1
|
Wang ZH, Xu DD, Bai XH, Hu S, Xing RR, Chen X. A study on the enrichment mechanism of three nitrophenol isomers in environmental water samples by charge transfer supramolecular-mediated hollow fiber liquid-phase microextraction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18973-18984. [PMID: 36223017 DOI: 10.1007/s11356-022-23409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
To explore the mechanism of extraction and enrichment of three nitrophenol isomers by charge-transfer supramolecular synergistic three-phase microextraction system, a charge transfer supramolecular-mediated hollow fiber liquid-phase microextraction (CTSM-HF-LPME) combined with high-performance liquid chromatography-ultraviolet detector (HPLC-UV) method was established for the determination of real environmental water samples. In this study, the three nitrophenols (NPs) formed charge-transfer supramolecules with electron-rich hollow fibers, which promoted the transport of NPs in the three-phase extraction system and greatly increased the EFs of NPs. The relationships between the EFs of NPs and their solubility, pKa, apparent partition coefficient, equilibrium constant, and structural property parameters were investigated and discussed. At the same time, most of factors affecting the EFs of NPs were investigated and optimized, such as the type of extraction solvent, pH value of sample phase and acceptor phase, extraction time, and stirring speed. Under optimal conditions, the EFs of o-nitrophenol, m-nitrophenol, and p-nitrophenol were 163, 145, and 87, respectively. With good linearity in the range of 5 × 10-7 ~ 1 µg/mL, and the limit of detection of 0.1 pg/mL, the relative standard deviations of the method precision were lower than 7.4%, and the average recoveries were between 98.6 and 106.4%. This method had good selectivity and sensitivity, satisfactory precision, and accuracy and had been successfully applied to the trace detection of real water samples.
Collapse
Affiliation(s)
- Zhao-Hui Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Dou-Dou Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Xiao-Hong Bai
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Shuang Hu
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Rong-Rong Xing
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Xuan Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
2
|
Zedan HE, Mortada WI, Khalifa ME. Microextraction procedures for preconcentration of Fe (III) in water and food samples prior to colorimetric detection: a comparative study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractTwo extraction procedures, namely dispersive liquid-liquid microextraction (DLLME) and dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFOD), have been compared for the spectrophotometric determination of Fe (III). In both procedures, Fe (III) was extracted after complexation with gallic acid in the presence of cetyltrimethylammonium bromide (CTAB). Tetrachloroethylene and 1-undecanol were used as extraction solvents in DLLME and DLLME-SFOD, respectively, while acetone was used as dispersing solvents. The effects of various experimental parameters (solution pH, the concentration of ligand and CTAB, as well as nature and amount of extraction and disperser solvents) on the extraction efficiency were investigated. Under optimum conditions, the calibration graphs were linear in the range of 50.0–650.0 and 8.0–800.0 μg L−1 and the detection limits were 15.0 and 5.0 μg L−1 for DLLME and DLLME-SFOD, respectively. The presence of NaCl, up to 1.0% (w/v) did not impact the extraction procedures. The analyte was good tolerated in the presence of most concomitant ions. The procedures were applied for the determination of Fe (III) in standard reference materials and real samples with good recoveries (95.5–99.0%) for DLLME-SFOD while poor recoveries (68.0–82.5%) were obtained when DLLME was applied. The analytical figures of the procedures were comparable with those listed in the literature and it could be concluded that DLLME-SFOD may be considered one of the best tools used for preconcentration of Fe (III), owing to its simplicity, time-saving and the possibility of using in conventional analytical laboratories.
Graphical abstract
Collapse
|
3
|
Abdel-Aziz AM, Hassan HH, Badr IHA. Activated Glassy Carbon Electrode as an Electrochemical Sensing Platform for the Determination of 4-Nitrophenol and Dopamine in Real Samples. ACS OMEGA 2022; 7:34127-34135. [PMID: 36188318 PMCID: PMC9520556 DOI: 10.1021/acsomega.2c03427] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Glassy carbon electrode (GCE) was electrochemically activated using a repetitive cyclic voltammetric technique to develop an activated glassy carbon electrode (AGCE). The developed AGCE was optimized and utilized for the electrochemical assay of 4-nitrophenol (4-NP) and dopamine (DA). Cyclic voltammetry (CV) was employed to investigate the electrochemical behavior of the AGCE. Compared to the bare GCE, the developed AGCE exhibits a significant increase in redox peak currents of 4-NP and DA, which indicates that the AGCE significantly improves the electrocatalytic reduction of 4-NP and oxidation of DA. The electrochemical signature of the activation process could be directly associated with the formation of oxygen-containing surface functional groups (OxSFGs), which are the main reason for the improved electron transfer ability and the enhancement of the electrocatalytic activity of the AGCE. The effects of various parameters on the voltammetric responses of the AGCE toward 4-NP and DA were studied and optimized, including the pH, scan rate, and accumulation time. Differential pulse voltammetry (DPV) was also utilized to investigate the analytical performance of the AGCE sensing platform. The optimized AGCE exhibited linear responses over the concentration ranges of 0.04-65 μM and 65-370 μM toward 4-NP with a lower limit of detection (LOD) of 0.02 μM (S/N = 3). Additionally, the AGCE exhibited a linear responses over the concentration ranges of 0.02-1.0 and 1.0-100 μM toward DA with a lower limit of detection (LOD) of 0.01 μM (S/N = 3). Moreover, the developed AGCE-based 4-NP and DA sensors are distinguished by their high sensitivity, excellent selectivity, and repeatability. The developed sensors were successfully applied for the determination of 4-NP and DA in real samples with satisfactory recovery results.
Collapse
Affiliation(s)
- Ali M. Abdel-Aziz
- Chemistry
Department, Faculty of Science, Ain-Shams
University, Cairo 11566, Egypt
| | - Hamdy H. Hassan
- Chemistry
Department, Faculty of Science, Ain-Shams
University, Cairo 11566, Egypt
- Department
of Chemistry, Faculty of Science, Galala
University, New Galala
City, Suez 43511, Egypt
| | - Ibrahim H. A. Badr
- Chemistry
Department, Faculty of Science, Ain-Shams
University, Cairo 11566, Egypt
- Department
of Chemistry, Faculty of Science, Galala
University, New Galala
City, Suez 43511, Egypt
| |
Collapse
|
4
|
A rapid and simultaneous method for the determination of naphthol isomers in urine by molecular complex-based dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01914-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Wang Q, Li L, Long CL, Luo L, Yang Y, Yang ZG, Zhou Y. Detection of C 60 in environmental water using dispersive liquid-liquid micro-extraction followed by high-performance liquid chromatography. ENVIRONMENTAL TECHNOLOGY 2020; 41:1015-1022. [PMID: 30146967 DOI: 10.1080/09593330.2018.1516804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
The wide application of fullerene C60 nanoparticles would inevitably lead to their release into the environment. In order to evaluate the environment risks of C60 and the subsequent effects on ecosystem health, a reliable quantitative methodology of C60 should be established. In this study, a rapid pretreatment method called low-density solvent-based dispersive liquid-liquid micro-extraction (DLLME) combined high-performance liquid chromatography-UV detector (HPLC-UV) was developed to detect C60 in environmental water. In this proposed method, toluene and methanol were chosen as the extraction solvent and the dispersive solvent, respectively. The optimized volume of extraction solvent and dispersive solvent were 100 μL and 10 μL, respectively. And the best shaking time was chosen as 10 min at room temperature for the optimal homogenization procedure for the extraction of C60 in water samples. The enrichment factor of 50 was obtained with 100 μL toluene, and the recoveries of C60 from various environmental samples were in the range of 81.4 ± 5.0-101.4 ± 6.2% at 1.25-5.00 µg/L spiked levels. The detection limits of C60 in tap water, surface water, living sewage and mining waste water were 0.19, 0.29, 0.34 and 0.22 μg/L, respectively. The low detection limit, good linear range and high recoveries of C60 in environmental water indicated that the proposed method could provide an efficient approach for the analysis and tracking of C60 in the environment.
Collapse
Affiliation(s)
- Qiang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Lei Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Chen-Lu Long
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Li Luo
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Hunan Agricultural University, Changsha, People's Republic of China
| | - Zhao-Guang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Hunan Agricultural University, Changsha, People's Republic of China
| |
Collapse
|
6
|
Hoisang W, Nacapricha D, Wilairat P, Tiyapongpattana W. Solidification of floating organic droplet microextraction for determination of seven insecticides in fruit juice, vegetables and agricultural runoff using gas chromatography with flame ionization and mass spectrometry detection. J Sep Sci 2019; 42:2032-2043. [DOI: 10.1002/jssc.201801193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/24/2019] [Accepted: 03/28/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Watcharaporn Hoisang
- Department of ChemistryFaculty of Science and TechnologyThammasat University Khlong Luang Pathumthani Thailand
| | - Duangjai Nacapricha
- Flow Innovation Research for Science and Technology Laboratories (FIRST Labs)
- Department of Chemistry and Center of Excellence for Innovation in ChemistryFaculty of ScienceMahidol University Bangkok Thailand
| | - Prapin Wilairat
- Flow Innovation Research for Science and Technology Laboratories (FIRST Labs)
- National Doping Control CentreMahidol University Bangkok Thailand
| | - Warawut Tiyapongpattana
- Department of ChemistryFaculty of Science and TechnologyThammasat University Khlong Luang Pathumthani Thailand
- Flow Innovation Research for Science and Technology Laboratories (FIRST Labs)
| |
Collapse
|
7
|
Yaripour S, Mohammadi A, Mousavi S, Esfanjani I, Arabzadeh N, Mozaffari S. Simultaneous Determination of 2-Nitrophenol and 4-Nitrophenol in Pharmaceutical Industrial Wastewater by Electromembrane Extraction Coupled with HPLC-UV Analysis. PHARMACEUTICAL SCIENCES 2019. [DOI: 10.15171/ps.2019.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: In the present study, an electromembrane extraction (EME) followed by a simple high performance liquid chromatography with ultraviolet detection (HPLC-UV) was developed and validated for simultaneous determination of 2-nitrophenol (2-NP) and 4-nitrophenol (4-NP) in pharmaceutical industrial wastewater sample. Main parameters of electromembrane extraction were evaluated and optimized. Methods: 1-octanol was immobilized in the pores of a polypropylene hollow fiber as supported liquid membrane. As a driving force, a 100 volt electrical voltage was applied to transfer the analytes from the sample solution (pH, 7.5) through the supported liquid membrane into an acceptor solution (pH, 12). Results: The best enrichment factors were obtained 36 and 72 for 2-NP and 4-NP, respectively after 15 minutes of extraction. The effect of carbon nanotube, as a solid nano-sorbent on EME efficiency, was also evaluated. The proposed method provided the linearity in the range of 10-1000 ng/mL for 2-NP (R2> 0.9997) and 4-NP (R2> 0.9999) with repeatability range (% RSD) between 2.6-10.3 % (n = 3). The limit of detection was 3 ng/mL and the limit of quantitation was 10 ng/mL. Conclusion: Finally, the method was applied for the determination of 2-NP and 4-NP in industrial wastewater samples with relative recoveries in the range between 67–76 %. EME improved the sensitivity of HPLC-UV for the determination of trace concentrations of these analytes.
Collapse
Affiliation(s)
- Saeid Yaripour
- Department of Drug and Food Control, Pharmaceutical Quality Assurance Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran, Iran
| | - Ali Mohammadi
- Department of Drug and Food Control, Pharmaceutical Quality Assurance Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran, Iran
| | - Somayeh Mousavi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Isa Esfanjani
- Department of Drug and Food Control, Pharmaceutical Quality Assurance Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Naghmeh Arabzadeh
- Department of Drug and Food Control, Pharmaceutical Quality Assurance Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Ghazizadeh AJ, Afkhami A, Bagheri H. Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO2 nanostructure. Mikrochim Acta 2018; 185:296. [DOI: 10.1007/s00604-018-2840-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/06/2018] [Indexed: 10/16/2022]
|
9
|
Wang J, Jiao C, Li M, Wang X, Wang C, Wu Q, Wang Z. Porphyrin based porous organic polymer modified with Fe 3O 4 nanoparticles as an efficient adsorbent for the enrichment of benzoylurea insecticides. Mikrochim Acta 2017; 185:36. [PMID: 29594549 DOI: 10.1007/s00604-017-2542-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022]
Abstract
Porphyrin-based porous organic polymers (P-POPs) are amorphous polymers linked by strong covalent bonds between the porphyrin subunits that act as building blocks. The authors describe a magnetic P-POP that possesses high surface area, a highly porous structure, and strong magnetism. The MP-POP was employed as a magnetic sorbent for the extraction of benzoylurea insecticides from cucumber and tomato samples prior to their determination by HPLC. The sorbent has a typical sorption capacity of 1.90-2.00 mg∙g-1. The method exhibits a good linear range (0.8-160 ng·g-1), low limits of detection (0.08-0.2 ng·g-1), and high method recoveries (81.8-103.5%) for cucumber and tomato samples. The MP-POP has different adsorption capabilities for the benzoylurea insecticides, phenylurea herbicides and phenols compounds, and the adsorption mechanism is found to be based on π-stacking, hydrogen-bonding, and hydrophobic interactions. Graphical abstract A novel magnetic porphyrin-based porous organic polymer was fabricated and used as the adsorbent for the efficient extraction of benzoylurea insecticides.
Collapse
Affiliation(s)
- Juntao Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Caina Jiao
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Menghua Li
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xiaolan Wang
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.,College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China. .,College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| |
Collapse
|
10
|
Amiri A, Zonoz FM, Targhoo A, Saadati-Moshtaghin HR. Enrichment of phenolic compounds from water samples by using magnetic Fe3O4 nanoparticles coated with a Keggin type heteropoly acid of type H6[BFe(OH2)W11O39] as a sorbent. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2103-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Dolatto RG, Messerschmidt I, Fraga Pereira B, Martinazzo R, Abate G. Preconcentration of polar phenolic compounds from water samples and soil extract by liquid-phase microextraction and determination via liquid chromatography with ultraviolet detection. Talanta 2016; 148:292-300. [DOI: 10.1016/j.talanta.2015.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 01/20/2023]
|
12
|
Naing NN, Li SFY, Lee HK. Electro membrane extraction using sorbent filled porous membrane bag. J Chromatogr A 2015; 1423:1-8. [DOI: 10.1016/j.chroma.2015.10.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 11/25/2022]
|
13
|
Marube LC, Caldas SS, Soares KL, Primel EG. Dispersive liquid-liquid microextraction with solidification of floating organic droplets for simultaneous extraction of pesticides, pharmaceuticals and personal care products. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1507-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Viñas P, Campillo N, Andruch V. Recent achievements in solidified floating organic drop microextraction. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.02.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Capabilities and limitations of dispersive liquid–liquid microextraction with solidification of floating organic drop for the extraction of organic pollutants from water samples. Anal Chim Acta 2013; 805:60-9. [DOI: 10.1016/j.aca.2013.10.052] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022]
|