1
|
Sriramulu M, Stephen Saviour JS, Balakrishnan S, Kannaiyan P, Subash C B G. Advancements in Modified Electrodes with Electrochemical Sensors for Detecting Acetaminophen and Caffeine: An Update. Crit Rev Anal Chem 2025:1-27. [PMID: 40392635 DOI: 10.1080/10408347.2025.2496506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Acetaminophen and caffeine are analgesic or psychoactive drugs in human life that plays a major role in food and medicinal chemistry. Caffeine increases the efficacy of acetaminophen by improving its absorption, thereby prolonging analgesic action. Caffeine might exacerbate symptoms of anxiety if being prone to them. Taking these medications for a headache or migraine may cause problems for human life. Developing a sensitive, selective, easy, quick, and economical electroanalytical approach for the simultaneous detection of acetaminophen and caffeine has been a major area of research since they typically coexist in biological fluids and oxidize at overlapping potentials. Voltammetry has become one of the most commonly used and an important method amongst the other methods due to its high sensitivity and reliability. Moreover, carbon materials, metal/metal oxides/nanoparticles, and polymer-based materials have enhanced researchers' attention for the strategy and growth of electrochemical sensors for acetaminophen and caffeine. This compilation is a comprehensive effort to address the growing need for materials and their simultaneous detection of acetaminophen and caffeine. In this study, the validation parameters (electrode surface area, catalytic activity, electron transfer kinetics, potential window, sensitivity, and selectivity) were evaluated and provided a strong foundation for evaluating the effectiveness of materials and techniques. This review highlights the most widely used voltammetric methods for simultaneous electrochemical determination of acetaminophen and caffeine, and it explains the interference effect of acetaminophen and caffeine along with similar structural components. Finally, the topic has been concluded with existing challenges and prospects.
Collapse
Affiliation(s)
- Meenakshi Sriramulu
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
| | | | - Subash Balakrishnan
- Department of Chemistry, St. Joseph's College of Engineering, Chennai, Tamil Nadu, India
| | - Pandian Kannaiyan
- Department of Inorganic Chemistry, University of Madras, Chennai, India
| | - Gopinath Subash C B
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Faculty of Chemical Engineering and Technology, Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
- Department of Technical Sciences, Western Caspian University, Baku, AZ, Azerbaijan
- Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Savar, Dhaka, Bangladesh
| |
Collapse
|
2
|
Ozbey S, Keles G, Kurbanoglu S. Innovations in graphene-based electrochemical biosensors in healthcare applications. Mikrochim Acta 2025; 192:290. [PMID: 40205234 PMCID: PMC11982133 DOI: 10.1007/s00604-025-07141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
The isolation of a single atomic layer of graphite, known as graphene, marked a fundamental moment that transformed the field of materials science. Graphene-based nanomaterials are recognized for their superior biocompatibility compared with many other types of nanomaterials. Moreover, one of the main reasons for the growing interest in graphene is its potential applications in emerging technologies. Its key characteristics, including high electrical conductivity, excellent intrinsic charge carrier mobility, optical transparency, substantial specific surface area, and remarkable mechanical flexibility, position it as an ideal candidate for applications in solar cells and touch screens. Its durability further establishes graphene as a strong contender for developing robust materials. To date, a variety of methods, such as traditional spectroscopic techniques and chromatographic approaches, have been developed for detecting biomolecules, drugs, and heavy metals. Electrochemical methods, known for their portability, selectivity, and impressive sensitivity, offer considerable convenience for both patients and professionals in point-of-care diagnostics. Recent advancements have significantly improved the capacity for rapid and accurate detection of analytes in trace amounts, providing substantial benefits in biosensor technology. Additionally, the integration of nanotechnology has markedly enhanced the sensitivity and selectivity of electrochemical sensors, yielding significantly improved results. Innovations such as point-of-care, lab-on-a-chip, implantable devices, and wearable sensors are discussed in this review.
Collapse
Affiliation(s)
- Sudenur Ozbey
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Türkiye
| | - Gulsu Keles
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Türkiye
- The Graduate School of Health Sciences, Ankara University, 06110, Ankara, Türkiye
| | - Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Türkiye.
| |
Collapse
|
3
|
Jiang D, Feng Z, Jiang H, Xiang X, Wang L. Biomimetic gastric microtissue electrochemical biosensors for ovalbumin detection. Biosens Bioelectron 2025; 271:117103. [PMID: 39736243 DOI: 10.1016/j.bios.2024.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/01/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
An innovative integrated three-dimensional (3D) bioprinted gastric microtissue electrochemical biosensor was developed in this study for the detection of allergen ovalbumin (OVA). In this system, OVA triggers the release of histamine from gastric microtissue, which then undergoes a redox reaction on the electrode surface, leading to an increase in the peak current. Gelatin methacrylate hydrogel serves as a scaffold for the 3D culture of RBL-2H3 and PC-12 cells for partially restoring allergic reactions in the human body in vitro. Furthermore, gold nanoparticle-modified anodized aluminum oxide sieves macromolecular substances and facilitates sensor nano-analysis. Composites of cerium-based organometallic framework, MnO2, and gold nanoparticles significantly enhanced the sensitivity of the screen-printed carbon electrode. Under optimal experimental conditions, the detection limit for OVA was 0.042 μg/mL, with a linear range of 0.1-10.0 μg/mL. The fabricated sensor demonstrated high sensitivity, reliability, and simplicity, showcasing its broad potential for allergen detection applications.
Collapse
Affiliation(s)
- Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China
| | - Zeng Feng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu, 211198, PR China
| | - Xinyue Xiang
- Jiangsu Grain Group Co., Ltd, Nanjing, Jiangsu, 210008, PR China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China.
| |
Collapse
|
4
|
Omidifar N, Masoumzadeh R, Saghi SA, Nikmanesh A, Shokripour M, Mousavi SM, Nikmanesh Y, Gholami A. A New Approach in the Early Electrochemical Diagnosis of Hepatitis B Virus Infection using Carbon-based Nanomaterials. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:166-182. [PMID: 38523523 DOI: 10.2174/0118722105285022240311062943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 03/26/2024]
Abstract
The importance of early diagnosis of hepatitis B virus infection to treat and follow up this disease has led to many advances in diagnostic techniques and materials. Conventional diagnostic tests are not very useful, especially in the early stages of infection; it is therefore suggested that nanomaterials can enhance them by changing and strengthening their performance for a more accurate and rapid diagnosis. Electrochemical immunosensors with unique features such as miniaturization, low cost, specificity and simplicity have become a suitable and vital tool in the rapid diagnosis of hepatitis B since the patent. Different strategies have been presented, such as graphene oxide and gold nanorods (GO-GNRs), graphene oxide (GO), copper metal-organic framework/ electrochemically reduced graphene oxide (Cu-MOF/ErGO) composite, Label-free graphene oxide/ Fe3O4/Prussian Blue (GO/Fe3O4/PB) immunosensor, and graphene oxide-ferrocene-CS/Au (GOFc- CS/Au) nanoparticle layered electrochemical immunosensor. In this review, we discuss a group of the most widely used nanostructures, such as graphene and carbon nanotubes, which are used to develop electrochemical immunosensors for the early diagnosis of the hepatitis B virus.
Collapse
Affiliation(s)
- Navid Omidifar
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Masoumzadeh
- Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Nikmanesh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansoureh Shokripour
- Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Jafari S, Pourmortazavi SM, Ehsani A, Mirsadeghi S. Cobalt-based metal-organic framework-functionalized graphene oxide modified electrode as a new electrochemical sensing platform for detection of free chlorine in aqueous solution. Anal Biochem 2023; 681:115334. [PMID: 37774996 DOI: 10.1016/j.ab.2023.115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
This work reports the profit of using a MOF compound for developing a sensitive electrochemical sensor to free chlorine detection in an aqueous solution. Co-MOF and FGO composites were synthesized and combined with the carbon paste (CP) to prepare an efficient electrochemical sensor with high sensing ability. The fabricated Co-MOF and FGO composites were characterized by SEM, EDX, FT-IR, and XRD techniques. Meanwhile, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to assess the electrochemical performance of the Co-MOF-FGO/CP modified electrode. Under the optimized condition, the amperometric detection showed that the reduction current of free chlorine increased linearly with a coefficient determination of 0.995 during its wide concentration range of 0.1-700 ppm. Also the detection limit (LOD) (S/N = 3) was 0.01 ppm. The selectivity of the sensor was tested with possible interferences, and satisfactory results were obtained. The proposed sensor was successfully used to determine the free chlorine in tap water and swimming pool water real samples. The results suggested that this proposed sensor could pave the way for developing the electrochemical sensor of free chlorine in aqueous media with MOFs.
Collapse
Affiliation(s)
- Somayeh Jafari
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.
| | | | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Somayeh Mirsadeghi
- KonadHerbs Co., Sharif Innovation Area, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
6
|
Istrate OM, Bala C, Rotariu L. A New Highly Sensitive Electrochemical Biosensor for Ethanol Detection Based on Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Nanocomposite. BIOSENSORS 2023; 13:954. [PMID: 37998129 PMCID: PMC10669219 DOI: 10.3390/bios13110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
A highly sensitive electrochemical biosensor for ethanol based on a screen-printed electrode modified with gold nanoparticles-electrochemically reduced graphene oxide-poly (allylamine hydrochloride) nanocomposite (AuNPs-ERGO-PAH) is reported in this work. Ethanol was oxidized in the presence of the oxidized form of the nicotinamide adenine dinucleotide (NAD+) in a reaction catalyzed by alcohol dehydrogenase (ADH) immobilized in sol-gel. The AuNPs-ERGO-PAH nanocomposite was used as a transducer for the electrocatalytic oxidation of the reduced form the nicotinamide adenine dinucleotide (NADH) produced in the enzyme reaction. Under the optimal conditions, the ethanol biosensor exhibits a wide dynamic range from 0.05 to 5 mM with a low detection limit of 10 µM (S/N = 3) and a high sensitivity of 44.6 ± 0.07 µA/mM·cm2 for the linear range between 0.05 and 0.2 mM. The biosensor response was stable for up to 6 weeks. Furthermore, the developed biosensor has been used to detect ethanol in alcoholic beverages with good results, suggesting its potential application in various fields, including fermentation processes and food quality control.
Collapse
Affiliation(s)
- Oana-Maria Istrate
- LaborQ, University of Bucharest, 030018 Bucharest, Romania; (O.-M.I.); (C.B.)
| | - Camelia Bala
- LaborQ, University of Bucharest, 030018 Bucharest, Romania; (O.-M.I.); (C.B.)
- Department of Analytical Chemistry and Physical Chemistry, University of Bucharest, 030018 Bucharest, Romania
| | - Lucian Rotariu
- LaborQ, University of Bucharest, 030018 Bucharest, Romania; (O.-M.I.); (C.B.)
- Department of Analytical Chemistry and Physical Chemistry, University of Bucharest, 030018 Bucharest, Romania
| |
Collapse
|
7
|
Tonel MZ, Abal JPK, Fagan SB, Barbosa MC. Ab initio study of water anchored in graphene pristine and vacancy-type defects. J Mol Model 2023; 29:198. [PMID: 37268861 DOI: 10.1007/s00894-023-05611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
CONTEXT In this paper, we have addressed two issues that are relevant to the interaction of water in pristine and vacant graphene through first-principles calculations based on the Density Functional Theory (DFT). The results showed that for the interaction of pristine graphene with water, the DOWN configuration (with the hydrogen atoms facing downwards) was the most stable, presenting binding energies in the order of -13.62 kJ/mol at a distance of 2.375 Å in the TOP position. We also evaluated the interaction of water with two vacancy models, removing one carbon atom (Vac-1C) and four atoms (Vac-4C). In the Vac-1C system, the most favourable system was the DOWN configuration, with binding energies ranging from -20.60 kJ/mol to -18.41 kJ/mol in the TOP and UP positions, respectively. A different behaviour was observed for the interaction of water with Vac-4C; regardless of the configuration of the water, it is always more favourable for the interaction to occur through the vacancy centre, with binding energies between -13.28 kJ/mol and -20.49 kJ/mol. Thus, the results presented open perspectives for the technological development of nanomembranes as well as providing a better understanding of the wettability effects of graphene sheets, whether pristine or with defects. METHOD We evaluated the interaction of pristine and vacant graphene with the water molecule, through calculations based on Density Functional Theory (DFT); implemented by the SIESTA program. The electronic, energetic, and structural properties were analyzed by solving self-consistent Kohn-Sham equations. In all calculations, a double ζ plus a polarized function (DZP) was used for the numerical baise set. Local Density Approximation (LDA) with the Perdew and Zunger (PZ) parameterisation along with a basis set superposition error (BSSE) correction were used to describe the exchange and correlation potential (Vxc). The water and isolated graphene structures were relaxed until the residual forces were less than 0.05 eV/Å-1 in all atomic coordinates.
Collapse
Affiliation(s)
- Mariana Zancan Tonel
- Universidade Franciscana-UFN, PPGNANO - Postgraduate Program in Nanoscience, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil.
| | - João Pedro Kleinubing Abal
- Universidade Federal do Rio Grande do Sul- UFRGS, Institute of Physics, Av. Bento Gonçalves, 9500 - Agronomia, ZIP, Porto Alegre, RS, 91501-970, Brazil
| | - Solange Binotto Fagan
- Universidade Franciscana-UFN, PPGNANO - Postgraduate Program in Nanoscience, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil
| | - Marcia Cristina Barbosa
- Universidade Federal do Rio Grande do Sul- UFRGS, Institute of Physics, Av. Bento Gonçalves, 9500 - Agronomia, ZIP, Porto Alegre, RS, 91501-970, Brazil
| |
Collapse
|
8
|
Villanueva-Mejia F, Guevara-Martínez SJ, Arroyo-Albiter M, Alvarado-Flores JJ, Zamudio-Ojeda A. DFT Study of Adsorption Behavior of Nitro Species on Carbon-Doped Boron Nitride Nanoribbons for Toxic Gas Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1410. [PMID: 37110995 PMCID: PMC10143892 DOI: 10.3390/nano13081410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
The modifications of the electronic properties on carbon-doped boron nitride nanoribbons (BNNRs) as a response to the adsorption of different nitro species were investigated in the framework of the density functional theory within the generalized gradient approximation. Calculations were performed using the SIESTA code. We found that the main response involved tuning the original magnetic behavior to a non-magnetic system when the molecule was chemisorbed on the carbon-doped BNNR. It was also revealed that some species could be dissociated through the adsorption process. Furthermore, the nitro species preferred to interact over nanosurfaces where dopants substituted the B sublattice of the carbon-doped BNNRs. Most importantly, the switch on the magnetic behavior offers the opportunity to apply these systems to fit novel technological applications.
Collapse
Affiliation(s)
- Francisco Villanueva-Mejia
- Instituto Tecnológico de Pabellón de Arteaga, Carretera a la estación de Rincón de Romos, km 1, Pabellón de Arteaga 20670, Aguascalientes, Mexico
| | - Santiago José Guevara-Martínez
- Department of Pharmacology, School of Exact Sciences and Engineering, University of Guadalajara, Boulevard Gral. Marcelino García Barragán 1421, Olímpica, Guadalajara 44840, Jalisco, Mexico;
| | - Manuel Arroyo-Albiter
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico;
| | - José Juan Alvarado-Flores
- Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58040, Michoacán, Mexico;
| | - Adalberto Zamudio-Ojeda
- Department of Physics, School of Exact Sciences and Engineering, University of Guadalajara, Boulevard Gral. Marcelino García Barragán 1421, Olímpica, Guadalajara 44840, Jalisco, Mexico;
| |
Collapse
|
9
|
Vinoth V, Kaimal R, Selvamani M, Michael R, Pugazhenthiran N, Mangalaraja RV, Valdés H, Anandan S. Synergistic impact of nanoarchitectured GQDs-AgNCs(APTS) modified glassy carbon electrode in the electrochemical detection of guanine and adenine. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Singhal J, Verma S, Kumar S. The physio-chemical properties and applications of 2D nanomaterials in agricultural and environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155669. [PMID: 35523341 DOI: 10.1016/j.scitotenv.2022.155669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 05/27/2023]
Abstract
Global hunger and nutritional deficiency demand the advancement of existing and conventional approaches to food production. The application of nanoenabled strategies in agriculture has opened up new avenues for enhancing crop yield and productivity. Recently, two-dimensional (2D) nanomaterials (NMs) have manifested new possibilities for increasing food production and nutrition. Graphene nanosheets, the 2D form of graphene has been exemplary in enhancing the loading capacity of agro-active ingredients, their target-specific delivery, bioavailability, and controlled release with slow degradation, resulting in the increased shelf-life/active time of the agro-active components. Also, the development of novel formulations/composites of MXenes and Transition Metal Dichalcogenides (TMDs) can foster plant growth, metabolism, crop production, protection and improvement of soil quality. Additionally, the 2D NM-based biosensors can monitor the nutrient levels and other parameters affecting agronomical traits in plants. This review provides an insight into the details of 2D NM synthesis and functionalization methods. Notably, the review highlights the broad-range of 2D NM applications and their suitability in the development of nanotechnology-based agriformulations. The 2D NM-based derivatives have shown immense potential in enhancing the pedologic parameters, crop productivity, pest-protection and nutritional value. Thus, assisting in achieving food and environmental sustainability goals.
Collapse
Affiliation(s)
- Jaya Singhal
- Department of Health Research-Multi-Disciplinary Research Unit, King George's Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Saurabh Verma
- Department of Health Research-Multi-Disciplinary Research Unit, King George's Medical University, Lucknow, Uttar Pradesh 226003, India.
| | - Smita Kumar
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh 226003, India.
| |
Collapse
|
11
|
Sauceda HE, Gálvez-González LE, Chmiela S, Paz-Borbón LO, Müller KR, Tkatchenko A. BIGDML-Towards accurate quantum machine learning force fields for materials. Nat Commun 2022; 13:3733. [PMID: 35768400 PMCID: PMC9243122 DOI: 10.1038/s41467-022-31093-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/01/2022] [Indexed: 12/16/2022] Open
Abstract
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict their practical applicability to small subsets of chemical space or require exhaustive datasets for training. Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning (BIGDML) approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 geometries for materials including pristine and defect-containing 2D and 3D semiconductors and metals, as well as chemisorbed and physisorbed atomic and molecular adsorbates on surfaces. The BIGDML model employs the full relevant symmetry group for a given material, does not assume artificial atom types or localization of atomic interactions and exhibits high data efficiency and state-of-the-art energy accuracies (errors substantially below 1 meV per atom) for an extended set of materials. Extensive path-integral molecular dynamics carried out with BIGDML models demonstrate the counterintuitive localization of benzene-graphene dynamics induced by nuclear quantum effects and their strong contributions to the hydrogen diffusion coefficient in a Pd crystal for a wide range of temperatures.
Collapse
Affiliation(s)
- Huziel E Sauceda
- Departamento de Materia Condensada, Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México C.P., 04510, Mexico.
- Machine Learning Group, Technische Universität Berlin, 10587, Berlin, Germany.
- BASLEARN - TU Berlin/BASF Joint Lab for Machine Learning, Technische Universität Berlin, 10587, Berlin, Germany.
| | - Luis E Gálvez-González
- Programa de Doctorado en Ciencias (Física), División de Ciencias Exactas y Naturales, Universidad de Sonora, Blvd. Luis Encinas & Rosales, Hermosillo, C.P., 83000, Mexico
| | - Stefan Chmiela
- Machine Learning Group, Technische Universität Berlin, 10587, Berlin, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Lauro Oliver Paz-Borbón
- Departamento de Física Química, Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México C.P., 04510, Mexico
| | - Klaus-Robert Müller
- Machine Learning Group, Technische Universität Berlin, 10587, Berlin, Germany.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
- Google Research, Brain team, Berlin, Germany.
- Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, 02841, Seoul, Korea.
- Max Planck Institute for Informatics, Stuhlsatzenhausweg, 66123, Saarbrücken, Germany.
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Luxembourg.
| |
Collapse
|
12
|
Khattak Z, Sajid M, Javed M, Zeeshan Rizvi HM, Awan FS. Mass-Producible 2D Nanocomposite-Based Temperature-Independent All-Printed Relative Humidity Sensor. ACS OMEGA 2022; 7:16605-16615. [PMID: 35601310 PMCID: PMC9118384 DOI: 10.1021/acsomega.2c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Relative humidity sensors are widely studied under the categories of both environmental and biosensors owing to their vast reaching applications. The research on humidity sensors is mainly divided into two concentration areas including novel material development and novel device structure. Another approach focuses on the development of printed sensors with performance comparable to the sensors fabricated via conventional techniques. The major challenges in the research on relative humidity sensors include the range of detection, sensitivity (especially at lower %RH), transient response time, and dependence on temperature. Temperature dependence is one of the least studied parameters in relative humidity sensor development. In this work, relative humidity sensors were fabricated using all-printed approaches that are also compatible with mass production, resulting in low cost and easy development. Laser-induced graphene (LIG)-based printed electrodes were used as the transducers, while the 2D MoS2 and graphene nanocomposite was used as the active layer material with the built-in property of temperature independence. The exfoliation process of 2D MoS2 was based on wet grinding, while graphene for the active layer was obtained by scratching the graphene grown on the polyimide (PI) surface via laser ablation. The resulting sensors showed an excellent output response for a full range of 0%RH to 100%RH, having no dependence on the surrounding temperature, and excellent response and recovery times of 4 and 2 s, respectively. The developed sensors can be confidently employed for a wide range of humidity sensing applications where the temperature of the surrounding environment is not constant.
Collapse
Affiliation(s)
- Zarak
Jamal Khattak
- Faculty of Electrical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences
and Technology, Topi, Swabi, K.P. 23640, Pakistan
| | - Memoon Sajid
- Faculty of Electrical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences
and Technology, Topi, Swabi, K.P. 23640, Pakistan
| | - Mazhar Javed
- Faculty of Electrical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences
and Technology, Topi, Swabi, K.P. 23640, Pakistan
| | - Hafiz Muhammad Zeeshan Rizvi
- Faculty of Electrical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences
and Technology, Topi, Swabi, K.P. 23640, Pakistan
| | - Faisal Saeed Awan
- Faculty of Electrical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences
and Technology, Topi, Swabi, K.P. 23640, Pakistan
| |
Collapse
|
13
|
A facile approach to synthesis methylene blue/reduced graphene oxide nanocomposite and simultaneous determination of dopamine and uric acid. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Vu T, Nguyen M, Do T, Nguyen LH, Nguyen VA, Nguyen DT. Adsorption of copper ions onto poly(1,8‐diaminonaphthalene)/graphene film for voltammetric determination of pyridoxine. ELECTROANAL 2022. [DOI: 10.1002/elan.202100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Trong Vu
- Hanoi University of Science and Technology VIET NAM
| | - Mai Nguyen
- Hanoi University of Science and Technology VIET NAM
| | - Thuy Do
- Institute of Chemistry and Materials VIET NAM
| | | | | | | |
Collapse
|
15
|
A surface protein-imprinted biosensor based on boronate affinity for the detection of anti-human immunoglobulin G. Mikrochim Acta 2022; 189:106. [PMID: 35166940 PMCID: PMC8853174 DOI: 10.1007/s00604-022-05204-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
Abstract
A surface protein-imprinted biosensor was constructed on a screen-printed carbon electrode (SPCE) for the detection of anti-human immunoglobulin G (anti-IgG). The SPCE was successively decorated with aminated graphene (NH2-G) and gold nanobipyramids (AuNBs) for signal amplification. Then 4-mercaptophenylboric acid (4-MPBA) was covalently anchored to the surface of AuNBs for capturing anti-IgG template through boronate affinity binding. The decorated SPCE was then deposited with an imprinting layer generated by the electropolymerization of pyrrole. After removal of the anti-IgG template by the dissociation of the boronate ester in an acidic solution, three-dimensional (3D) cavities complementary to the anti-IgG template were formed in the imprinting layer of polypyrrole (PPy). The molecularly imprinted polymers (MIP)-based biosensor was used for the detection of anti-IgG, exhibiting a wide linear range from 0.05 to 100 ng mL−1 and a low limit of detection of 0.017 ng mL−1 (S/N = 3). In addition, the MIP-based anti-IgG biosensor also shows high selectivity, reproducibility and stability. Finally, the practicability of the fabricated anti-IgG biosensor was demonstrated by accurate determination of anti-IgG in serum sample.
Collapse
|
16
|
Gidi L, Honores J, Ibarra J, Jesús Aguirre M, Arce R, Ramírez G. Electrodetermination of Gallic Acid Using Multi‐walled Carbon Nanotube Paste Electrodes and N‐Octylpyridinium Hexafluorophosphate. ELECTROANAL 2022. [DOI: 10.1002/elan.202100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Leyla Gidi
- Laboratory of Materials Science Instituto de Química de Recursos Naturales Universidad de Talca 747 3460000 Talca Chile
| | - Jessica Honores
- Facultad de Química y de Farmacia Departamento de Química Inorgánica Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860, Casilla 306, Correo 22 Santiago Chile
| | - José Ibarra
- Facultad de Química y de Farmacia Departamento de Química Inorgánica Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860, Casilla 306, Correo 22 Santiago Chile
| | - María Jesús Aguirre
- Facultad de Química y Biología Departamento de Química de Los Materiales Universidad de Santiago de Chile USACH Av. L.B. O'Higgins 3363 Santiago Chile
| | - Roxana Arce
- Facultad de Ciencias Exactas Departamento de Ciencias Químicas Universidad Andrés Bello Av. República 275 Santiago Chile
| | - Galo Ramírez
- Facultad de Química y de Farmacia Departamento de Química Inorgánica Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860, Casilla 306, Correo 22 Santiago Chile
| |
Collapse
|
17
|
Kaimal R, Senthilkumar P, Aljafari B, Anandan S. A nanosecond pulsed laser-ablated MWCNT-Au heterostructure: an innovative ultra-sensitive electrochemical sensing prototype for the identification of glutathione. Analyst 2022; 147:3894-3907. [DOI: 10.1039/d2an00967f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, a scheme that aptly describes the reduction of gold nanoparticles’ crystalline size on the surface of MWCNTs in an aqueous phase to generate a LAMWCNT-Au heterostructure, employing an Nd:YAG laser (energy = 505 mJ and λ = 1064 nm) is developed.
Collapse
Affiliation(s)
- Reshma Kaimal
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India
| | - Periyathambi Senthilkumar
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, and Research Institute, TANUVAS, Tirunelveli 627358, India
| | - Belqasem Aljafari
- Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Sambandam Anandan
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India
| |
Collapse
|
18
|
Kant T, Shrivas K, Karbhal I, Monisha, Yadav S, Tikeshwari, Sahu S, Mahipal YK, Ganesan V. A graphene-printed paper electrode for determination of H 2O 2 in municipal wastewater during the COVID-19 pandemic. NEW J CHEM 2022. [DOI: 10.1039/d1nj05763d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Graphene prepared through exfoliation process was printed on paper substrate using inkjet-printer and then printed paper electrode was used as an electrochemical sensor for analysis of H2O2 in cyclic voltammetry.
Collapse
Affiliation(s)
- Tushar Kant
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Monisha
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Sanjay Yadav
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Tikeshwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Sushama Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Yugal Kishor Mahipal
- School of Studies in Physics and Astrophysics, Pt. Ravishanakar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
19
|
Pan M, Guo P, Liu H, Lu J, Xie Q. Graphene oxide modified screen-printed electrode for highly sensitive and selective electrochemical detection of ciprofloxacin residues in milk. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00309-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AbstractThe monitoring of antibiotic residues in foodstuffs by using rapid detection method is essential for food safety. In this work, the electrochemical sensor was developed by modification of screen-printed carbon electrode with graphene oxide, and then the ciprofloxacin (CIP) was detected based on the complexation of CIP with Mn2+. On modified electrode, the anodic stripping peak current response of Mn2+ was prohibited in the presence of CIP, and a peak current response of the complex was occurred. Thus, the peak current response of the complexation peak was employed as the indicating signal for CIP determination, which was more sensitive than the direct electrochemical oxidation response of CIP. Parameters that affect the signal response have been investigated in method. Under the optimum conditions, the peak current of the complexation peak was linearly correlated with the CIP content in the milk sample solution at 1.0 to 8.0 μM, and the linear correlation coefficients (R2) was 0.994. The limits of detection (LOD) was 0.30 μM. Recoveries of CIP in milk sample were ranged from 81.0 to 95.4% with relative standard deviations (RSDs) below 4.6%. The method showed high selectivity and sensitive, good reproducibility, indicated that this method has potential to be applied in CIP residue analysis.
Collapse
|
20
|
Bilici A, Denizhan N, Emre D, Soylukan C, Algi F, Yilmaz S. Fabrication of PAMP/Au and GO/PAMP/Au nanosensors for electrochemical detection of paracetamol in pharmaceutical preparations. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02866-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Melo Henrique J, Rocha Camargo J, Gabriel de Oliveira G, Santos Stefano J, Campos Janegitz B. Disposable electrochemical sensor based on shellac and graphite for sulfamethoxazole detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Optimizing electrode structure of carbon nanotube gas sensors for sensitivity improvement based on electric field enhancement effect of fractal geometry. Sci Rep 2021; 11:16675. [PMID: 34404879 PMCID: PMC8370990 DOI: 10.1038/s41598-021-96239-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 11/15/2022] Open
Abstract
With the rapid development of carbon nanotubes gas sensor, the sensitivity of the sensing response is becoming more and more demanding. Different from the traditional studies on gas-sensitive materials, this paper combines the microscopic dimensional effects and physical properties of fractal geometry theory from the structure and morphology of sensor devices. The electrode structures of carbon nanotubes gas sensor is designed and optimized by Hilbert–Piano curve. Simulation experiments demonstrate that the electric field intensity and hot spot distribution of the fractal electrode are superior to those of the traditional interdigital electrode. Moreover, a novel chemiresistive gas sensor is fabricated combining the characteristics of carbon nanotubes and fractal geometry, and a test with exposure to nitric oxide showed that the sensors with fractal electrode structures improved the gas sensing sensitivity over sensors with traditional geometrical structures. It provides a new idea for the exploration of gas sensing technology.
Collapse
|
23
|
Reversible Lectin Binding to Glycan-Functionalized Graphene. Int J Mol Sci 2021; 22:ijms22136661. [PMID: 34206350 PMCID: PMC8267698 DOI: 10.3390/ijms22136661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022] Open
Abstract
The monolayer character of two-dimensional materials predestines them for application as active layers of sensors. However, their inherent high sensitivity is always accompanied by a low selectivity. Chemical functionalization of two-dimensional materials has emerged as a promising way to overcome the selectivity issues. Here, we demonstrate efficient graphene functionalization with carbohydrate ligands—chitooligomers, which bind proteins of the lectin family with high selectivity. Successful grafting of a chitooligomer library was thoroughly characterized, and glycan binding to wheat germ agglutinin was studied by a series of methods. The results demonstrate that the protein quaternary structure remains intact after binding to the functionalized graphene, and that the lectin can be liberated from the surface by the addition of a binding competitor. The chemoenzymatic assay with a horseradish peroxidase conjugate also confirmed the intact catalytic properties of the enzyme. The present approach thus paves the way towards graphene-based sensors for carbohydrate–lectin binding.
Collapse
|
24
|
Tonel MZ, Zanella I, Fagan SB. Theoretical study of small aromatic molecules adsorbed in pristine and functionalised graphene. J Mol Model 2021; 27:193. [PMID: 34057615 DOI: 10.1007/s00894-021-04806-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Small aromatic molecules are precursors for several biological systems such as DNA, proteins, drugs, and are also present in several pollutants. The understanding of the interaction of these small aromatic molecules with pristine and functionalised graphene (fGr) can generate different applications. We performed ab initio simulations based on the density functional theory to evaluate the interaction between the aromatic compounds, benzene, benzoic acid, aniline and phenol, with pristine and fGr. The results show that the binding energy for all cases is less than 103.24 kJ/mol (1.07 eV) without substantial modification of the electronic properties, indicating that the interaction occurs through a physical adsorption regime. The results are promising because they suggest that pristine graphene and functionalised graphene are suitable for removing these pollutants, or for carrying molecules for biological applications influenced by π-π and H-bonds interaction.
Collapse
Affiliation(s)
- Mariana Zancan Tonel
- Physics Department, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil.
| | - Ivana Zanella
- Physics Department, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil
| | - Solange Binotto Fagan
- Physics Department, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil
| |
Collapse
|
25
|
Ambaye AD, Kefeni KK, Mishra SB, Nxumalo EN, Ntsendwana B. Recent developments in nanotechnology-based printing electrode systems for electrochemical sensors. Talanta 2021; 225:121951. [DOI: 10.1016/j.talanta.2020.121951] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023]
|
26
|
Theyagarajan K, Elancheziyan M, Aayushi PS, Thenmozhi K. Facile strategy for immobilizing horseradish peroxidase on a novel acetate functionalized ionic liquid/MWCNT matrix for electrochemical biosensing. Int J Biol Macromol 2020; 163:358-365. [PMID: 32634514 DOI: 10.1016/j.ijbiomac.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Facile yet simple platforms for the immobilization of biomolecules have always been a substantial requirement for the fabrication of proficient biosensors. In this study, we report a naphthyl substituted acetate functionalized ionic liquid (NpAc-IL) for the covalent anchoring of horseradish peroxidase (HRP), using which the direct electrochemistry of HRP was successfully accomplished and a H2O2 biosensor was developed. The naphthyl substitution on the NpAc-IL was utilized for the π-π stacking with the MWCNT modified GCE and the terminal -OCH3 group of NpAc-IL was used for the covalent attachment with the free -NH2 group of HRP via amide bond formation. High conducting nature of the newly designed ionic liquid (NpAc-IL), facilitated an improved communication with the deeply buried redox centre of the HRP, while the covalent bonding provided enhanced stability to the fabricated biosensor by stably holding the water soluble HRP enzyme on the electrode surface. Furthermore, incorporation of MWCNT on the sensor setup synergistically enhanced the sensitivity of the developed biosensor. Under optimized conditions, the fabricated biosensor showed an enhanced electrocatalytic reduction of H2O2 in the range of 0.01 to 2.07 mM with a limit of detection and sensitivity of 2.7 μM and 55.98 μA mM-1 cm-2 respectively. Further, the proposed biosensor was utilized for the sensing of H2O2 spiked in real samples. Moreover, the newly fabricated biosensor demonstrated excellent stability with improved sensitivity and selectivity towards H2O2 reduction. The superior analytical characteristics are attributed to the facile fabrication strategy using this newly developed acetate functionalized ionic liquid platform.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Mari Elancheziyan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Prakash Sinha Aayushi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
27
|
Zhang Z, Chen S, Ren J, Han F, Yu X, Tang F, Xue F, Chen W, Yang J, Jiang Y, Jiang H, Lv B, Xu J, Dai J. Facile construction of a molecularly imprinted polymer-based electrochemical sensor for the detection of milk amyloid A. Mikrochim Acta 2020; 187:642. [PMID: 33155077 DOI: 10.1007/s00604-020-04619-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/21/2020] [Indexed: 01/30/2023]
Abstract
A molecularly imprinted electrochemical sensor for the detection of serum amyloid A (MAA) in milk was established for early diagnosis of subclinical mastitis in dairy cows. The electrochemical sensor was initially constructed using a nanocomposite material (reduced graphene oxide/gold nanoparticles, AuNPs@rGO) to modify the working electrode. The template protein, MAA, was then immobilized using pyrrole as the functional monomer to carry out the electropolymerization. Finally, the template protein was removed to form a molecular imprint film with the capability to qualitatively and quantitatively signaling of MAA. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and scanning electron microscopy (SEM) were used to characterize the modification process of the molecularly imprinted electrochemical sensors. Under optimized conditions, the sensor shows two well-behaved linear relationships in the MAA concentration range 0.01 to 200 ng/mL. A lower detection limit was estimated to be 5 pg/mL (S/N = 3). Other parameters including the selectivity, reproducibility (RSD 3.2%), and recovery rate (96.1-103%) are all satisfactory. Compared with the traditional methods, detection of MAA to determine the subclinical mastitis of dairy cows can efficiently be diagnosed and hence prevent an outbreak of dairy cow mastitis. The electrochemical sensor can detect MAA more rapidly, sensitively, and inexpensively than the ELISA-based MAA detection. These advantages indicate that the method is promising for early diagnosis of dairy cows.
Collapse
Affiliation(s)
- Zhengrong Zhang
- MOE Joint International Research Laboratory of Animal Health and Food safety, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shisheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food safety, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food safety, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Han
- Hefei Customs Technical Center, Hefei, 230601, China
| | - Xiaofeng Yu
- Hefei Customs Technical Center, Hefei, 230601, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food safety, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food safety, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 23009, China
| | - Jielin Yang
- Technical Center of Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, 200135, China
| | - Yuan Jiang
- Technical Center of Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, 200135, China
| | - Hongmei Jiang
- MOE Joint International Research Laboratory of Animal Health and Food safety, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Lv
- MOE Joint International Research Laboratory of Animal Health and Food safety, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 23009, China.
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food safety, Nanjing Agricultural University, Nanjing, 210095, China
- China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
28
|
Wang H, Feng X, Bo X, Zhou M, Guo L. Nickel‐Based Metal‐Organic Framework/Crosslinked Tubular Poly(3,4‐ethylenedioxythiophene) Composite as an Electrocatalyst for the Detection of Gallic Acid and Tinidazole. ChemElectroChem 2020. [DOI: 10.1002/celc.202000991] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haixu Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Xiaogeng Feng
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Ming Zhou
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Liping Guo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| |
Collapse
|
29
|
Kirchner EM, Hirsch T. Recent developments in carbon-based two-dimensional materials: synthesis and modification aspects for electrochemical sensors. Mikrochim Acta 2020; 187:441. [PMID: 32656597 PMCID: PMC7354370 DOI: 10.1007/s00604-020-04415-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
This review (162 references) focuses on two-dimensional carbon materials, which include graphene as well as its allotropes varying in size, number of layers, and defects, for their application in electrochemical sensors. Many preparation methods are known to yield two-dimensional carbon materials which are often simply addressed as graphene, but which show huge variations in their physical and chemical properties and therefore on their sensing performance. The first section briefly reviews the most promising as well as the latest achievements in graphene synthesis based on growth and delamination techniques, such as chemical vapor deposition, liquid phase exfoliation via sonication or mechanical forces, as well as oxidative procedures ranging from chemical to electrochemical exfoliation. Two-dimensional carbon materials are highly attractive to be integrated in a wide field of sensing applications. Here, graphene is examined as recognition layer in electrochemical sensors like field-effect transistors, chemiresistors, impedance-based devices as well as voltammetric and amperometric sensors. The sensor performance is evaluated from the material's perspective of view and revealed the impact of structure and defects of the 2D carbon materials in different transducing technologies. It is concluded that the performance of 2D carbon-based sensors is strongly related to the preparation method in combination with the electrical transduction technique. Future perspectives address challenges to transfer 2D carbon-based sensors from the lab to the market. Graphical abstract Schematic overview from synthesis and modification of two-dimensional carbon materials to sensor application.
Collapse
Affiliation(s)
- Eva-Maria Kirchner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040, Regensburg, Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
30
|
Han Y, Fang Y, Ding X, Liu J, Jin Z, Xu Y. A simple and effective flexible electrochemiluminescence sensor for lidocaine detection. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Heakal FET, Mohamed MEB, Soliman MM. An efficient graphene/graphite paste sensor chemically modified by diphenylcarbazone for the detection of Al(III) ions in real water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Su Z, Cheng Y, Xu X, Wang H, Xiao L, Tang D, Xie Q, Qin X. Preparation of porous thiolated polymer nanocomposite for construction of sensitive and selective phytohormone amperometric immunosensor. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Nasrollahzadeh M, Nezafat Z, Gorab MG, Sajjadi M. Recent progresses in graphene-based (photo)catalysts for reduction of nitro compounds. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110758] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Kim M, Porras-Gomez M, Leal C. Graphene-based sensing of oxygen transport through pulmonary membranes. Nat Commun 2020; 11:1103. [PMID: 32107376 PMCID: PMC7046670 DOI: 10.1038/s41467-020-14825-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/04/2020] [Indexed: 11/09/2022] Open
Abstract
Lipid-protein complexes are the basis of pulmonary surfactants covering the respiratory surface and mediating gas exchange in lungs. Cardiolipin is a mitochondrial lipid overexpressed in mammalian lungs infected by bacterial pneumonia. In addition, increased oxygen supply (hyperoxia) is a pathological factor also critical in bacterial pneumonia. In this paper we fabricate a micrometer-size graphene-based sensor to measure oxygen permeation through pulmonary membranes. Combining oxygen sensing, X-ray scattering, and Atomic Force Microscopy, we show that mammalian pulmonary membranes suffer a structural transformation induced by cardiolipin. We observe that cardiolipin promotes the formation of periodic protein-free inter-membrane contacts with rhombohedral symmetry. Membrane contacts, or stalks, promote a significant increase in oxygen gas permeation which may bear significance for alveoli gas exchange imbalance in pneumonia.
Collapse
Affiliation(s)
- Mijung Kim
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
35
|
Hadi R, Abbasi H, Payami E, Ahadzadeh I, Teimuri‐Mofrad R. Synthesis, Characterization and Electrochemical Properties of 4‐Azidobutylferrocene‐Grafted Reduced Graphene Oxide‐Polyaniline Nanocomposite for Supercapacitor Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.201903726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raha Hadi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Hassan Abbasi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Iraj Ahadzadeh
- Department of Physical Chemistry Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| |
Collapse
|
36
|
Jalali M, Filine E, Dalfen S, Mahshid S. Microscale reactor embedded with Graphene/hierarchical gold nanostructures for electrochemical sensing: application to the determination of dopamine. Mikrochim Acta 2020; 187:90. [DOI: 10.1007/s00604-019-4059-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/30/2019] [Indexed: 01/31/2023]
|
37
|
Singh P, Randhawa DKK, Tarun, Choudhary BC, Walia GK, Kaur N. First principles investigation on armchair zinc oxide nanoribbons as uric acid sensors. J Mol Model 2019; 26:4. [PMID: 31834483 DOI: 10.1007/s00894-019-4243-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
A study is done to check the sensing functionality of armchair zinc oxide (ZnO) nanoribbon towards uric acid. The main focus of the research is to observe the change in the electronic properties (adsorption energy, bandstructure and density of states) and transport properties (current-voltage characteristics) of nanoribbon on adsorption of uric acid. In this work, two armchair ZnO nanoribbons of width, N = 4 and 6 atoms are used, and additional variations are created in the nanoribbon by introducing defect and doping agent. Manganese is used as a dopant. The work reveals that chemisorption occurs only in the case of doping for both widths of nanoribbons, and there is an enormous increase in the conductivity of defective armchair ZnO nanoribbon with width, N = 6 as compared to others on adsorption of uric acid. All calculations are carried out using density functional theory (DFT) and non-equilibrium Green's function (NEGF). Graphical abstract.
Collapse
Affiliation(s)
- Paramjot Singh
- Electrical and Computer Engineering Department, Concordia University, Montreal, Canada
| | - Deep Kamal Kaur Randhawa
- Department of Electronics and Communication Engineering, Regional Campus, Guru Nanak Dev University, Jalandhar, Punjab, India.
| | - Tarun
- Electrical and Computer Engineering Department, Concordia University, Montreal, Canada
| | - B C Choudhary
- Applied Science Department, National Institute of Technical Teachers' Training and Research (NITTTR), Chandigarh, India
| | - Gurleen Kaur Walia
- Department of Electronics and Electrical Engineering, Lovely Professional University, Phagwara, Punjab, India
| | - Navjot Kaur
- Applied Science Department, National Institute of Technical Teachers' Training and Research (NITTTR), Chandigarh, India
| |
Collapse
|
38
|
Electrochemistry of myoglobin on graphene–SnO2 nanocomposite modified electrode and its electrocatalysis. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Enhanced performance of pyrrolic N-doped reduced graphene oxide-modified glassy carbon electrodes for dopamine sensing. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Density functional theory study of π-aromatic interaction of benzene, phenol, catechol, dopamine isolated dimers and adsorbed on graphene surface. J Mol Model 2019; 25:302. [PMID: 31486895 DOI: 10.1007/s00894-019-4185-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
We analyze the influence of different groups on the intermolecular energy of aromatic homodimers and on the interaction between a single aromatic molecule and a graphene surface. The analysis is performed for benzene, phenol, catechol, and dopamine. For calculating the energies, we employ density functional theory within the local density approximation (LDA-DFT). Our results show that the lowest intermolecular energies between the aromatic molecules are related to the T-shaped configurations. This lower energy results from the quadrupole interaction. In the case of the interaction between the graphene sheet and the aromatic molecules, the lowest energy configuration is the face to face. The adsorption energy of a molecule on a graphene surface involves π - π interactions that explain the face to face arrangement. These results provide insight into the manner by which substituents can be utilized in crystal engineering, supramolecular chemistry, bioinspired materials, formation of various molecular clusters, parameterization of force fields suitable for classical simulations, and design of novel sensing, drug delivery, and filters based on graphene.
Collapse
|
41
|
Electrodeposited copper nanoparticles in ionic liquid microchannels electrode for carbon dioxide sensor. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Pizarro J, Segura R, Tapia D, Bollo S, Sierra‐Rosales P. Electroanalytical Determination of Cd(II) and Pb(II) in Bivalve Mollusks using Electrochemically Reduced Graphene Oxide‐based Electrode. ELECTROANAL 2019. [DOI: 10.1002/elan.201900061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jaime Pizarro
- Departamento de Química de los Materiales, Facultad de Química y BiologíaUniversidad de Santiago de Chile (USACH) Santiago 3363 Chile
| | - Rodrigo Segura
- Departamento de Química de los Materiales, Facultad de Química y BiologíaUniversidad de Santiago de Chile (USACH) Santiago 3363 Chile
| | - Diego Tapia
- Departamento de Química de los Materiales, Facultad de Química y BiologíaUniversidad de Santiago de Chile (USACH) Santiago 3363 Chile
| | - Soledad Bollo
- Centro de Investigación de los Procesos Redox (CiPRex), Facultad de Ciencias Químicas y FarmacéuticasUniversidad de Chile, Sergio Livingstone Polhammer 1007 Independencia, Santiago Chile
| | - Paulina Sierra‐Rosales
- Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónUniversidad Tecnológica Metropolitana, Ignacio Valdivieso 2409 P.O Box 8940577 San Joaquín, Santiago Chile
| |
Collapse
|
43
|
A Nanocomposite Based on Reduced Graphene and Gold Nanoparticles for Highly Sensitive Electrochemical Detection of Pseudomonas aeruginosa through Its Virulence Factors. MATERIALS 2019; 12:ma12071180. [PMID: 30978921 PMCID: PMC6480001 DOI: 10.3390/ma12071180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/25/2022]
Abstract
Pyoverdine is a fluorescent siderophore produced by Pseudomonas aeruginosa that can be considered as a detectable marker in nosocomial infections. The presence of pyoverdine in water can be directly linked to the presence of the P. aeruginosa, thus being a nontoxic and low-cost marker for the detection of biological contamination. A novel platform was developed and applied for the electrochemical selective and sensitive detection of pyoverdine, based on a graphene/graphite-modified screen-printed electrode (SPE) that was electrochemically reduced and decorated with gold nanoparticles (NPs). The optimized sensor presenting higher sensitivity towards pyoverdine was successfully applied for its detection in real samples (serum, saliva, and tap water), in the presence of various interfering species. The excellent analytical performances underline the premises for an early diagnosis kit of bacterial infections based on electrochemical sensors.
Collapse
|
44
|
Nanomolar Detection of Dopamine at ZnO/Graphene Modified Carbon Paste Electrode. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01134-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Eroğlu ME, Bayraktepe DE, Polat K, Yazan Z. Electro-Oxidation Mechanism of Meloxicam and Electrochemical Sensing Platform Based on Graphene Nanoparticles for its Sensing Pharmaceutical Sample. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180402130716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Electrochemical oxidation mechanism and electrochemical determination of meloxicam
(M), an anti-artrithtis agent, were investigated by cyclic voltammetry and square wave adsorptive
stripping voltammetry, respectively.
</P><P>
Objective: In this study, we aimed to investigate the electrochemical redox mechanism and develop a
nano-sensor for sensitive, fast and selective analysis of meloxicam.
Methods:
In this study, the three-electrode system was used for all voltammetric measurements. Firstly,
the graphene content of GR/CPE sensor was changed in the range of 1.67% to 6.68%. Then, the surface
characterization of modified electrode was carried out by using Electrochemical Empedance Spectroscopy
and Surface Electron Microscopy methods. Some analytical parameters, such as pH, accumulation
potential and accumulation time were optimized and by using optimum parameters, calibration study
was established.
Results:
The GR/CPE with a graphene content of 3.33 % was found to have the best voltammetric signal
with a linear working range of 0.1–10 µM. The sensitivity of the quantitative voltammetric method
towards M is fairly good with an LOQ of 0.0088 μmol/L and LOD of 0.0026 µmol/L.
Conclusion:
The optimum pH, accumulation time and accumulation potential were found to be 2.0,
150s and 0.0 V, respectively. The height of the voltammetric signal obtained with the GR/CPE electrode
was stable with a 4.0 % deviation for a period of not shorter than 1 months.
Collapse
Affiliation(s)
| | - Dilek E. Bayraktepe
- Department of Chemistry, Ankara University, Faculty of Science, 06560 Ankara, Turkey
| | - Kamran Polat
- Department of Chemistry, Ankara University, Faculty of Science, 06560 Ankara, Turkey
| | - Zehra Yazan
- Department of Chemistry, Ankara University, Faculty of Science, 06560 Ankara, Turkey
| |
Collapse
|
46
|
Bramhaiah K, Alex C, Singh VN, John NS. Hybrid Films of Ni(OH)
2
Nanowall Networks on Reduced Graphene Oxide Prepared at a Liquid/Liquid Interface for Oxygen Evolution and Supercapacitor Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201803340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kommula Bramhaiah
- Centre for Nano and Soft Matter Sciences, Jalahalli Bangalore- 560013 India
| | - Chandraraj Alex
- Centre for Nano and Soft Matter Sciences, Jalahalli Bangalore- 560013 India
| | - Vidya N. Singh
- CSIR- National Physical Laboratory Dr. K. S. Krishnan Road New Delhi- 110012 India
| | - Neena S. John
- Centre for Nano and Soft Matter Sciences, Jalahalli Bangalore- 560013 India
| |
Collapse
|
47
|
Synthesis and characterization of ferrocene-functionalized reduced graphene oxide nanocomposite as a supercapacitor electrode material. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.11.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
48
|
Serrano-Luján L, Víctor-Román S, Toledo C, Sanahuja-Parejo O, Mansour AE, Abad J, Amassian A, Benito AM, Maser WK, Urbina A. Environmental impact of the production of graphene oxide and reduced graphene oxide. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0193-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: a review. Mikrochim Acta 2019; 186:50. [DOI: 10.1007/s00604-018-3110-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/25/2018] [Indexed: 12/16/2022]
|
50
|
Khoshnevisan K, Maleki H, Honarvarfard E, Baharifar H, Gholami M, Faridbod F, Larijani B, Faridi Majidi R, Khorramizadeh MR. Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review. Mikrochim Acta 2019; 186:49. [PMID: 30610391 DOI: 10.1007/s00604-018-3069-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
Abstract
This review (with 131 references) summarizes the progress made in the past years in the field of nanomaterial based sensing of serotonin (5-HT). An introduction summarizes the significant role of 5-HT as a biomarker for several major diseases, methods for its determination and the various kinds of nanomaterials for use in electrochemical sensing process relies principally on a precise choice of electrodes. The next main section covers nanomaterial based methods for sensing 5-HT, with subsections on electrodes modified with carbon nanotubes, graphene related materials, gold nanomaterials, and by other nanomaterials. A concluding section discusses future perspectives and current challenges of 5-HT determination. Graphical abstract Conceptual design of electrochemical sensing process of the biomarker serotonin by using nanomaterials and the role of 5-HTas biomarker in the body from preclinical to clincal.
Collapse
Affiliation(s)
- Kamyar Khoshnevisan
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Hassan Maleki
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755354, Iran
| | - Elham Honarvarfard
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Morteza Gholami
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| | - Reza Faridi Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755354, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| |
Collapse
|