1
|
Liao W, Wang C, Wang R, Wu M, Li L, Chao P, Hu J, Chen WH. An activatable "AIE + ESIPT" fluorescent probe for dual-imaging of lipid droplets and hydrogen peroxide in drug-induced liver injury model. Anal Chim Acta 2025; 1335:343442. [PMID: 39643298 DOI: 10.1016/j.aca.2024.343442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is one of the most common liver diseases. The crucial role of lipid droplets (LDs) and hydrogen peroxide (H2O2), two important biomarkers in the pathophysiology of DILI, has spurred considerable efforts to accurately visualize H2O2 and LDs for elucidating their functions in the progression of DILI. However, construction of a single fluorescent probe that is able to simultaneously image H2O2 and LDs dynamics remains to be a challenging task. Therefore, it is of great demand to develop a novel fluorescent probe for tracking the LDs status and H2O2 fluctuation in drug-induced liver injury. RESULTS We developed an "AIE + ESIPT" fluorescent probe TPEHBT for dual-imaging of LDs and H2O2 during DILI process. TPEHBT displayed greatly enhanced fluorescent response to H2O2 by generating an excited state intramolecular proton transfer (ESIPT) fluorophore TPEHBT-OH with aggregation induced emission (AIE) properties. TPEHBT exhibits high selectivity, sensitivity (LOD = 4.73 nM) and large Stokes shift (320 nm) to H2O2. Interestingly, TPEHBT can light up LDs with high specificity. The probe was favorably applied in the detection of endogenous and exogenous H2O2 in living cells, and notably in the simultaneous real-time visualization of H2O2 generation and LDs accumulation during DILI process. Moreover, TPEHBT was able to image H2O2 generation in zebrafish animal model with APAP-induced liver injury. SIGNIFICANCE For the first time, probe TPEHBT was applied in the dual-imaging of H2O2 fluctuation and LDs status in APAP-induced liver injury model in vitro and in vivo. The present findings strongly suggest that TPEHBT is a promising tool for monitoring H2O2 and LDs dynamics in DILI progression.
Collapse
Affiliation(s)
- Wantao Liao
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Chunzheng Wang
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Ruiya Wang
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Mengzhao Wu
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Lanqing Li
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China.
| | - Pengjie Chao
- School of Applied Physics and Materials, Wuyi University, 529020, Jiangmen, PR China
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China.
| |
Collapse
|
2
|
Yang Y, Jiang R, Yang EL, Liang J, Xu Y, Wang XD. A highly sensitive and reproducible fluorescence sensor for continuously measuring hydrogen peroxide at the sub-ppm level. Analyst 2024; 149:5353-5359. [PMID: 39344967 DOI: 10.1039/d4an00975d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
A highly sensitive fluorescence sensor for monitoring low concentrations of hydrogen peroxide was designed. The sensor employs the commercially available palladium or platinum metal on activated charcoal as catalysts to decompose hydrogen peroxide into water and molecular oxygen. The produced oxygen concentration can be measured in real time using an oxygen-sensitive layer doped with photostable oxygen probes. The sensor exhibits high sensitivity that is able to measure hydrogen peroxide concentration down to 20 ppb and can measure hydrogen peroxide concentration in the range of 0.1-100 ppm and 0.02-100 ppm, respectively. The response is fully reversible and the typical response time is less than one minute, which makes it suitable to continuously measure hydrogen peroxide over a long duration. Due to the excellent batch-to-batch consistency of palladium or platinum metal on activated charcoal, the sensor can be massively produced with good reproducibility and affordable price, which holds great potential for constructing sensors for industrial and practical applications.
Collapse
Affiliation(s)
- Yang Yang
- Human Phenome Institute, Fudan University, Shanghai 200438, P.R. China.
| | - Rui Jiang
- Human Phenome Institute, Fudan University, Shanghai 200438, P.R. China.
| | - En-Lai Yang
- Human Phenome Institute, Fudan University, Shanghai 200438, P.R. China.
| | - Jiahao Liang
- Human Phenome Institute, Fudan University, Shanghai 200438, P.R. China.
| | - Ying Xu
- Human Phenome Institute, Fudan University, Shanghai 200438, P.R. China.
| | - Xu-Dong Wang
- Human Phenome Institute, Fudan University, Shanghai 200438, P.R. China.
| |
Collapse
|
3
|
Wang L, Lin H, Yang B, Jiang X, Chen J, Chowdhury SR, Cheng N, Nakata PA, Lonard DM, Wang MC, Wang J. Development of a Novel Amplifiable System to Quantify Hydrogen Peroxide in Living Cells. J Am Chem Soc 2024; 146:22396-22404. [PMID: 39079063 PMCID: PMC11722959 DOI: 10.1021/jacs.4c05366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Although many redox signaling molecules are present at low concentrations, typically ranging from micromolar to submicromolar levels, they often play essential roles in a wide range of biological pathways and disease mechanisms. However, accurately measuring low-abundant analytes has been a significant challenge due to the lack of sensitivity and quantitative capability of existing measurement methods. In this study, we introduced a novel chemically induced amplifiable system for quantifying low-abundance redox signaling molecules in living cells. We utilized H2O2 as a proof-of-concept analyte and developed a probe that quantifies cellular peroxide levels by combining the NanoBiT system with androgen receptor dimerization as a reporting mechanism. Our system demonstrated a highly sensitive response to cellular peroxide changes induced both endogenously and exogenously. Furthermore, the system can be adapted for the quantification of other signaling molecules if provided with suitable probing chemistry.
Collapse
Affiliation(s)
- Lingfei Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Bin Yang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Xiqian Jiang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Jianwei Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Sandipan Roy Chowdhury
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Ninghui Cheng
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Paul A. Nakata
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Meng. C. Wang
- Department of Molecular and Human Genetics, Huffington Center on Aging, and Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
4
|
Yang Y, Guo S, Zhang Q, Guan ZJ, Wang QM. A Cages-on-Cluster Structure Constructed by Post-Clustering Covalent Modifications and Guest-Enabled Stimuli-Responsive Luminescence. Angew Chem Int Ed Engl 2024; 63:e202404798. [PMID: 38713516 DOI: 10.1002/anie.202404798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/09/2024]
Abstract
A gold(I)-cluster-based twin-cage has been constructed by post-clustering covalent modification of a hexa-aldehyde cluster precursor with triaminotriethylamines. The cages-on-cluster structure has double cavities and four binding sites, which show site-discriminative binding for silver(I) and copper(I) guests. The guests in the tripodal hats affect the luminescence of the cluster: the tetra-silver(I) host-guest complex is weakly red-emissive, while the bis-copper(I)-bis-silver(I) one is non-emissive but is a stimuli-responsive supramolecule. The copper(I) ion inside the tri-imine cavity is oxidation sensitive, which enables the release of the bright emissive precursor cluster triggered by H2O2 solution. The hybridization of a cluster with cavities to construct a cluster-based cage presents an innovative concept for functional cluster design, and the post-clustering covalent modification opens up new avenues for finely tuning the properties of clusters.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shan Guo
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Qian Zhang
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
5
|
Cawley J, Berger BA, Odudimu AT, Singh AN, Santa DE, McDarby AI, Honerkamp-Smith AR, Wittenberg NJ. Imaging Giant Vesicle Membrane Domains with a Luminescent Europium Tetracycline Complex. ACS OMEGA 2023; 8:29314-29323. [PMID: 37599986 PMCID: PMC10433515 DOI: 10.1021/acsomega.3c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Microdomains in lipid bilayer membranes are routinely imaged using organic fluorophores that preferentially partition into one of the lipid phases, resulting in fluorescence contrast. Here, we show that membrane microdomains in giant unilamellar vesicles (GUVs) can be visualized with europium luminescence using a complex of europium III (Eu3+) and tetracycline (EuTc). EuTc is unlike typical organic lipid probes in that it is a coordination complex with a unique excitation/emission wavelength combination (396/617 nm), a very large Stokes shift (221 nm), and a very narrow emission bandwidth (8 nm). The probe preferentially interacts with liquid disordered domains in GUVs, which results in intensity contrast across the surface of phase-separated GUVs. Interestingly, EuTc also alters GM1 ganglioside partitioning. GM1 typically partitions into liquid ordered domains, but after labeling phase-separated GUVs with EuTc, cholera toxin B-subunit (CTxB), which binds GM1, labels liquid disordered domains. We also demonstrate that EuTc, but not free Eu3+ or Tc, significantly reduces lipid diffusion coefficients. Finally, we show that EuTc can be used to label cellular membranes similar to a traditional membrane probe. EuTc may find utility as a membrane imaging probe where its large Stokes shift and sharp emission band would enable multicolor imaging.
Collapse
Affiliation(s)
- Jennie
L. Cawley
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Brett A. Berger
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Adeyemi T. Odudimu
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Aarshi N. Singh
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Dane E. Santa
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Ariana I. McDarby
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Aurelia R. Honerkamp-Smith
- Department
of Physics, Lehigh University, 17 Memorial Drive East, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J. Wittenberg
- Department
of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
6
|
WO3/Mo:BiVO4 heterojunction structured photoelectrochemical sensor for enhancing hydrogen peroxide monitoring and mechanism investigation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
7
|
Wu Y, Balasubramanian P, Wang Z, Coelho JAS, Prslja M, Siebert R, Plenio MB, Jelezko F, Weil T. Detection of Few Hydrogen Peroxide Molecules Using Self-Reporting Fluorescent Nanodiamond Quantum Sensors. J Am Chem Soc 2022; 144:12642-12651. [PMID: 35737900 PMCID: PMC9305977 DOI: 10.1021/jacs.2c01065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Hydrogen peroxide
(H2O2) plays an important
role in various signal transduction pathways and regulates important
cellular processes. However, monitoring and quantitatively assessing
the distribution of H2O2 molecules inside living
cells requires a nanoscale sensor with molecular-level sensitivity.
Herein, we show the first demonstration of sub-10 nm-sized fluorescent
nanodiamonds (NDs) as catalysts for the decomposition of H2O2 and the production of radical intermediates at the
nanoscale. Furthermore, the nitrogen-vacancy quantum sensors inside
the NDs are employed to quantify the aforementioned radicals. We believe
that our method of combining the peroxidase-mimicking activities of
the NDs with their intrinsic quantum sensor showcases their application
as self-reporting H2O2 sensors with molecular-level
sensitivity and nanoscale spatial resolution. Given the robustness
and the specificity of the sensor, our results promise a new platform
for elucidating the role of H2O2 at the cellular
level.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Priyadharshini Balasubramanian
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany.,Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm 89081, Germany
| | - Zhenyu Wang
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany.,Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.,Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Mateja Prslja
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm 89081, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
8
|
Yun ES, Akhtar MS, Mohandoss S, Lee YR. Microwave-assisted annulation for the construction of pyrido-fused heterocycles and their application as photoluminescent chemosensors. Org Biomol Chem 2022; 20:3397-3407. [PMID: 35362508 DOI: 10.1039/d2ob00257d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A catalyst-free microwave-assisted annulation protocol for the preparation of biologically interesting pyrido-fused quinazolinones and pyrido[1,2-a]benzimidazoles is developed. This reaction involves the [3 + 3] annulation of various quinazolinones or benzimidazoles with 3-formylchromones to yield functionalized 11H-pyrido[2,1-b]quinazolin-11-one and pyrido[1,2-a] benzimidazole derivatives. This approach is successfully extended to the construction of various pyrazolo[4,3-d]pyrido[1,2-a]pyrimidin-10(1H)-ones. The present approach is complementary to the existing synthetic methodologies and offers a rapid and facile approach with a broad substrate scope, good yields, catalyst-free conditions, and a high functional group tolerance. The optimal synthesized compound is also employed as an "on-off" photoluminescent probe for the selective detection of Fe3+ and Ag+ metal ions.
Collapse
Affiliation(s)
- Ei Seul Yun
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
9
|
Hooda A, Dalal A, Nehra K, Singh S, Kumar S, Singh D. Red-emitting β-diketonate Eu(III) Complexes With Substituted 1,10-phenanthroline Derivatives: Optoelectronic and Spectroscopic Analysis. J Fluoresc 2022; 32:1413-1424. [PMID: 35438372 DOI: 10.1007/s10895-022-02951-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
A series of europium diketonate complexes with 1-phenyl-1,3-butanedione (PBD) and 1,10-phenanthroline derivatives were synthesized and explored spectroscopically. Photophysical characteristics of synthesized complexes have been investigated experimentally as well as theoretically. Photoluminescence emission spectra of complexes do not contain any peak of ligand revealing efficient transferal of energy from ligand to Eu3+ ion. Presence of peak at 611 nm corresponding to 5D0 → 7F2 transition is responsible for red emanation of ternary europium complexes. Photophysical parameters viz., Judd-Ofelt, quantum efficiency, radiative and non radiative decay rates were also estimated theoretically from LUMPAC software. Geometry optimization of complexes was done via Avogadro software. All synthesized trivalent complexes exhibit red emission which was further sustained by the position of chromaticity coordinates in CIE triangle. These red emanating materials could be utilized in designing electroluminescent display devices.
Collapse
Affiliation(s)
- Anjli Hooda
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Anuj Dalal
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Kapeesha Nehra
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Sitender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Sumit Kumar
- Department of Chemistry, DCR University of Science & Technology, Murthal, Haryana, 131039, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
10
|
Abstract
Acute kidney injury (AKI) is one of the most prevalent and complex clinical syndromes with high morbidity and mortality. The traditional diagnosis parameters are insufficient regarding specificity and sensitivity, and therefore, novel biomarkers and their facile and rapid applications are being sought to improve the diagnostic procedures. The biosensors, which are employed on the basis of electrochemistry, plasmonics, molecular probes, and nanoparticles, are the prominent ways of developing point-of-care devices, along with the mutual integration of efficient surface chemistry strategies. In this manner, biosensing platforms hold pivotal significance in detecting and quantifying novel AKI biomarkers to improve diagnostic interventions, potentially accelerating clinical management to control the injury in a timely manner. In this review, novel diagnostic platforms and their manufacturing processes are presented comprehensively. Furthermore, strategies to boost their effectiveness are also indicated with several applications. To maximize these efforts, we also review various biosensing approaches with a number of biorecognition elements (e.g., antibodies, aptamers, and molecular imprinting molecules), as well as benchmark their features such as robustness, stability, and specificity of these platforms.
Collapse
Affiliation(s)
- Esma Derin
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
11
|
Zhao Z, Swartchick CB, Chan J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem Soc Rev 2022; 51:829-868. [PMID: 35094040 PMCID: PMC9549347 DOI: 10.1039/d0cs00771d] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic (PA) imaging has emerged as a powerful technique for the high resolution visualization of biological processes within deep tissue. Through the development and application of exogenous targeted contrast agents and activatable probes that can respond to a given cancer biomarker, researchers can image molecular events in vivo during cancer progression. This information can provide valuable details that can facilitate cancer diagnosis and therapy monitoring. In this tutorial review, we provide a step-by-step guide to select a cancer biomarker and subsequent approaches to design imaging agents for in vivo use. We envision this information will be a useful summary to those in the field, new members to the community, and graduate students taking advanced imaging coursework. We also highlight notable examples from the recent literature, with emphasis on the molecular designs and their in vivo PA imaging performance. To conclude, we provide our outlook and future perspective in this exciting field.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Chelsea B Swartchick
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| |
Collapse
|
12
|
Lee S, Han MS. An analyte-triggered artificial peroxidase system based on dimanganese complex for a versatile enzyme assay. Chem Commun (Camb) 2021; 57:9450-9453. [PMID: 34528977 DOI: 10.1039/d1cc03638f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We described an analyte-activatable artificial peroxidase system (caged Mn2(bpmp)) by caging a dimanganese complex, exhibiting peroxidase-like activity, with an analyte-reactive trigger. It allowed adjustments of the detection target to be applied depending on the trigger as well as the detection modes, such as fluorescence and colorimetric, as required. This system was successfully applied to a versatile enzyme assay for leucine aminopeptidase and γ-glutamyl transpeptidase based on spectrophotometric change induced from the oxidation of the peroxidase substrate by analyte-triggered peroxidase-like activity.
Collapse
Affiliation(s)
- Suji Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
13
|
Fong D, Swager TM. Trace Detection of Hydrogen Peroxide via Dynamic Double Emulsions. J Am Chem Soc 2021; 143:4397-4404. [PMID: 33724029 DOI: 10.1021/jacs.1c00683] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen peroxide is a dynamic signaling molecule in biological systems. We report herein a versatile double emulsion sensor that can detect femtomolar quantities of aqueous hydrogen peroxide. The mechanism responsible for this sensitivity is a peroxide induced change in double emulsion structure, which results in a modified directional emission from dyes dissolved in the high index organic phase. The morphology (structure) of the double emulsion is controlled via interfacial tensions and a methyltrioxorhenium catalyzed sulfide oxidation results in an enhancement of the surfactant effectiveness. The incipient polar sulfoxide induced decrease of the interfacial tension at the organic-water (O-W) interface results in an increased interfacial area between the organic phase and water and a diminished emission perpendicular to the supporting substrate. The modularity of our sensory system is demonstrated through cascade catalysis between methyltrioxorhenium and oxidase enzymes, with the latter producing hydrogen peroxide as a byproduct to enable for the selective and sensitive detection of molecular and ionic enzymatic substrates.
Collapse
Affiliation(s)
- Darryl Fong
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Wen Y, Long Z, Huo F, Yin C. Photoexcited molecular probes for selective and revertible imaging of cellular reactive oxygen species. Org Chem Front 2021. [DOI: 10.1039/d0qo01260b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Redox homeostasis is key to maintaining the normal physiological status of living cells.
Collapse
Affiliation(s)
- Ying Wen
- Institute of Molecular Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Zhiqing Long
- Institute of Molecular Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan
- P. R. China
| | - Caixia Yin
- Institute of Molecular Science
- Shanxi University
- Taiyuan
- P. R. China
| |
Collapse
|
15
|
Jin CH, Zhu TT, Xi ZH, Chai JL, Zhang XW, Han J, Zhao XL, Chen XD. Lanthanide complexes based on a C symmetric tripodal ligand and potential application as fluorescent probe of Fe3+. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Design and fabrication of cost-effective and sensitive non-enzymatic hydrogen peroxide sensor using Co-doped δ-MnO 2 flowers as electrode modifier. Anal Bioanal Chem 2020; 413:789-798. [PMID: 32794004 DOI: 10.1007/s00216-020-02861-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
The development of a cost-effective and highly sensitive hydrogen peroxide sensor is of great importance. Electrochemical sensing is considered the most sensitive technique for hydrogen peroxide detection. Herein, we reported a cost-effective and highly sensitive hydrogen peroxide sensor using Co-doped δ-MnO2 (Co@δ-MnO2) flower-modified screen-printed carbon electrode. The δ-MnO2 and Co@δ-MnO2 flowers were synthesized by employing a hydrothermal approach. Advanced techniques such as PXRD, SEM, FTIR, Raman, UV, EDX, BET, and TEM were utilized to confirm the formation of δ-MnO2 and Co-doped δ-MnO2 flowers. The fabricated sensor exhibited an excellent detection limit (0.12 μM) and sensitivity of 5.3 μAμM-1 cm-2.Graphical abstract.
Collapse
|
17
|
Huang X, Nan Z. Porous 2D FeS2 nanosheets as a peroxidase mimic for rapid determination of H2O2. Talanta 2020; 216:120995. [DOI: 10.1016/j.talanta.2020.120995] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 11/26/2022]
|
18
|
Dervisevic E, Dervisevic M, Wang Y, Malaver‐Ortega LF, Cheng W, Tuck KL, Voelcker NH, Cadarso VJ. Highly Selective Nanostructured Electrochemical Sensor Utilizing Densely Packed Ultrathin Gold Nanowires Film. ELECTROANAL 2020. [DOI: 10.1002/elan.202060071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Esma Dervisevic
- Department of Mechanical and Aerospace EngineeringMonash University, Room 227, New Horizons Building 20 Research Way Clayton VIC 3800 Australia
| | - Muamer Dervisevic
- Monash Institute of Pharmaceutical Sciences (MIPS)Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Clayton VIC 3168 Australia
- The Melbourne Centre for Nanofabrication Clayton, Victoria 3800, Australia
| | - Yan Wang
- Department of Chemical EngineeringMonash University Clayton, Victoria 3800 Australia
| | - Luis F. Malaver‐Ortega
- Monash Institute of Pharmaceutical Sciences (MIPS)Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Wenlong Cheng
- The Melbourne Centre for Nanofabrication Clayton, Victoria 3800, Australia
- Department of Chemical EngineeringMonash University Clayton, Victoria 3800 Australia
| | - Kellie L. Tuck
- School of ChemistryMonash University Clayton, Victoria 3800 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences (MIPS)Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Clayton VIC 3168 Australia
- The Melbourne Centre for Nanofabrication Clayton, Victoria 3800, Australia
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace EngineeringMonash University, Room 227, New Horizons Building 20 Research Way Clayton VIC 3800 Australia
- The Melbourne Centre for Nanofabrication Clayton, Victoria 3800, Australia
| |
Collapse
|
19
|
Li X, Zhou L, Ding J, Sun L, Su B. Platinized Silica Nanoporous Membrane Electrodes for Low‐Fouling Hydrogen Peroxide Detection. ChemElectroChem 2020. [DOI: 10.1002/celc.202000321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xinru Li
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Lin Zhou
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Jialian Ding
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Lei Sun
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Bin Su
- Department of ChemistryZhejiang University Hangzhou 310058 China
| |
Collapse
|
20
|
Sandhu N, Saproo S, Naidu S, Singh AP, Kumar K, Singh AP, Yadav RK. ““Turn‐On” Sensing Behaviour of an In Situ Generated Fluorescein‐Based Probe and Its Preferential Selectivity of Sodium Hypochlorite over
tert
‐Butyl Hydroperoxide in Lung Adenocarcinoma Cells”. ChemistrySelect 2020. [DOI: 10.1002/slct.201903843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Navjot Sandhu
- Department of ChemistryChandigarh University, Gharuan, Mohali, Punjab India
| | - Sheetanshu Saproo
- Center for Biomedical Engineering (CBME)Indian Institute of Technology, Ropar India
| | - Srivatsava Naidu
- Center for Biomedical Engineering (CBME)Indian Institute of Technology, Ropar India
| | - Atul P. Singh
- Department of ChemistryChandigarh University, Gharuan, Mohali, Punjab India
| | - Kamlesh Kumar
- Ubiquitous Analytical TechniquesCSIR-Central Scientific Instruments Organisation, Chandigarh India
| | | | - Rajesh K. Yadav
- Department of Applied Science (Chemistry), Madan Mohan Malaviya
| |
Collapse
|
21
|
Tavakkoli H, Akhond M, Ghorbankhani GA, Absalan G. Electrochemical sensing of hydrogen peroxide using a glassy carbon electrode modified with multiwalled carbon nanotubes and zein nanoparticle composites: application to HepG2 cancer cell detection. Mikrochim Acta 2020; 187:105. [PMID: 31916024 DOI: 10.1007/s00604-019-4064-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/06/2019] [Indexed: 11/29/2022]
Abstract
A nanobiocomposite was prepared from multiwalled carbon nanotubes and zein nanoparticles. It was dispersed in water/ethanol and drop cast onto a glassy carbon electrode. The modified electrode can be used for electroreduction of H2O2 (typically at a working potential of -0.71 V vs. Ag/AgCl). The electrochemical properties of the electrode were investigated by cyclic voltammetry, linear sweep voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Response to H2O2 is linear in the 0.049 to 22 μM concentration range, and the detection limit is 35 nM at pH 7.0. The sensor was successfully utilized for the measurement of H2O2 in a synthetic urine sample, and for monitoring the release of H2O2 from human dermal fibroblasts and human hepatocellular carcinoma cells. Graphical abstractSchematic representation of a novel metal- and enzyme-free electrochemical nanosensor. A glassy carbon electrode was modified with a nanocomposite prepared from multiwalled carbon nanotubes and zein nanoparticles. It was applied to the identification of liver cancer cells via sensing of H2O2 and has a very low detection limit.
Collapse
Affiliation(s)
- Hamed Tavakkoli
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| | - Morteza Akhond
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| | - Gholam Abbas Ghorbankhani
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71441, Iran
| | - Ghodratollah Absalan
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran.
| |
Collapse
|
22
|
Caron T, Palmas P, Frénois C, Méthivier C, Pasquinet E, Pradier CM, Serein-Spirau F, Hairault L, Montméat P. Detection of hydrogen peroxide using dioxazaborocanes: elucidation of the sensing mechanism at the molecular level by NMR and XPS measurements. NEW J CHEM 2020. [DOI: 10.1039/d0nj00038h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The H2O2vapour cleaves the N–B bond and inhibits the fluorescence of the dixazaborocane.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Françoise Serein-Spirau
- Institut Charles Gerhardt
- UMR CNRS 5253
- Equipe AM2N
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier Cedex 05
| | | | | |
Collapse
|
23
|
Dacy A, Haider N, Davis K, Hu W, Tang L. Design and evaluation of an imager for assessing wound inflammatory responses and bioburden in a pig model. JOURNAL OF BIOMEDICAL OPTICS 2019; 25:1-9. [PMID: 31515974 PMCID: PMC6739619 DOI: 10.1117/1.jbo.25.3.032002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Our work details the development and characterization of a portable luminescence imaging device for detecting inflammatory responses and infection in skin wounds. The device includes a CCD camera and close-up lens integrated into a customizable 3D printed imaging chamber to create a portable light-tight imager for luminescence imaging. The chamber has an adjustable light portal that permits ample ambient light for white light imaging. This imager was used to quantify in real time the extent of two-dimensional reactive oxygen species (ROS) activity distribution using a porcine wound infection model. The imager was used to successfully visualize ROS-associated luminescent activities in vitro and in vivo. Using a pig full-thickness cutaneous wound model, we further demonstrate that this portable imager can detect the change of ROS activities and their relationship with vasculature in the wound environment. Finally, by analyzing ROS intensity and distribution, an imaging method was developed to distinguish infected from uninfected wounds. We discovered a distinct ROS pattern between bacteria-infected and control wounds corresponding to the microvasculature. The results presented demonstrate that this portable luminescence imager is capable of imaging ROS activities in cutaneous wounds in a large animal model, indicating suitability for future clinical applications.
Collapse
Affiliation(s)
- Ashley Dacy
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Nowmi Haider
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Kathryn Davis
- University of Texas Southwestern Medical Center, Department of Plastic Surgery, Dallas, Texas, United States
| | - Wenjing Hu
- Progenitec Inc., Arlington, Texas, United States
| | - Liping Tang
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| |
Collapse
|
24
|
Mohamed ZH, Soukka T, Arenz C, Schäferling M. Five-, Four- and Three-Dentate Europium Chelates for Anion Sensing and Their Applicability to Enzymatic Dephosphorylation Reactions. ChemistrySelect 2018. [DOI: 10.1002/slct.201803287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zainelabdeen. H. Mohamed
- Institute for Chemistry; Humboldt-Universität zu Berlin; Berlin Germany
- BAM Federal Institute for Materials Research and Testing; Division Biophotonics; Berlin Germany
| | - Tero Soukka
- Department of Biochemistry/Biotechnology; University of Turku; Turku Finland
| | - Christoph Arenz
- Institute for Chemistry; Humboldt-Universität zu Berlin; Berlin Germany
| | - Michael Schäferling
- BAM Federal Institute for Materials Research and Testing; Division Biophotonics; Berlin Germany
| |
Collapse
|
25
|
Ding L, Chen S, Zhang W, Zhang Y, Wang XD. Fully Reversible Optical Sensor for Hydrogen Peroxide with Fast Response. Anal Chem 2018; 90:7544-7551. [DOI: 10.1021/acs.analchem.8b01159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Longjiang Ding
- Department of Chemistry, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Siyu Chen
- Department of Chemistry, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Wei Zhang
- Department of Chemistry, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Yinglu Zhang
- Department of Chemistry, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Xu-dong Wang
- Department of Chemistry, Fudan University, 200433 Shanghai, People’s Republic of China
| |
Collapse
|
26
|
Liu H, Wang B, Li D, Zeng X, Tang X, Gao Q, Cai J, Cai HH. MoS 2 nanosheets with peroxidase mimicking activity as viable dual-mode optical probes for determination and imaging of intracellular hydrogen peroxide. Mikrochim Acta 2018; 185:287. [PMID: 29737406 DOI: 10.1007/s00604-018-2792-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/05/2018] [Indexed: 01/27/2023]
Abstract
The authors describe a dual-mode (colorimetric-fluorometric) nanoprobe for H2O2 that was fabricated by covering molybdenum disulfide nanosheets (MoS2 NS) with ortho-phenylenediamine (OPD). The probe (OPD-MoS2 NS) was applied to the optical determination of H2O2, to the quantitation of cell numbers, and to the detection of intracellular concentrations of H2O2. Oxidation by H2O2 leads to a colored and fluorescent product (oxidized OPD) with absorption/excitation/fluorescence peaks at 450/450/557 nm. The nanoprobe can detect H2O2 in down to 500 nM concentrations, and HeLa cells at levels of 100 cells mL-1. The detection limit for intracellular H2O2 is in the 5.5 to 12.6 μM concentration range when the method is applied to cells at levels of 102-106 cells mL-1. Due to its good biocompatibility and easy cell uptake, the nanoprobe also permits sensitive fluorometric imaging of intracellular H2O2. It can also comparatively discriminate the change of intracellular oxidation state in living cancerous and normal cells. Graphical abstract Editor, we provided image with high resolution. Please find it in a folder name "MIAC-D-18-00081" in the FTP site. A dual-mode (colorimetric-fluorometric) detection nanoplatform based on OPD-modified MoS2 nanosheets is used to quantitatively detect H2O2, cell numbers and intracellular H2O2. The MoS2 nanoprobes also permit sensitive fluorescence imaging of intracellular H2O2, and can discriminate intracellular oxide states in living cancerous and normal cells.
Collapse
Affiliation(s)
- Huimei Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Baocheng Wang
- The First Affiliated Hospital, Biomedical Translational Research Instituteand, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632, China
| | - Dehai Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xueyi Zeng
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Xiao Tang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | | | - Jiye Cai
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Huai-Hong Cai
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
27
|
Apak R, Demirci Çekiç S, Üzer A, Çelik SE, Bener M, Bekdeşer B, Can Z, Sağlam Ş, Önem AN, Erçağ E. Novel Spectroscopic and Electrochemical Sensors and Nanoprobes for the Characterization of Food and Biological Antioxidants. SENSORS (BASEL, SWITZERLAND) 2018; 18:186. [PMID: 29324685 PMCID: PMC5796370 DOI: 10.3390/s18010186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/25/2017] [Accepted: 01/03/2018] [Indexed: 02/01/2023]
Abstract
Since an unbalanced excess of reactive oxygen/nitrogen species (ROS/RNS) causes various diseases, determination of antioxidants that can counter oxidative stress is important in food and biological analyses. Optical/electrochemical nanosensors have attracted attention in antioxidant activity (AOA) assessment because of their increased sensitivity and selectivity. Optical sensors offer advantages such as low cost, flexibility, remote control, speed, miniaturization and on-site/in situ analysis. Electrochemical sensors using noble metal nanoparticles on modified electrodes better catalyze bioelectrochemical reactions. We summarize the design principles of colorimetric sensors and nanoprobes for food antioxidants (including electron-transfer based and ROS/RNS scavenging assays) and important milestones contributed by our laboratory. We present novel sensors and nanoprobes together with their mechanisms and analytical performances. Our colorimetric sensors for AOA measurement made use of cupric-neocuproine and ferric-phenanthroline complexes immobilized on a Nafion membrane. We recently designed an optical oxidant/antioxidant sensor using N,N-dimethyl-p-phenylene diamine (DMPD) as probe, from which ROS produced colored DMPD-quinone cationic radicals electrostatically retained on a Nafion membrane. The attenuation of initial color by antioxidants enabled indirect AOA estimation. The surface plasmon resonance absorption of silver nanoparticles as a result of enlargement of citrate-reduced seed particles by antioxidant addition enabled a linear response of AOA. We determined biothiols with Ellman reagent-derivatized gold nanoparticles.
Collapse
Affiliation(s)
- Reşat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar, 34320 Istanbul, Turkey.
- Turkish Academy of Sciences (TUBA), Piyade Sok., No. 27, Cankaya, 06550 Ankara, Turkey.
| | - Sema Demirci Çekiç
- Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar, 34320 Istanbul, Turkey.
| | - Ayşem Üzer
- Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar, 34320 Istanbul, Turkey.
| | - Saliha Esin Çelik
- Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar, 34320 Istanbul, Turkey.
| | - Mustafa Bener
- Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar, 34320 Istanbul, Turkey.
| | - Burcu Bekdeşer
- Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar, 34320 Istanbul, Turkey.
| | - Ziya Can
- Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar, 34320 Istanbul, Turkey.
| | - Şener Sağlam
- Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar, 34320 Istanbul, Turkey.
| | - Ayşe Nur Önem
- Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar, 34320 Istanbul, Turkey.
| | - Erol Erçağ
- Aytar Cad., Fecri Ebcioglu Sok., No. 6/8, Levent, 34340 Istanbul, Turkey.
| |
Collapse
|
28
|
George G, Simpson MD, Gautam BR, Fang D, Peng J, Wen J, Davis JE, Ila D, Luo Z. Luminescence characteristics of rare-earth-doped barium hexafluorogermanate BaGeF6 nanowires: fast subnanosecond decay time and high sensitivity in H2O2 detection. RSC Adv 2018; 8:39296-39306. [PMID: 35558037 PMCID: PMC9091314 DOI: 10.1039/c8ra07806h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/17/2018] [Indexed: 12/25/2022] Open
Abstract
Fluorides are promising host materials for optical applications. This paper reports the photoluminescent (PL) and cathodoluminescent (CL) characteristics of barium hexafluorogermanate BaGeF6 nanowires codoped with Ce3+, Tb3+ and Sm3+ rare earth ions, produced by a solvothermal route. The synthesized BaGeF6 nanowires exhibit uniform morphology and size distribution. X-ray diffraction divulges the one-dimensional growth of crystalline BaGeF6 structure, with the absence of any impurity phases. Visible luminescence is recorded from the nanowires in green and red regions, when the nanowires are codoped with Ce3+/Tb3+, and Ce3+/Tb3+/Sm3+, respectively, under a UV excitation source. The PL emission from the codoped BaGeF6 nanowires, when excited by a 254 nm source, originates from the efficient energy transfer bridges between Ce3+, Tb3+ and Sm3+ ions. The decay time of the visible luminescent emission from the nanowires is in the order of subnanoseconds, being one of the shortest decay time records from inorganic scintillators. The CL emission from the BaGeF6 nanowires in the tunable visible range reveals their potential use for the detection of high-energy radiation. The PL emissions are sensitive to H2O2 at low concentrations, enabling their high-sensitivity detection of H2O2 using BaGeF6 nanowires. A comparison with BaSiF6 nanowires is made in terms of decay time and its sensitivity towards H2O2. The decay time of BaGeF6 nanowires codoped with rare earths is found in the order of subnanoseconds, being one of the shortest decay time records from inorganic scintillators. Their luminescence emissions are highly sensitive for H2O2 detection.![]()
Collapse
Affiliation(s)
- Gibin George
- Department of Chemistry and Physics
- Fayetteville State University
- Fayetteville
- USA
| | - Machael D. Simpson
- Department of Chemistry and Physics
- Fayetteville State University
- Fayetteville
- USA
| | - Bhoj R. Gautam
- Department of Chemistry and Physics
- Fayetteville State University
- Fayetteville
- USA
| | - Dong Fang
- College of Materials Science and Engineering
- Kunming University of Science and Technology
- Kunming 650093
- P. R. China
| | - Jinfang Peng
- Centre for Nanoscale Materials
- Argonne National Laboratory
- Argonne
- USA
| | - Jianguo Wen
- Centre for Nanoscale Materials
- Argonne National Laboratory
- Argonne
- USA
| | - Jason E. Davis
- Oak Ridge Institute for Science and Education
- Oak Ridge Associated Universities
- Oak Ridge
- USA
| | - Daryush Ila
- Department of Chemistry and Physics
- Fayetteville State University
- Fayetteville
- USA
| | - Zhiping Luo
- Department of Chemistry and Physics
- Fayetteville State University
- Fayetteville
- USA
| |
Collapse
|
29
|
Turn-on fluorometric and colorimetric probe for hydrogen peroxide based on the in-situ formation of silver ions from a composite made from N-doped carbon quantum dots and silver nanoparticles. Mikrochim Acta 2017; 185:31. [DOI: 10.1007/s00604-017-2545-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/09/2017] [Indexed: 02/05/2023]
|
30
|
Possibilities and Challenges for Quantitative Optical Sensing of Hydrogen Peroxide. CHEMOSENSORS 2017. [DOI: 10.3390/chemosensors5040028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Wang L, Kang X, Pan D. Gram-Scale Synthesis of Hydrophilic PEI-Coated AgInS 2 Quantum Dots and Its Application in Hydrogen Peroxide/Glucose Detection and Cell Imaging. Inorg Chem 2017; 56:6122-6130. [PMID: 28474898 DOI: 10.1021/acs.inorgchem.7b00053] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Assisted with polyethylenimine, 4.0 L of water-soluble AgInS2 quantum dots (AIS QDs) were successfully synthesized in an electric pressure cooker. As-prepared QDs exhibit yellow emission with a photoluminescence (PL) quantum yield up to 32%. The QDs also show excellent water/buffer stability. The highly luminescent AIS QDs are used to explore their dual-functional behavior: detection of hydrogen peroxide (H2O2)/glucose and cell imaging. The amino-functionalized AIS QDs show high sensitivity and specificity for H2O2 and glucose with detection limits of 0.42 and 0.90 μM, respectively. A linear correlation was established between PL intensity and concentration of H2O2 in the ranges of 0.5-10 μM and 10-300 μM, while the linear ranges were 1-10 μM and 10-1000 μM for detection of glucose. The AIS QDs reveal negligible cytotoxicity on HeLa cells. Furthermore, the luminescence of AIS QDs gives the function of optical imaging.
Collapse
Affiliation(s)
- Lan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Road, Changchun, Jilin 130022, P. R. China.,University of the Chinese Academy of Sciences , Beijing 10049, P. R. China
| | - Xiaojiao Kang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Road, Changchun, Jilin 130022, P. R. China
| | - Daocheng Pan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Road, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
32
|
Yamaguchi M, Sato S. Spectrometric assay for horseradish peroxidase activity based on the linkage of conjugated system formed by oxidative decarboxylation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:189-194. [PMID: 27912178 DOI: 10.1016/j.saa.2016.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/25/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
Horseradish peroxidase (HRP)-catalyzed oxidation of 2,2-bis[3-acethylfilicinic acid-5-yl]acetic acid (BAFA, 4) produces Dehydro-3,3'-diacetyl-5,5'-methylenedifilicinic acid (DDMF, 3). A new photometric hydrogen donor (4) for peroxidase (POD)-catalyzed oxidation was demonstrated to be potentially useful for spectrocolorimetric and spectrofluorometric determination of HRP. Our developed colorimetric (absorption at 483nm) and fluorometric (emission at 529nm) systems both gave a linear calibration curve for HRP (y=0.0025×+0.0237; R2=0.9997, and y=0.241×+3.194; R2=0.9914, respectively) in the same concentration range of 9.1×10-8-1.1×10-6nmol/L. The calculated Km and Vmax values of 5.10×10-4M and 5.13×10-6M/min, respectively. The results indicate that the quantification of HRP using BAFA 4 as hydrogen donor is possible.
Collapse
Affiliation(s)
- Masaki Yamaguchi
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa-shi, Yamagata 992-8510, Japan
| | - Shingo Sato
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa-shi, Yamagata 992-8510, Japan.
| |
Collapse
|
33
|
Goggins S, Apsey EA, Mahon MF, Frost CG. Ratiometric electrochemical detection of hydrogen peroxide and glucose. Org Biomol Chem 2017; 15:2459-2466. [PMID: 28256671 DOI: 10.1039/c7ob00211d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hydrogen peroxide (H2O2) detection is of high importance as it is a versatile (bio)marker whose detection can indicate the presence of explosives, enzyme activity and cell signalling pathways. Herein, we demonstrate the rapid and accurate ratiometric electrochemical detection of H2O2 using disposable screen-printed electrodes through a reaction-based indicator assay. Ferrocene derivatives equipped with self-immolative linkers and boronic acid ester moieties were synthesised and tested, and, through a thorough assay optimisation, the optimum probe showed good stability, sensitivity and selectivity towards H2O2. The optimised conditions were then applied to the indirect detection of glucose via an enzymatic assay, capable of distinguishing 10 μM from the background within minutes.
Collapse
Affiliation(s)
- Sean Goggins
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | | | | | |
Collapse
|
34
|
Photoelectrochemical determination of hydrogen peroxide using a gold electrode modified with fluorescent gold nanoclusters and graphene oxide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2035-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Wang HS. Development of fluorescent and luminescent probes for reactive oxygen species. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
A glassy carbon electrode modified with a nanocomposite consisting of carbon nanohorns and poly(2-aminopyridine) for non-enzymatic amperometric determination of hydrogen peroxide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1975-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Zhao W, Li Y, Yang S, Chen Y, Zheng J, Liu C, Qing Z, Li J, Yang R. Target-Activated Modulation of Dual-Color and Two-Photon Fluorescence of Graphene Quantum Dots for in Vivo Imaging of Hydrogen Peroxide. Anal Chem 2016; 88:4833-40. [PMID: 27072323 DOI: 10.1021/acs.analchem.6b00521] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of nanoprobes suitable for two-photon microscopy techniques is highly desirable for mapping biological species in living systems. However, at the current stage, the nanoprobes are restricted to single-color fluorescence changes, making it unsuitable for quantitative detection. To circumvent this problem, we report here a rational design of a dual-emission and two-photon (TP) graphene quantum dot (GQD(420)) probe for imaging of hydrogen peroxide (H2O2). For specific recognition of H2O2 and lighting the fluorescence of TPGQD(420), a boronate ester-functionalized merocyanine (BMC) fluorophore was used as both target-activated trigger and the dual-emission fluorescence modulator. Upon two-photon excitation at 740 nm, TPGQD(420)-BMC displays a green-to-blue resolved emission band in response to H2O2 with an emission shift of 110 nm, and the H2O2 can be determined from 0.2 to 40 μM with a detection limit of 0.05 μM. Moreover, the fluorescence response of the TPGQD(420)-BMC toward H2O2 is rapid and extremely specific. The feasibility of the proposed method is demonstrated by two-photon ratiometrically mapping the production of endogenous H2O2 in living cells as well as in deep tissues of murine mode at 0-600 μm. To the best of our knowledge, this is the first paradigm to rationally design a dual-emission and two-photon nanoprobe via fluorescence modulation of GQDs with switchable molecules, which will extend new possibility to design powerful molecular tools for in vivo bioimaging applications.
Collapse
Affiliation(s)
- Wenjie Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, People's Republic of China
| | - Yinhui Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, People's Republic of China
| | - Sheng Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha, 410004, People's Republic of China
| | - Yun Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, People's Republic of China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, People's Republic of China
| | - Changhui Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, People's Republic of China
| | - Zhihe Qing
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha, 410004, People's Republic of China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, People's Republic of China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, People's Republic of China.,School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha, 410004, People's Republic of China
| |
Collapse
|
38
|
Simões EFC, Leitão JMM, da Silva JCGE. Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1807-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Yang Z, Qi C, Zheng X, Zheng J. Sensing hydrogen peroxide with a glassy carbon electrode modified with silver nanoparticles, AlOOH and reduced graphene oxide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1743-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Zhao H, Jiang G, Weng J, Ma Q, Zhang H, Ito Y, Liu M. A signal-accumulating DNAzyme-crosslinked hydrogel for colorimetric sensing of hydrogen peroxide. J Mater Chem B 2016; 4:4648-4651. [DOI: 10.1039/c6tb00825a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A signal-accumulating DNAzyme-crosslinked hydrogel is designed and prepared for colorimetric sensing of hydrogen peroxide.
Collapse
Affiliation(s)
- Haixu Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Gangfeng Jiang
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Jinpeng Weng
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Qi Ma
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Hui Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory
- RIKEN
- Saitama
- Japan
- Emergent Bioengineering Materials Research Team
| | - Mingzhe Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| |
Collapse
|
41
|
Wang M, Zheng B, Yang F, Du J, Guo Y, Dai J, Yan L, Xiao D. Synthesis of “amphiphilic” carbon dots and their application for the analysis of iodine species (I2, I− and IO3−) in highly saline water. Analyst 2016; 141:2508-14. [DOI: 10.1039/c5an02643a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, “amphiphilic” carbon dots (A-CDs) with a strong green fluorescence were synthesized by a simple and green method at room temperature, and the synthesized A-CDs could be used for the analysis of iodine species (I2, I− and IO3−) in highly saline water.
Collapse
Affiliation(s)
- Meina Wang
- Department of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Baozhan Zheng
- Department of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Feng Yang
- Department of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Juan Du
- Department of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Yong Guo
- Department of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Jianyuan Dai
- Department of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Lei Yan
- School of Criminal Investigation
- Southwest University of Political Science and Law
- Chongqing 401120
- China
| | - Dan Xiao
- Department of Chemistry
- Sichuan University
- Chengdu 610064
- China
- Department of Chemical Engineering
| |
Collapse
|
42
|
Wang S, Xu S, Hu G, Bai X, James TD, Wang L. A Fluorescent Chemodosimeter for Live-Cell Monitoring of Aqueous Sulfides. Anal Chem 2015; 88:1434-9. [DOI: 10.1021/acs.analchem.5b04194] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shiguo Wang
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Suying Xu
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Gaofei Hu
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xilin Bai
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Leyu Wang
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
43
|
New Nanomaterials and Luminescent Optical Sensors for Detection of Hydrogen Peroxide. CHEMOSENSORS 2015. [DOI: 10.3390/chemosensors3040253] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Kupfer ME, Ogle BM. Advanced imaging approaches for regenerative medicine: Emerging technologies for monitoring stem cell fate in vitro and in vivo. Biotechnol J 2015; 10:1515-28. [DOI: 10.1002/biot.201400760] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/12/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022]
|
45
|
Apak R, Çapanoğlu E, Arda AÜ. Nanotechnological Methods of Antioxidant Characterization. ACTA ACUST UNITED AC 2015. [DOI: 10.1021/bk-2015-1191.ch016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Reşat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar 34320, Istanbul-Turkey
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469, Istanbul-Turkey
| | - Esra Çapanoğlu
- Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar 34320, Istanbul-Turkey
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469, Istanbul-Turkey
| | - Ayşem Üzer Arda
- Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar 34320, Istanbul-Turkey
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469, Istanbul-Turkey
| |
Collapse
|
46
|
Żamojć K, Zdrowowicz M, Jacewicz D, Wyrzykowski D, Chmurzyński L. Fluorescent Probes Used for Detection of Hydrogen Peroxide under Biological Conditions. Crit Rev Anal Chem 2015; 46:171-200. [DOI: 10.1080/10408347.2015.1014085] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Challenges and advances in quantum dot fluorescent probes to detect reactive oxygen and nitrogen species: A review. Anal Chim Acta 2015; 862:1-13. [DOI: 10.1016/j.aca.2014.08.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 01/04/2023]
|
48
|
Djurišić AB, Leung YH, Ng AMC, Xu XY, Lee PKH, Degger N, Wu RSS. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:26-44. [PMID: 25303765 DOI: 10.1002/smll.201303947] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 08/20/2014] [Indexed: 05/22/2023]
Abstract
Metal oxide nanomaterials are widely used in practical applications and represent a class of nanomaterials with the highest global annual production. Many of those, such as TiO2 and ZnO, are generally considered non-toxic due to the lack of toxicity of the bulk material. However, these materials typically exhibit toxicity to bacteria and fungi, and there have been emerging concerns about their ecotoxicity effects. The understanding of the toxicity mechanisms is incomplete, with different studies often reporting contradictory results. The relationship between the material properties and toxicity appears to be complex and diifficult to understand, which is partly due to incomplete characterization of the nanomaterial, and possibly due to experimental artefacts in the characterization of the nanomaterial and/or its interactions with living organisms. This review discusses the comprehensive characterization of metal oxide nanomaterials and the mechanisms of their toxicity.
Collapse
|
49
|
Hazra S, Joshi H, Ghosh BK, Ahmed A, Gibson T, Millner P, Ghosh NN. Development of a novel and efficient H2O2 sensor by simple modification of a screen printed Au electrode with Ru nanoparticle loaded functionalized mesoporous SBA15. RSC Adv 2015. [DOI: 10.1039/c5ra02712h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A novel and efficient electrochemical sensor has been developed to quantitatively measure H2O2 concentration by cyclic voltammetry.
Collapse
Affiliation(s)
- Subhenjit Hazra
- Nano-Materials Lab
- Department of Chemistry
- Birla Institute of Technology and Science
- Pilani K. K. Birla Goa Campus
- Zuarinagar
| | - Hrishikesh Joshi
- Nano-Materials Lab
- Department of Chemistry
- Birla Institute of Technology and Science
- Pilani K. K. Birla Goa Campus
- Zuarinagar
| | - Barun Kumar Ghosh
- Nano-Materials Lab
- Department of Chemistry
- Birla Institute of Technology and Science
- Pilani K. K. Birla Goa Campus
- Zuarinagar
| | - Asif Ahmed
- School of Biomedical Sciences
- Faculty of Biological Sciences
- University of Leeds
- Leeds
- UK
| | - Timothy Gibson
- School of Biomedical Sciences
- Faculty of Biological Sciences
- University of Leeds
- Leeds
- UK
| | - Paul Millner
- School of Biomedical Sciences
- Faculty of Biological Sciences
- University of Leeds
- Leeds
- UK
| | - Narendra Nath Ghosh
- Nano-Materials Lab
- Department of Chemistry
- Birla Institute of Technology and Science
- Pilani K. K. Birla Goa Campus
- Zuarinagar
| |
Collapse
|
50
|
Guo H, Aleyasin H, Dickinson BC, Haskew-Layton RE, Ratan RR. Recent advances in hydrogen peroxide imaging for biological applications. Cell Biosci 2014; 4:64. [PMID: 25400906 PMCID: PMC4232666 DOI: 10.1186/2045-3701-4-64] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/06/2014] [Indexed: 11/10/2022] Open
Abstract
Mounting evidence supports the role of hydrogen peroxide (H2O2) in physiological signaling as well as pathological conditions. However, the subtleties of peroxide-mediated signaling are not well understood, in part because the generation, degradation, and diffusion of H2O2 are highly volatile within different cellular compartments. Therefore, the direct measurement of H2O2 in living specimens is critically important. Fluorescent probes that can detect small changes in H2O2 levels within relevant cellular compartments are important tools to study the spatial dynamics of H2O2. To achieve temporal resolution, the probes must also be photostable enough to allow multiple readings over time without loss of signal. Traditional fluorescent redox sensitive probes that have been commonly used for the detection of H2O2 tend to react with a wide variety of reactive oxygen species (ROS) and often suffer from photostablilty issues. Recently, new classes of H2O2 probes have been designed to detect H2O2 with high selectivity. Advances in H2O2 measurement have enabled biomedical scientists to study H2O2 biology at a level of precision previously unachievable. In addition, new imaging techniques such as two-photon microscopy (TPM) have been employed for H2O2 detection, which permit real-time measurements of H2O2 in vivo. This review focuses on recent advances in H2O2 probe development and optical imaging technologies that have been developed for biomedical applications.
Collapse
Affiliation(s)
- Hengchang Guo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA ; Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, NY 10605 USA
| | - Hossein Aleyasin
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, NY 10605 USA ; Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 USA
| | - Renée E Haskew-Layton
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, NY 10605 USA ; School of Health and Natural Sciences, Mercy College, Dobbs Ferry, NY 10522 USA
| | - Rajiv R Ratan
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, NY 10605 USA
| |
Collapse
|