1
|
Kolesnichenko I. Development of a Method for Multisensory Stripping Voltammetry in the Analysis of Medical Preparations. ACS OMEGA 2023; 8:40229-40241. [PMID: 37929103 PMCID: PMC10620926 DOI: 10.1021/acsomega.3c03946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
For the effective dosage of newly developed ophthalmic drugs, an assessment of the dynamics of their concentration in lacrimal fluid over time is required. To express the detection and identification of drugs, new methods are needed that must meet numerous requirements, not the least of which are selectivity, speed, the absence of false-negative results, and cost-effectiveness. The possibility of identifying anesthetics (sevoflurane) in lacrimal fluid has been studied using a new electrochemical method of multisensory inversion voltammetry in the electronic tongue and electronic nose format. The measurements were performed on a planar electrode, which is a three-electrode structure. The solution of the test system consisted of 0.05 M KCl, which contained the metal cations Zn2+, Cd2+, Pb2+, Co2+, and Hg2+ at a concentration of 5 × 10-5 M. It is shown that this method is effective for the determination of anesthetics, and the dynamics of changes in their concentration over time are examined. This study aimed to research the behavioral pharmacokinetics in the lacrimal fluid of the opioid drug sevoflurane in pediatric ophthalmology using multisensory stripping voltammetry in patients during strabismus correction surgery. The dynamics of changes in their concentrations over time were examined. After the instillation of the anesthetics in patients, their concentrations in the tear fluid remained unchanged within 10 min. The list of organic substances that can be determined by multisensory stripping voltammetry has been extended. The class of organic substances determined by the method of multisensory inversion voltammetry has been expanded.
Collapse
Affiliation(s)
- Irina Kolesnichenko
- Frumkin Institute of Physical
Chemistry and Electrochemistry, Russian
Academy of Sciences, Leninskiy Prospect 31/4, Moscow 119071, Russian Federation
| |
Collapse
|
2
|
Bakircioglu Kurtulus Y, Bakircioglu D, Topraksever N. Deep eutectic solvent-based three-liquid-phase-extraction system for one-step separation of Cu, Mg and Zn in water samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Sharma H, Sharma A, Sharma B, Karna S. Green Analytical Approach for the Determination of Zinc in Pharmaceutical Product Using Natural Reagent. Int J Anal Chem 2022; 2022:8520432. [PMID: 35502194 PMCID: PMC9056243 DOI: 10.1155/2022/8520432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/07/2022] [Indexed: 12/30/2022] Open
Abstract
A selective, sensitive, and environmentally safe spectrophotometry method was developed and validated for the determination of zinc in pharmaceutical substances using natural reagents obtained from the leaves of plant Acacia catechu. Different factors were optimized such as volume of reagent, selection of pH, and stability of the color complex. The drug showed a stable yellowish orange color complex at 550 nm. The greenness of the methods was estimated using an eco-scale tool where the presented method was found to be excellent green with an ecoscore of 84 based on spectrophotometric determination. Also, the greenness of the method was assessed by the Green Analytical Procedure Index and found to be eco-friendly. The method was validated in conformance with ICH guidelines, with acceptable values for linearity, accuracy, precision, LOD, and LOQ. The linearity range for zinc sulphate was 5-25 μg mL-1 with an R 2 value of 0.996. The % RSD for intraday precision and interday precision was less than 2%. The suggested method can be employed for the economic analysis of zinc in its pure form and various formulations. The presented spectrophotometric method is the first analytical method for the analysis of zinc present in zinc sulphate and showed greater ecoscale as compared to the official method.
Collapse
Affiliation(s)
- Hemraj Sharma
- Department of Pharmacy, Shree Medical and Technical College, Bharatpur, Chitwan, Nepal
| | - Arjun Sharma
- Department of Pharmacy, Shree Medical and Technical College, Bharatpur, Chitwan, Nepal
| | - Bimala Sharma
- Department of Pharmacy, Shree Medical and Technical College, Bharatpur, Chitwan, Nepal
| | - Sonu Karna
- Department of Pharmacy, Shree Medical and Technical College, Bharatpur, Chitwan, Nepal
| |
Collapse
|
4
|
Sorouraddin SM, Farajzadeh MA, Najafpour Qarajeh H. Phthalic acid as complexing agent and co-disperser for analysis of zinc and cadmium at trace levels from high volumes of sample on the base of an effervescence-assisted dispersive liquid-liquid microextraction. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Ultrasound assisted ion pair based surfactant-enhanced liquid–liquid microextraction with solidification of floating organic drop combined with flame atomic absorption spectrometry for preconcentration and determination of nickel and cobalt ions in vegetable and herb samples. Food Chem 2019; 284:16-22. [DOI: 10.1016/j.foodchem.2019.01.092] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/08/2019] [Accepted: 01/12/2019] [Indexed: 01/21/2023]
|
6
|
Majee P, Singha DK, Mondal SK, Mahata P. Effect of charge transfer and structural rigidity on divergent luminescence response of a metal organic framework towards different metal ions: luminescence lifetime decay experiments and DFT calculations. Photochem Photobiol Sci 2019; 18:1110-1121. [PMID: 30747203 DOI: 10.1039/c9pp00024k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have thoroughly studied the luminescence behaviour of a cadmium based MOF, [Cd(C12N2H8)(C7N1O4H3)] {C12N2H8 = 1,10-phenanthroline, C7N1O4H3 = 2,5-pyridine dicarboxylate}, 1. Both steady-state and time-resolved luminescence spectroscopic experiments were performed to understand the dissimilar responses of compound 1 towards different metal ions in aqueous medium. Upon excitation at 280 nm, compound 1 showed a luminescence spectrum centered at 365 nm, which exhibited a three-fold turn-on in the presence of a trace amount of Zn2+ in aqueous solution, whereas in the presence of Co2+, Hg2+, Ni2+, Fe2+ and Cu2+ the luminescence of compound 1 got largely quenched. Compound 1 did not show any response in the presence of other common metal ions such as K+, Mg2+, Na+, Mn2+, and Cr3+. By analysing all the experimental results, we successfully explained the versatile luminescence behaviour of compound 1. The turn-on of luminescence in the presence of Zn2+ ions was due to coordination bond formation and enhancement of the rigidity of compound 1 which resulted in the reduction of non-radiative decay processes to a large extent. The quenching of luminescence in the presence of transition metal ions was found to be static in nature, and was due to the possibility of ligand to metal charge transfer using the vacant d-orbital of the metal ions. In the case of Hg2+ which is a closed cell heavy metal ion, the quenching of luminescence was also static in nature and was due to a two-way charge transfer mechanism. We have also performed density functional theory calculations and obtained supportive results for the proposed mechanisms of luminescence turn-on and quenching. Moreover, compound 1 could be established as a selective and efficient sensor of Zn2+ in aqueous solution even in the presence of Cd2+ and other metal ions.
Collapse
Affiliation(s)
- Prakash Majee
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| | | | | | | |
Collapse
|
7
|
Babaei A, Zeeb M, Es-Haghi A. Magnetic dispersive solid-phase extraction based on graphene oxide/Fe 3 O 4 @polythionine nanocomposite followed by atomic absorption spectrometry for zinc monitoring in water, flour, celery and egg. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3571-3579. [PMID: 29315610 DOI: 10.1002/jsfa.8873] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/28/2017] [Accepted: 12/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Magnetic graphene oxide nanocomposite has been proposed as a promising and sustainable sorbent for the extraction and separation of target analytes from food matrices. Sample preparation based on nanocomposite presents several advantages, such as desired efficiency, reasonable selectivity and high surface-area-to-volume ratio. RESULTS A new graphene oxide/Fe3 O4 @polythionine (GO/Fe3 O4 @PTh) nanocomposite sorbent was introduced for magnetic dispersive solid-phase extraction and flame atomic absorption spectrometric detection of zinc(II) in water, flour, celery and egg. To fabricate the sorbent, an oxidative polymerization of thionine on the surface of magnetic GO was applied, while polythionine was simply employed as a surface modifier to improve extraction yield. The properties of the sorbent were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray analysis, vibrating sample magnetometry and Fourier transform-infrared spectroscopy. The calibration curve showed linearity in the range of 0.5-30 ng mL-1 . Limits of detection (S/N = 3) and quantification (S/N = 10) were 0.08 and 0.5 ng mL-1 , respectively. CONCLUSION The method was applied for trace-level determination of Zn(II) in water and food samples, and its validation was investigated by recovery experiments and analyzing certified reference material. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Azar Babaei
- Department of Chemistry, Faculty of Science, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Mohsen Zeeb
- Department of Applied Chemistry, Faculty of Science, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Ali Es-Haghi
- Department of Physico Chemistry, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
8
|
Pires Santos A, das Graças Andrade Korn M, Azevedo Lemos V. Methods of liquid phase microextraction for the determination of cadmium in environmental samples. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:444. [PMID: 28795304 DOI: 10.1007/s10661-017-6151-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Liquid phase microextraction (LPME) has been widely used in extraction and preconcentration systems as an excellent alternative to conventional liquid phase extraction. In this work, a critical review is presented on liquid phase microextraction techniques used in the determination of cadmium in environmental samples. LPME techniques are classified into three main groups: single-drop liquid phase microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME). Methods involving these liquid phase microextraction techniques are described, addressing advantages and disadvantages, samples, figures of merit, and trends.
Collapse
Affiliation(s)
- Analú Pires Santos
- Universidade Federal da Bahia, Departamento de Química Analítica, Campus Universitário de Ondina, Instituto de Química, Salvador, Bahia, 40170-280, Brazil
- Universidade Estadual do Sudoeste da Bahia, Laboratório de Química Analítica (LQA), Campus de Jequié, Jequié, Bahia, 45206-510, Brazil
| | - Maria das Graças Andrade Korn
- Universidade Federal da Bahia, Departamento de Química Analítica, Campus Universitário de Ondina, Instituto de Química, Salvador, Bahia, 40170-280, Brazil
| | - Valfredo Azevedo Lemos
- Universidade Federal da Bahia, Departamento de Química Analítica, Campus Universitário de Ondina, Instituto de Química, Salvador, Bahia, 40170-280, Brazil.
- Universidade Estadual do Sudoeste da Bahia, Laboratório de Química Analítica (LQA), Campus de Jequié, Jequié, Bahia, 45206-510, Brazil.
| |
Collapse
|
9
|
Singha DK, Majee P, Mondal SK, Mahata P. Selective Luminescence-Based Detection of Cd2+
and Zn2+
Ions in Water Using a Proton-Transferred Coordination Polymer-Amine Conjugate Pair. ChemistrySelect 2017. [DOI: 10.1002/slct.201700398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Debal Kanti Singha
- Department of Chemistry; Suri Vidyasagar College; Suri, Birbhum PIN−731101, West Bengal India
| | - Prakash Majee
- Department of Chemistry, Siksha−Bhavana; Visva−Bharati University; Santiniketan−731235, West Bengal India
| | - Sudip Kumar Mondal
- Department of Chemistry, Siksha−Bhavana; Visva−Bharati University; Santiniketan−731235, West Bengal India
| | - Partha Mahata
- Department of Chemistry; Suri Vidyasagar College; Suri, Birbhum PIN−731101, West Bengal India
| |
Collapse
|
10
|
Ghazaghi M, Mousavi HZ, Shirkhanloo H, Rashidi A. Stirring-controlled solidified floating solid-liquid drop microextraction as a new solid phase-enhanced liquid-phase microextraction method by exploiting magnetic carbon nanotube-nickel hybrid. Anal Chim Acta 2017; 951:78-88. [DOI: 10.1016/j.aca.2016.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 01/30/2023]
|
11
|
Płotka-Wasylka J, Owczarek K, Namieśnik J. Modern solutions in the field of microextraction using liquid as a medium of extraction. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Mohammadi S, Sheibani A, Abdollahi F, Shahsavani E. Speciation of Tl(III) and Tl(I) in hair samples by dispersive liquid–liquid microextraction based on solidification of floating organic droplet prior to flame atomic absorption spectrometry determination. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2012.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
13
|
Zaruba S, Vishnikin AB, Andruch V. Application of solidification of floating organic drop microextraction for inorganic anions: Determination of phosphate in water samples. Microchem J 2015. [DOI: 10.1016/j.microc.2015.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Wu L, Guo QS, Liu YQ, Sun QJ. Fluorescence Resonance Energy Transfer-Based Ratiometric Fluorescent Probe for Detection of Zn2+ Using a Dual-Emission Silica-Coated Quantum Dots Mixture. Anal Chem 2015; 87:5318-23. [DOI: 10.1021/acs.analchem.5b00514] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liang Wu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qing-Sheng Guo
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu-Qian Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qing-Jiang Sun
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
15
|
Viñas P, Campillo N, Andruch V. Recent achievements in solidified floating organic drop microextraction. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.02.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Al Othman Z, Unsal YE, Habila M, Shabaka A, Tuzen M, Soylak M. Determination of Copper in Food and Water by Dispersive Liquid-Liquid Microextraction and Flame Atomic Absorption Spectrometry. ANAL LETT 2015. [DOI: 10.1080/00032719.2014.999276] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Chen S, Zhu S, Lu D. Solidified floating organic drop microextraction for speciation of selenium and its distribution in selenium-rich tea leaves and tea infusion by electrothermal vapourisation inductively coupled plasma mass spectrometry. Food Chem 2014; 169:156-61. [PMID: 25236211 DOI: 10.1016/j.foodchem.2014.07.147] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/25/2014] [Accepted: 07/30/2014] [Indexed: 11/16/2022]
Abstract
Solidified floating organic drop microextraction was combined with electrothermal vapourisation inductively coupled plasma mass spectrometry for Se species in Se-rich tea leaves and tea infusion, including total, suspended, soluble, organic and inorganic Se as well as Se(IV) and Se(VI). Ammonium pyrrolidinedithiocarbamate was used as both chelating reagent and chemical modifier in this study. Se(IV) and Se(VI) were separated at pH range of 2.0-5.0. An enrichment factor of 500 was obtained for Se(IV) from this method. Under the optimum conditions, the detection limits for Se(IV) and Se(VI) were 0.19 and 0.26pgmL(-1), respectively. The relative standard deviations were less than 5.5% (c=0.1ngmL(-1), n=9). This method was applied for Se species, its content and distribution in Se-rich tea leaves and tea infusion with satisfactory results. The recoveries of spike experiments are in the range of 92.2-106%. A certified reference material of tea leaves was analyzed by this method, and the results were in agreement with certified values.
Collapse
Affiliation(s)
- Shizhong Chen
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, PR China.
| | - Shengping Zhu
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, PR China
| | - Dengbo Lu
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, PR China
| |
Collapse
|
18
|
Liu Z, Li G, Ma Q, Liu L, Su X. A near-infrared turn-on fluorescent nanosensor for zinc(II) based on CuInS2 quantum dots modified with 8-aminoquinoline. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1277-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Solid contact Zn2+ -selective electrode with low detection limit and stable and reversible potential. OPEN CHEM 2014. [DOI: 10.2478/s11532-013-0390-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractA new solid contact Zn2+ polyvinylchloride membrane sensor with 2-(2-Hydroxy-1-naphthylazo)-1,3,4 -thiadiazole as an ionophore has been prepared. For the electrode construction, ionic liquids, alkylmethylimidazolium chlorides are used as transducer media and as a lipophilic ionic membrane component. The addition of ionic liquid to the membrane phase was found to reduce membrane resistance and determine the potential of an internal reference Ag/AgCl electrode. The electrode with the membrane composition: ionophore: PVC: o-NPOE: ionic liquid in the percentage ratio of (wt.) 1:30:66:3, respectively, exhibited the best performance, having a slope of 29.8 mV decade−1 in the concentration range 3×10−7–1×10−1 M. The detection limit is 6.9×10−8 M. It has a fast response time of 5–7 s and exhibits stable and reproducible potential. It has a fast response time of 5–7 s and exhibits stable and reproducible potential, which does not depend on pH in the range 3.8–8.0. The proposed sensor shows a good and satisfactory selectivity towards Zn2+ ion in comparison with other cations including alkali, alkaline earth, transition and heavy metal ions. It was successfully applied for direct determination of zinc ions in tap water and as an indicator electrode in potentiometric titration of Zn2+ ions with EDTA.
Collapse
|
20
|
Chamsaz M, Eftekhari M, Eftekhari A, Yekkebashi A. 2-Nitroso-1-naphthol as a selective reagent for preconcentration of cobalt by vortex assisted combined with solidification of organic droplet and its determination by flame atomic absorption spectrometry. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:9067-9075. [PMID: 23649476 DOI: 10.1007/s10661-013-3236-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
Highly rapid and selective vortex-assisted liquid-liquid microextraction based on solidification of organic drop has been used for determination of cobalt ion. 2-Nitroso-1-naphthol (2N1N) was used as a selective complexing agent to form stable cobalt-2N1N complex which can be extracted with 1-undecanol at a short time by the assistance of vortex agitator system followed by its determination using flame atomic absorption spectrometry. In vortex assisted, vigorous vortex stream as well as the vibrant effect of vortex system cause very fine droplets of extraction solvent to be produced and extraction occurred at a short time. Some parameters influencing the extraction process such as pH of samples, concentration of 2-nitroso-1-naphthol, extraction solvent volume, extraction time, ionic strength and surfactant addition, as well as interferences were evaluated in detail and optimum conditions were selected. At the optimum conditions, the calibration curve was linear in the range of 15 to 400 μg L(-1) of cobalt ions. The relative standard deviation based on ten replicate analysis of sample solution containing 50 μg L(-1) of cobalt was 3.4%. The detection limit (calculated as the concentration equivalent to three times of the standard deviation of the blank divided by the slope of the calibration curve after preconcentration) was 5.4 μg L(-1). The accuracy of the proposed method was successfully evaluated by the analysis of certified reference materials. This selective and highly rapid method was used for determination of cobalt ions in different water samples.
Collapse
Affiliation(s)
- Mahmoud Chamsaz
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | | |
Collapse
|
21
|
Chen S, Cheng X, He Y, Zhu S, Lu D. Determination of the rare earth elements La, Eu, and Yb using solidified floating organic drop microextraction and electrothermal vaporization ICP-MS. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1091-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Speciation of antimony(III) and antimony(V) by electrothermal atomic absorption spectrometry after ultrasound-assisted emulsification of solidified floating organic drop microextraction. Talanta 2013; 115:814-8. [DOI: 10.1016/j.talanta.2013.06.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/23/2013] [Accepted: 06/28/2013] [Indexed: 11/21/2022]
|
23
|
Tu CQ, Wen XR. Study on the Determination of Trace Zinc by Spectrophotometry after Flotation Separation with Ternary Association Complex System. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201000146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Andruch V, Burdel M, Kocúrová L, Šandrejová J, Balogh IS. Application of ultrasonic irradiation and vortex agitation in solvent microextraction. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.02.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
|
26
|
Ghambarian M, Yamini Y, Esrafili A. Liquid-phase microextraction based on solidified floating drops of organic solvents. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-0969-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Hou F, Deng T, Jiang X. Dispersive liquid-liquid microextraction of phenolic compounds using solidified floating organic droplets, and their determination by HPLC. Mikrochim Acta 2013. [DOI: 10.1007/s00604-012-0937-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Development of ultrasound-assisted emulsification solidified floating organic drop microextraction for determination of trace amounts of iron and copper in water, food and rock samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0131-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Khayatian G, Hassanpoor S. Ultrasound Assisted Emulsification Microextraction Based on dimetyl (E)-2-[(Z)-1-acetyl)-2-hydroxy-1-propenyl]-2-butenedioate for Determination of Total Amount of Iron in Water and Tea Samples. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201100447] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Zhang JW, Ke XJ, Wang YK, Du X, Ma JJ, Li JC. Development of Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop for the Determination of Trace Cobalt in Water Samples. J CHIN CHEM SOC-TAIP 2011. [DOI: 10.1002/jccs.201190144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Wang Y, Zhang J, Zhao B, Du X, Ma J, Li J. Development of dispersive liquid-liquid microextraction based on solidification of floating organic drop for the determination of trace nickel. Biol Trace Elem Res 2011; 144:1381-93. [PMID: 21598026 DOI: 10.1007/s12011-011-9078-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/09/2011] [Indexed: 11/27/2022]
Abstract
A liquid-phase microextraction technique was developed using dispersive liquid-liquid microextraction based on solidification of floating organic drop combined with flame atomic absorption spectrometry, for the extraction and determination of trace amounts of nickel in water samples. Microextraction efficiency factors, such as the type and volume of extraction and dispersive solvents, pH, extraction time, the chelating agent amount, and ionic strength, were investigated and optimized. Under optimum conditions, the calibration graph was linear in the range of 4.23-250 μg L(-1) with a detection limit of 1.27 μg L(-1). The relative standard deviation for ten replicate measurements of 10 and 100 μg L(-1) of nickel were 3.21% and 2.55%, respectively. The proposed method was assessed through the analysis of certified reference water or recovery experiments.
Collapse
Affiliation(s)
- Yukun Wang
- Hebei Key Laboratory of Bioinorganic Chemistry, College of Science, Agricultural University of Hebei, Baoding, 071001, Hebei, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
This paper presents some recent applications of Flame Atomic Absorption Spectrometry (FAAS) to different matrices and samples. The time window selected was from 2006 up to March, 2011, and several aspects related to food, biological fluids, environmental, and technological samples analyses were reported and discussed. In addition, the chemometrics application for FAAS methods development was also taken into account, as well as the use of metal tube atomizers in air/acetylene flame. Preconcentration methods coupled to FAAS were discussed, and several approaches related to speciation, flotation, ionic liquids, among others were discussed. This paper can be interesting for researchers and FAAS users in order to see the state of the art of this technique.
Collapse
|
33
|
Ren HB, Wu BY, Chen JT, Yan XP. Silica-Coated S2–-Enriched Manganese-Doped ZnS Quantum Dots as a Photoluminescence Probe for Imaging Intracellular Zn2+ Ions. Anal Chem 2011; 83:8239-44. [DOI: 10.1021/ac202007u] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hu-Bo Ren
- Research Center for Analytical Sciences, College of Chemistry, and State Key Laboratory of Medicinal Chemical Biology, and ‡Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bo-Yue Wu
- Research Center for Analytical Sciences, College of Chemistry, and State Key Laboratory of Medicinal Chemical Biology, and ‡Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jia-Tong Chen
- Research Center for Analytical Sciences, College of Chemistry, and State Key Laboratory of Medicinal Chemical Biology, and ‡Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiu-Ping Yan
- Research Center for Analytical Sciences, College of Chemistry, and State Key Laboratory of Medicinal Chemical Biology, and ‡Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
34
|
Functionalization of cross linked chitosan with 2-aminopyridine-3-carboxylic acid for solid phase extraction of cadmium and zinc ions and their determination by atomic absorption spectrometry. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0707-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Zeeb M, Sadeghi M. Modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction followed by atomic absorption spectrometry for trace determination of zinc in water and food samples. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0653-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Determination of copper traces in water samples by flow injection-flame atomic absorption spectrometry using a novel solidified floating organic drop microextraction method. Microchem J 2011. [DOI: 10.1016/j.microc.2011.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Arpa Şahin Ç, Durukan İ. Ligandless-solidified floating organic drop microextraction method for the preconcentration of trace amount of cadmium in water samples. Talanta 2011; 85:657-61. [DOI: 10.1016/j.talanta.2011.04.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/08/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
|
38
|
Determination of Se(IV) using solidified floating organic drop microextraction coupled to ultrasound-assisted back-extraction and hydride generation atomic fluorescence spectrometry. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0574-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Moghadam MR, Dadfarnia S, Shabani AMH. Speciation and determination of ultra trace amounts of chromium by solidified floating organic drop microextraction (SFODME) and graphite furnace atomic absorption spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:169-174. [PMID: 21112142 DOI: 10.1016/j.jhazmat.2010.10.101] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/23/2010] [Accepted: 10/26/2010] [Indexed: 05/30/2023]
Abstract
Solidified floating organic drop microextraction (SFODME) method in combination with graphite furnace atomic absorption spectrometry (GFAAS) has been used for the determination of chromium species in water and urine samples. 1-undecanol containing 2-thenoyltrifluoroacetone (TTA) was used as a selective chelating agent for the extraction of Cr(III). The total Cr was determined after the reduction of Cr(VI) to Cr(III) with hydroxylamine. The concentration of Cr(VI) was determined from the difference between the concentration of total chromium and the Cr(III). Several variables such as the sample pH, concentration of TTA, salt concentration, extraction time and the sample volume were investigated in detail. Under the optimum conditions, the limit of detection of the proposed method was 0.006 μg l(-1) for Cr(III) and the relative standard deviation for six replicate determinations at 0.1 μg l(-1) Cr(III) was 5.1%. The proposed method was successfully applied for the determination of chromium species in tap water, well water, mineral water, and urine samples.
Collapse
|
40
|
WANG YY, ZHAO GY, CHANG QY, ZANG XH, WANG C, WANG Z. Developments in Liquid-phase Microextraction Method Based on Solidification of Floating Organic Drop. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60073-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|