yazhou Zhang
- School of Chemistry Science and Technology
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- China
| | - Xiling Du
- School of Life Science and Technology
- Tongji University
- Shanghai
- China
| | - Yanfei Li
- Shanghai Zhoupu Hospital
- Shanghai University of Medicine and Health Sciences
- Shanghai 201318
- China
| | - Wenwei Tang
- School of Chemistry Science and Technology
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- China
| |
Collapse
|
15
|
Kochane T, Budriene S, Miasojedovas S, Ryskevic N, Straksys A, Maciulyte S, Ramanaviciene A. Polyurethane-gold and polyurethane-silver nanoparticles conjugates for efficient immobilization of maltogenase. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Dubey MK, Zehra A, Aamir M, Meena M, Ahirwal L, Singh S, Shukla S, Upadhyay RS, Bueno-Mari R, Bajpai VK. Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD): Current Updates. Front Microbiol 2017; 8:1032. [PMID: 28659876 PMCID: PMC5468390 DOI: 10.3389/fmicb.2017.01032] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 01/15/2023] Open
Abstract
Fungal glucose oxidase (GOD) is widely employed in the different sectors of food industries for use in baking products, dry egg powder, beverages, and gluconic acid production. GOD also has several other novel applications in chemical, pharmaceutical, textile, and other biotechnological industries. The electrochemical suitability of GOD catalyzed reactions has enabled its successful use in bioelectronic devices, particularly biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and enhancing pathogen defense response, thereby providing induced resistance in plants have also been reported. Moreover, the medical science, another emerging branch where GOD was recently reported to induce several apoptosis characteristics as well as cellular senescence by downregulating Klotho gene expression. These widespread applications of GOD have led to increased demand for more extensive research to improve its production, characterization, and enhanced stability to enable long term usages. Currently, GOD is mainly produced and purified from Aspergillus niger and Penicillium species, but the yield is relatively low and the purification process is troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the present review describes innovative methods of enhancing fungal GOD production by using genetic and non-genetic approaches in-depth along with purification techniques. The review also highlights current research progress in the cost effective production of GOD, including key advances, potential applications and limitations. Therefore, there is an extensive need to commercialize these processes by developing and optimizing novel strategies for cost effective GOD production.
Collapse
Affiliation(s)
- Manish K. Dubey
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Andleeb Zehra
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mohd Aamir
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mukesh Meena
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Laxmi Ahirwal
- Laboratory of Molecular Biology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Siddhartha Singh
- Laboratory of Molecular Biology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk UniversitySeoul, South Korea
| | - Ram S. Upadhyay
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Ruben Bueno-Mari
- Research and Development (R+D) Department, Laboratorios LokímicaValencia, Spain
| | - Vivek K. Bajpai
- Department of Applied Microbiology and Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
17
|
Mazar FM, Alijanianzadeh M, Molaeirad A, Heydari P. Development of Novel Glucose oxidase Immobilization on Graphene/Gold nanoparticles/Poly Neutral red modified electrode. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Chauhan N, Jain U, Gandotra R, Hooda V. Zeolites-AuNPs assembled interface towards amperometric biosensing of spermidine. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
German N, Ramanavicius A, Ramanaviciene A. Amperometric Glucose Biosensor Based on Electrochemically Deposited Gold Nanoparticles Covered by Polypyrrole. ELECTROANAL 2017. [DOI: 10.1002/elan.201600680] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Natalija German
- Department of Immunology; State Research Institute Center for Innovative Medicine; Santariskiu str. 5 LT- 08406 Vilnius Lithuania
| | - Arunas Ramanavicius
- Faculty of Chemistry and Geosciences; Vilnius University; Naugarduko 24 LT-03225 Vilnius Lithuania
- Department of Materials Science and Electronics, Semiconductor Physics Institute; State Research Institute Center for Physical Sciences and Technology; Savanoriu str. 231 LT-02300 Vilnius Lithuania
| | - Almira Ramanaviciene
- Department of Immunology; State Research Institute Center for Innovative Medicine; Santariskiu str. 5 LT- 08406 Vilnius Lithuania
- Faculty of Chemistry and Geosciences; Vilnius University; Naugarduko 24 LT-03225 Vilnius Lithuania
| |
Collapse
|
20
|
Feng R, Hu X, He C, Li X, Luo X. Electrochemical Determination of the p53 Tumor Suppressor Gene Using a Gold Nanoparticle-Graphene Nanocomposite Modified Glassy Carbon Electrode. ANAL LETT 2017. [DOI: 10.1080/00032719.2016.1178273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Rongrong Feng
- School of Chemistry and Chemical Engineering, Yan’an University, Yan’an, China
| | - Xiaoqin Hu
- School of Chemistry and Chemical Engineering, Yan’an University, Yan’an, China
| | - Caimei He
- School of Chemistry and Chemical Engineering, Yan’an University, Yan’an, China
| | - Xiaoxia Li
- School of Chemistry and Chemical Engineering, Yan’an University, Yan’an, China
| | - Xianwen Luo
- School of Chemistry and Chemical Engineering, Yan’an University, Yan’an, China
| |
Collapse
|
21
|
D’Souza AA, Kumari D, Banerjee R. Nanocomposite biosensors for point-of-care—evaluation of food quality and safety. NANOBIOSENSORS 2017. [PMCID: PMC7149521 DOI: 10.1016/b978-0-12-804301-1.00015-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nanosensors have wide applications in the food industry. Nanosensors based on quantum dots for heavy metal and organophosphate pesticides detection, and nanocomposites as indicators for shelf life of fish/meat products, have served as important tools for food quality and safety assessment. Luminescent labels consisting of NPs conjugated to aptamers have been popular for rapid detection of infectious and foodborne pathogens. Various detection technologies, including microelectromechanical systems for gas analytes, microarrays for genetically modified foods, and label-free nanosensors using nanowires, microcantilevers, and resonators are being applied extensively in the food industry. An interesting aspect of nanosensors has also been in the development of the electronic nose and electronic tongue for assessing organoleptic qualities, such as, odor and taste of food products. Real-time monitoring of food products for rapid screening, counterfeiting, and tracking has boosted ingenious, intelligent, and innovative packaging of food products. This chapter will give an overview of the contribution of nanotechnology-based biosensors in the food industry, ongoing research, technology advancements, regulatory guidelines, future challenges, and industrial outlook.
Collapse
|
22
|
Kakhki RM. Recent developments on the modification of graphite electrodes with nanoparticles. RUSS J APPL CHEM+ 2016. [DOI: 10.1134/s10704272160030204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Mehrotra P. Biosensors and their applications - A review. J Oral Biol Craniofac Res 2016; 6:153-9. [PMID: 27195214 PMCID: PMC4862100 DOI: 10.1016/j.jobcr.2015.12.002] [Citation(s) in RCA: 557] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022] Open
Abstract
The various types of biosensors such as enzyme-based, tissue-based, immunosensors, DNA biosensors, thermal and piezoelectric biosensors have been deliberated here to highlight their indispensable applications in multitudinous fields. Some of the popular fields implementing the use of biosensors are food industry to keep a check on its quality and safety, to help distinguish between the natural and artificial; in the fermentation industry and in the saccharification process to detect precise glucose concentrations; in metabolic engineering to enable in vivo monitoring of cellular metabolism. Biosensors and their role in medical science including early stage detection of human interleukin-10 causing heart diseases, rapid detection of human papilloma virus, etc. are important aspects. Fluorescent biosensors play a vital role in drug discovery and in cancer. Biosensor applications are prevalent in the plant biology sector to find out the missing links required in metabolic processes. Other applications are involved in defence, clinical sector, and for marine applications.
Collapse
|
24
|
Emerging Nanomaterials for Analytical Detection. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Muthurasu A, Ganesh V. Glucose oxidase stabilized fluorescent gold nanoparticles as an ideal sensor matrix for dual mode sensing of glucose. RSC Adv 2016. [DOI: 10.1039/c5ra22477b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple, facile and green route for the preparation of glucose oxidase stabilized simple Au NPs and fluorescent Au NPs for the dual mode bio-sensing application of glucose using colourimetric and electrochemical methods is demonstrated.
Collapse
Affiliation(s)
- A. Muthurasu
- Electrodics and Electrocatalysis (EEC) Division
- CSIR – Central Electrochemical Research Institute (CSIR – CECRI)
- Karaikudi-630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - V. Ganesh
- Electrodics and Electrocatalysis (EEC) Division
- CSIR – Central Electrochemical Research Institute (CSIR – CECRI)
- Karaikudi-630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
26
|
Zor E, Oztekin Y, Ramanaviciene A, Anusevicius Z, Voronovic J, Bingol H, Barauskas-Memenas D, Labanauskas L, Ramanavicius A. Evaluation of 1,10-phenanthroline-5,6-dione as redox mediator for glucose oxidase. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934816010044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Rungsawang T, Punrat E, Adkins J, Henry C, Chailapakul O. Development of Electrochemical Paper-based Glucose Sensor Using Cellulose-4-aminophenylboronic Acid-modified Screen-printed Carbon Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201500406] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
German N, Kausaite-Minkstimiene A, Ramanavicius A, Semashko T, Mikhailova R, Ramanaviciene A. The use of different glucose oxidases for the development of an amperometric reagentless glucose biosensor based on gold nanoparticles covered by polypyrrole. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.072] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Bhakta SA, Evans E, Benavidez TE, Garcia CD. Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta 2015; 872:7-25. [PMID: 25892065 PMCID: PMC4405630 DOI: 10.1016/j.aca.2014.10.031] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
Abstract
An important consideration for the development of biosensors is the adsorption of the biorecognition element to the surface of a substrate. As the first step in the immobilization process, adsorption affects most immobilization routes and much attention is given into the research of this process to maximize the overall activity of the biosensor. The use of nanomaterials, specifically nanoparticles and nanostructured films, offers advantageous properties that can be fine-tuned to maximize interactions with specific proteins to maximize activity, minimize structural changes, and enhance the catalytic step. In the biosensor field, protein-nanomaterial interactions are an emerging trend that span across many disciplines. This review addresses recent publications about the proteins most frequently used, their most relevant characteristics, and the conditions required to adsorb them to nanomaterials. When relevant and available, subsequent analytical figures of merits are discussed for selected biosensors. The general trend amongst the research papers allows concluding that the use of nanomaterials has already provided significant improvements in the analytical performance of many biosensors and that this research field will continue to grow.
Collapse
Affiliation(s)
- Samir A Bhakta
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Elizabeth Evans
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Tomás E Benavidez
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Carlos D Garcia
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
30
|
Sabury S, Kazemi SH, Sharif F. Graphene–gold nanoparticle composite: Application as a good scaffold for construction of glucose oxidase biosensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:297-304. [DOI: 10.1016/j.msec.2015.01.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/06/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
|
31
|
Devasenathipathy R, Karuppiah C, Chen SM, Palanisamy S, Lou BS, Ali MA, Al-Hemaid FMA. A sensitive and selective enzyme-free amperometric glucose biosensor using a composite from multi-walled carbon nanotubes and cobalt phthalocyanine. RSC Adv 2015. [DOI: 10.1039/c4ra17161f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, a simple and sensitive amperometric enzyme-free glucose sensor was developed at a multiwalled carbon nanotube and cobalt phthalocyanine (MWCNT–CoTsPc) modified electrode.
Collapse
Affiliation(s)
- Rajkumar Devasenathipathy
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Chelladurai Karuppiah
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Selvakumar Palanisamy
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Bih-Show Lou
- Chemistry Division
- Center for General Education
- Chang Gung University
- Tao-Yuan
- Taiwan
| | - M. Ajmal Ali
- Department of Botany and Microbiology
- College of Science
- King Saud University Riyadh 11451
- Saudi Arabia
| | - Fahad M. A. Al-Hemaid
- Department of Botany and Microbiology
- College of Science
- King Saud University Riyadh 11451
- Saudi Arabia
| |
Collapse
|
32
|
Fabrication of functionalized carbon nanotube buckypaper electrodes for application in glucose biosensors. BIOSENSORS-BASEL 2014; 4:449-60. [PMID: 25587433 PMCID: PMC4287712 DOI: 10.3390/bios4040449] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/30/2014] [Accepted: 10/29/2014] [Indexed: 12/05/2022]
Abstract
A highly sensitive glucose detection method was developed using functionalized carbon nanotube buckypaper as a free standing electrode in an electrochemical biosensor. Glucose oxidase was immobilized onto various buckypaper samples in order to oxidize glucose resulting in a measureable current/voltage signal output of the biosensor. Cyclic voltammetry (CV) and amperometry were utilized to determine the sensitivity of these buckypaper electrodes. Sensors of three different types of buckypaper were prepared and compared. These modified buckypaper electrode-based sensors showed much higher sensitivity to glucose compared to other electrochemical glucose sensors.
Collapse
|
33
|
Electrochemical biosensor based on glucose oxidase encapsulated within enzymatically synthesized poly(1,10-phenanthroline-5,6-dione). Colloids Surf B Biointerfaces 2014; 123:685-91. [DOI: 10.1016/j.colsurfb.2014.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 06/13/2014] [Accepted: 10/05/2014] [Indexed: 11/18/2022]
|
34
|
|
35
|
Scognamiglio V, Arduini F, Palleschi G, Rea G. Biosensing technology for sustainable food safety. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.07.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
du Toit H, Di Lorenzo M. Glucose Oxidase Directly Immobilized onto Highly Porous Gold Electrodes for Sensing and Fuel Cell applications. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.06.074] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Tang W, Li L, Wu L, Gong J, Zeng X. Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes. PLoS One 2014; 9:e95030. [PMID: 24816121 PMCID: PMC4015890 DOI: 10.1371/journal.pone.0095030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/22/2014] [Indexed: 11/18/2022] Open
Abstract
A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like “conductive wires” connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS) and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of −0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE) in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM−1 cm−2 and a low detection limit of 5 µM (S/N = 3), with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors.
Collapse
Affiliation(s)
- Wenwei Tang
- Department of Chemistry, Tongji University, Shanghai, China
- * E-mail: (WT); (XZ)
| | - Lei Li
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lujun Wu
- Department of Chemistry, Tongji University, Shanghai, China
| | - Jiemin Gong
- Department of Chemistry, Tongji University, Shanghai, China
| | - Xinping Zeng
- School of Life Science and Technology, Tongji University, Shanghai, China
- * E-mail: (WT); (XZ)
| |
Collapse
|
38
|
Titanium dioxide nanotube arrays modified with a nanocomposite of silver nanoparticles and reduced graphene oxide for electrochemical sensing. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1258-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Karuppiah C, Palanisamy S, Chen SM, Veeramani V, Periakaruppan P. Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1256-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
RAMANAVICIUS A, VORONOVIC J, SEMASHKO T, MIKHAILOVA R, KAUSAITE-MINKSTIMIENE A, RAMANAVICIENE A. Comparison of Glucose Oxidases from Penicillium Adametzii, Penicillium Funiculosum and Aspergillus Niger in the Design of Amperometric Glucose Biosensors. ANAL SCI 2014; 30:1143-9. [DOI: 10.2116/analsci.30.1143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Arunas RAMANAVICIUS
- Department of Physical Chemistry, Faculty of Chemistry, Vilnius University
- Laboratory of Bionanotechnology, Semiconductor Physics Institute, State Research Institute Center for Physical and Technological Sciences
| | - Jaroslav VORONOVIC
- Department of Analytical and Environmental Chemistry, Faculty of Chemistry, Vilnius University
- Division of Immunology, State Research Institute Center for Innovative Medicine
| | | | | | - Asta KAUSAITE-MINKSTIMIENE
- Department of Analytical and Environmental Chemistry, Faculty of Chemistry, Vilnius University
- Division of Immunology, State Research Institute Center for Innovative Medicine
| | - Almira RAMANAVICIENE
- Department of Analytical and Environmental Chemistry, Faculty of Chemistry, Vilnius University
- Division of Immunology, State Research Institute Center for Innovative Medicine
| |
Collapse
|
41
|
Nesakumar N, Thandavan K, Sethuraman S, Krishnan UM, Rayappan JBB. An electrochemical biosensor with nanointerface for lactate detection based on lactate dehydrogenase immobilized on zinc oxide nanorods. J Colloid Interface Sci 2014; 414:90-6. [DOI: 10.1016/j.jcis.2013.09.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 11/28/2022]
|
42
|
Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years. Biosens Bioelectron 2013; 47:12-25. [DOI: 10.1016/j.bios.2013.02.043] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 12/31/2022]
|
43
|
Cui M, Xu B, Hu C, Shao HB, Qu L. Direct electrochemistry and electrocatalysis of glucose oxidase on three-dimensional interpenetrating, porous graphene modified electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Glucose biosensor based on glucose oxidase and gold nanoparticles of different sizes covered by polypyrrole layer. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.02.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Tin disulfide nanoflakes decorated with gold nanoparticles for direct electrochemistry of glucose oxidase and glucose biosensing. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0889-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Comparison of the direct electrochemistry of glucose oxidase immobilized on the surface of Au, CdS and ZnS nanostructures. Biosens Bioelectron 2012; 37:88-93. [DOI: 10.1016/j.bios.2012.04.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/10/2012] [Accepted: 04/29/2012] [Indexed: 11/23/2022]
|
47
|
Tu X, Zhao Y, Luo S, Luo X, Feng L. Direct electrochemical sensing of glucose using glucose oxidase immobilized on functionalized carbon nanotubes via a novel metal chelate-based affinity method. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0766-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
German N, Voronovic J, Ramanavicius A, Ramanaviciene A. Gold Nanoparticles and Polypyrrole for Glucose Biosensor Design. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proeng.2012.09.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Cheng N, Wang H, Li X, Zhu L. Amperometric Glucose Biosensor Based on Integration of Glucose Oxidase with Palladium Nanoparticles/Reduced Graphene Oxide Nanocomposite. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajac.2012.34043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Romaskevic T, Sedlevicius M, Budriene S, Ramanavicius A, Ryskevic N, Miasojedovas S, Ramanaviciene A. Assembly and Characterization of Polyurethane-Gold Nanoparticle Conjugates. MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201100390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|