1
|
Metwly W, Fadl E, Soliman M, Ebrahim S, Sabra SA. Glutathione-Capped ZnS Quantum Dots-Urease Conjugate as a Highly Sensitive Urea Probe. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Abstract
Quantum dots (QDs) possess characteristic chemical and optical features. In this light, ZnS QDs capped with glutathione (GSH) were synthesized via an easy aqueous co-precipitation technique. Fabricated QDs were characterized in terms of X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), Fourier transform infrared (FTIR) and Zeta potential analyses. Optical properties were examined using photoluminescence (PL) and ultraviolet–visible (UV–visible) spectroscopies. Moreover, GSH-capped ZnS QDs were evaluated as an optical probe for non-enzymatic detection of urea depending on the quenching of PL intensity of ZnS QDs in the presence of urea from concentration range of 0.5–5 mM with a correlation coefficient (R2) of 0.995, sensitivity of 0.0875 mM−1 and LOD of 0.426 mM. Furthermore, GSH-capped ZnS QDs-urease conjugate was utilized as an optical probe for enzymatic detection of urea in the range from 1.0 µM to 5.0 mM. Interestingly, it was observed that urea has a good affinity towards ZnS QDs-urease conjugate with a linear relationship between the change of PL intensity and urea concentration. It was found that R2 is 0.997 with a sensitivity of 0.042 mM−1 for mM concentration (0.5–5 mM) and LOD of 0.401 mM. In case of µM concentration range (1–100 µM), R2 was 0.971 with a sensitivity of 0.0024 µM−1 and LOD of 0.687 µM. These data suggest that enzyme conjugation to capped QDs might improve their sensitivity and applicability.
Graphical Abstract
Collapse
|
2
|
Pourmadadi M, Rahmani E, Rajabzadeh-Khosroshahi M, Samadi A, Behzadmehr R, Rahdar A, Ferreira LFR. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Nanoparticle-antibody conjugate-based immunoassays for detection of CKD-associated biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
4
|
Li Y, Zhao A, Wang J, Yu J, Xiao F, Sun H. Highly Bright Gold Nanowires Arrays for Sensitive Detection of Urea and Urease. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4023. [PMID: 36432310 PMCID: PMC9698401 DOI: 10.3390/nano12224023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
In this work, highly fluorescent gold nanowire arrays (Au NWs) are successfully synthesized by assembling Zn2+ ions and non-emissive oligomeric gold-thiolate clusters using mercaptopropionic acid both as a reducing agent and a growth ligand. The synthesized Au NWs exhibited strong bluish green fluorescence with an absolute quantum yield up to 32% and possessed ultrasensitive pH stimuli-responsive performance in the range of 7.0-7.8. Based on the excellent properties of the as-prepared nanowire arrays, we developed a facile, sensitive, and selective fluorescent method for quantitative detection of urea and urease. The fabricated nanoprobe showed superior biosensing response characteristics with good linearities in the range of 0-100 μM for urea concentration and 0-12 U/L for urease activity. In addition, this fluorescent probe afforded relatively high sensitivity with the detection limit as low as 2.1 μM and 0.13 U/L for urea and urease, respectively. Urea in human urine and urease in human serum were detected with satisfied results, exhibiting a promising potential for biomedical application.
Collapse
Affiliation(s)
- Yan Li
- Correspondence: (Y.L.); (H.S.)
| | | | | | | | | | | |
Collapse
|
5
|
Yuxin X, Laipeng S, Kang L, Haipeng S, Zonghua W, Wenjing W. Metal-doped carbon dots as peroxidase mimic for hydrogen peroxide and glucose detection. Anal Bioanal Chem 2022; 414:5857-5867. [PMID: 35655101 DOI: 10.1007/s00216-022-04149-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 01/10/2023]
Abstract
Carbon dots (CDs) have several superior characteristics including sufficient carbon sources, easy preparation, no toxicity, and high catalytic efficiency as a new kind of nanozyme. Herein, Ce-doped carbon dots (Ce-CDs), Cr-doped carbon dots (Cr-CDs), Cu-doped carbon dots (Cu-CDs), Fe-doped carbon dots (Fe-CDs), Mn-doped carbon dots (Mn-CDs), and non-metal-doped carbon dots (0-CDs) were synthesized to explore the detection of hydrogen peroxide (H2O2) and glucose as peroxidase mimic. The prepared CDs could efficiently oxidize the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxTMB in the presence of H2O2. After adding glucose oxidase (GOD) to the CDs/TMB system, a colorimetric method for glucose detection was developed. The results show that Fe-CDs possess the highest catalytic activity. When using Fe-CDs as peroxidase mimetics, the detection limit of this assay for glucose was 0.029 mmol L-1. This successfully provides a sensitive and selective colorimetric method for hydrogen peroxide and glucose determination.
Collapse
Affiliation(s)
- Xing Yuxin
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Sun Laipeng
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Liu Kang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Shi Haipeng
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Wang Zonghua
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Wang Wenjing
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
6
|
Fan Y, Qiao W, Long W, Chen H, Fu H, Zhou C, She Y. Detection of tetracycline antibiotics using fluorescent "Turn-off" sensor based on S, N-doped carbon quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121033. [PMID: 35305520 DOI: 10.1016/j.saa.2022.121033] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
In recent years, antibiotic residues in food have been of great concern to regulators and consumers. In this study, a novel fluorescent sensor based on S, N-doped carbon quantum dots (S, N-CQDs) was established for rapid detection of tetracycline antibiotics (TCs). Through the internal filter effect (IFE), QDs fluorescence can be effectively quenched by TCs, endowing it an "off" condition. Under the optimal conditions, the TC concentration in the range of 1.88-60 μmol/L had a good linear relationship with the change of QDs fluorescence intensity, and the limit of detection (LOD) was calculated as 0.56 μmol/L (S/N = 3). Furthermore, the proposed "Turn-off" sensor could be employed to quickly and accurately quantify TCs residues even in milk, honey and tap water. The recovery rate was as high as between 93.61% and 102.31%. The established sensor has great application value in the fields of food safety and drug analysis, and provides broad prospects for the future food industry.
Collapse
Affiliation(s)
- Yao Fan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Wenjun Qiao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Chunsong Zhou
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China; International Environmental Protection City Technology Limited Company (IEPCT), Yixing 214200, PR China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
7
|
Sharma AS, Ali S, Sabarinathan D, Murugavelu M, Li H, Chen Q. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr Rev Food Sci Food Saf 2021; 20:5765-5801. [PMID: 34601802 DOI: 10.1111/1541-4337.12834] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/23/2022]
Abstract
The versatile photophysicalproperties, high surface-to-volume ratio, superior photostability, higher biocompatibility, and availability of active sites make graphene quantum dots (GQDs) an ideal candidate for applications in sensing, bioimaging, photocatalysis, energy storage, and flexible electronics. GQDs-based sensors involve luminescence sensors, electrochemical sensors, optical biosensors, electrochemical biosensors, and photoelectrochemical biosensors. Although plenty of sensing strategies have been developed using GQDs for biosensing and environmental applications, the use of GQDs-based fluorescence techniques remains unexplored or underutilized in the field of food science and technology. To the best of our knowledge, comprehensive review of the GQDs-based fluorescence sensing applications concerning food quality analysis has not yet been done. This review article focuses on the recent progress on the synthesis strategies, electronic properties, and fluorescence mechanisms of GQDs. The various GQDs-based fluorescence detection strategies involving Förster resonance energy transfer- or inner filter effect-driven fluorescence turn-on and turn-off response mechanisms toward trace-level detection of toxic metal ions, toxic adulterants, and banned chemical substances in foodstuffs are summarized. The challenges associated with the pretreatment steps of complex food matrices and prospects and challenges associated with the GQDs-based fluorescent probes are discussed. This review could serve as a precedent for further advancement in interdisciplinary research involving the development of versatile GQDs-based fluorescent probes toward food science and technology applications.
Collapse
Affiliation(s)
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | | | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,College of Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
8
|
Singh S, Sharma M, Singh G. Recent advancements in urea biosensors for biomedical applications. IET Nanobiotechnol 2021; 15:358-379. [PMID: 34694714 PMCID: PMC8675831 DOI: 10.1049/nbt2.12050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/06/2021] [Accepted: 02/14/2021] [Indexed: 12/22/2022] Open
Abstract
The quick progress in health care technology as a recurrent measurement of biochemical factors such as blood components leads to advance development and growth in biosensor technology necessary for effectual patient concern. The review wok of authors present a concise information and brief discussion on the development made in the progress of potentiometric, field effect transistor, graphene, electrochemical, optical, polymeric, nanoparticles and nanocomposites based urea biosensors in the past two decades. The work of authors is also centred on different procedures/methods for detection of urea by using amperometric, potentiometric, conductometric and optical processes, where graphene, polymer etc. are utilised as an immobilised material for the fabrication of biosensors. Further, a comparative revision has been accomplished on various procedures of urea analysis using different materials-based biosensors, and it discloses that electrochemical and potentiometric biosensor is the most promise one among all, in terms of rapid response time, extensive shelf life and resourceful design.
Collapse
Affiliation(s)
- Saravjeet Singh
- Department of Biomedical EngineeringDeenbandhu Chhotu Ram University of Science and TechnologyMurthalSonepatIndia
| | - Minakshi Sharma
- Department of ZoologyMaharishi Dayanand UniversityRohtakHaryanaIndia
| | - Geeta Singh
- Department of Biomedical EngineeringDeenbandhu Chhotu Ram University of Science and TechnologyMurthalSonepatIndia
| |
Collapse
|
9
|
Li C, Li J, Liang A, Wen G, Jiang Z. Aptamer Turn-On SERS/RRS/Fluorescence Tri-mode Platform for Ultra-trace Urea Determination Using Fe/N-Doped Carbon Dots. Front Chem 2021; 9:613083. [PMID: 33791276 PMCID: PMC8005568 DOI: 10.3389/fchem.2021.613083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/18/2021] [Indexed: 12/03/2022] Open
Abstract
Sensitive and selective methods for the determination of urea in samples such as dairy products are important for quality control and health applications. Using ammonium ferric citrate as a precursor, Fe/N-codoped carbon dots (CDFeN) were prepared by a hydrothermal procedure and characterized in detail. CDFeN strongly catalyzes the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 to turn on an indicator molecular reaction, forming an oxidized tetramethylbenzidine (TMBox) probe with surface-enhanced Raman scattering, resonance Rayleigh scattering, and fluorescence (SERS, RRS, and FL) signals at 1,598 cm−1, 370 nm, and 405 nm, respectively. The urea aptamer (Apt) can turn off the indicator reaction to reduce the tri-signals, and the addition of urea turns on the indicator reaction to linearly enhance the SERS/RRS/FL intensity. Thus, a novel Apt turn-on tri-mode method was developed for the assay determination of ultra-trace urea with high sensitivity, good selectivity, and accuracy. Trace adenosine triphosphate and estradiol can also be determined by the Apt-CDFeN catalytic analytical platform.
Collapse
Affiliation(s)
- Chongning Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin, China
| | - Jiao Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin, China
| | - Aihui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin, China
| | - Guiqing Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin, China
| | - Zhiliang Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin, China
| |
Collapse
|
10
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
11
|
Walther BK, Dinu CZ, Guldi DM, Sergeyev VG, Creager SE, Cooke JP, Guiseppi-Elie A. Nanobiosensing with graphene and carbon quantum dots: Recent advances. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2020; 39:23-46. [PMID: 37974933 PMCID: PMC10653125 DOI: 10.1016/j.mattod.2020.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Graphene and carbon quantum dots (GQDs and CQDs) are relatively new nanomaterials that have demonstrated impact in multiple different fields thanks to their unique quantum properties and excellent biocompatibility. Biosensing, analyte detection and monitoring wherein a key feature is coupled molecular recognition and signal transduction, is one such field that is being greatly advanced by the use of GQDs and CQDs. In this review, recent progress on the development of biotransducers and biosensors enabled by the creative use of GQDs and CQDs is reviewed, with special emphasis on how these materials specifically interface with biomolecules to improve overall analyte detection. This review also introduces nano-enabled biotransducers and different biosensing configurations and strategies, as well as highlights key properties of GQDs and CQDs that are pertinent to functional biotransducer design. Following relevant introductory material, the literature is surveyed with emphasis on work performed over the last 5 years. General comments and suggestions to advance the direction and potential of the field are included throughout the review. The strategic purpose is to inspire and guide future investigations into biosensor design for quality and safety, as well as serve as a primer for developing GQD- and CQD-based biosensors.
Collapse
Affiliation(s)
- Brandon K. Walther
- Biosensors and Biochips (C3), Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg 91058 Erlangen, Germany
| | - Vladimir G. Sergeyev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Stephen E. Creager
- Department of Chemistry and Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - John P. Cooke
- Biosensors and Biochips (C3), Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Anthony Guiseppi-Elie
- Biosensors and Biochips (C3), Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA 23219, USA
| |
Collapse
|
12
|
Sheini A. A paper-based device for the colorimetric determination of ammonia and carbon dioxide using thiomalic acid and maltol functionalized silver nanoparticles: application to the enzymatic determination of urea in saliva and blood. Mikrochim Acta 2020; 187:565. [PMID: 32920692 DOI: 10.1007/s00604-020-04553-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
A colorimetric assay was developed which has the capability of determining urea in biological samples. It is an origami paper-based sensor consisting of silver nanoparticles that were synthesized by using two different capping agents: thiomalic acid and maltol. The function of the assay relied on hydrolysis of urea to ammonia and carbon dioxide in the presence of urease. The products interacted with nanoparticles which caused aggregation. Interestingly, thiomalic acid capped with silver nanoparticles were selective to ammonia, and the other nanoparticles synthesized by maltol responded to carbon dioxide. These interactions turned the color of nanoparticles from yellow to brown and red, respectively. The resulting colorations were captured by a floatable scanner. A routine image analysis software was utilized to provide the response of the assays. The method was applied to individually determine ammonia, carbon dioxide, and urea. The linear range was 0.06 mg.dL-1-170.0 mg.dL-1 for ammonia, 0.08 mg.dL-1-220.0 mg.dL-1 for carbon dioxide, and 0.5 mg.dL-1-200.0 mg.dL-1 for urea. The respective limits of detection were 0.03 mg.dL-1, 0.06 mg.dL-1, and 0.18 mg.dL-1. No interferences were found in the detremination of urea. The method demonstrates a reliable performance for determination of urea in both saliva and blood samples. Graphical Abstract Schematic representation of paper based colorimetric sensor based on silver nanoparticles for both qualitative and quantitative analyses of urea in biological samples.
Collapse
Affiliation(s)
- Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh University of Technology, Susangerd, 78986, Iran.
| |
Collapse
|
13
|
Copper nanoclusters@Al3+ complexes with strong and stable aggregation-induced emission for application in enzymatic determination of urea. Mikrochim Acta 2020; 187:457. [DOI: 10.1007/s00604-020-04438-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
|
14
|
Mansuriya BD, Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1072. [PMID: 32079119 PMCID: PMC7070974 DOI: 10.3390/s20041072] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/02/2023]
Abstract
Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
15
|
|
16
|
Shao T, Yuan P, Zhu L, Xu H, Li X, He S, Li P, Wang G, Chen K. Carbon Nanoparticles Inhibit Α-Glucosidase Activity and Induce a Hypoglycemic Effect in Diabetic Mice. Molecules 2019; 24:molecules24183257. [PMID: 31500170 PMCID: PMC6767295 DOI: 10.3390/molecules24183257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
New, improved therapies to reduce blood glucose are required for treating diabetes mellitus (DM). Here, we investigated the use of a new nanomaterial candidate for DM treatment, carbon nanoparticles (CNPs). CNPs were prepared by carbonization using a polysaccharide from Arctium lappa L. root as the carbon source. The chemical structure and morphology of the CNPs were characterized using Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, elemental analysis, and transmission electron microscopy. CNPs were spherical, 10-20 nm in size, consisting of C, H, O, and N, and featuring various functional groups, including C=O, C=C, C–O, and C–N. In vitro, the as-prepared CNPs could inhibit α-glucosidase with an IC50 value of 0.5677 mg/mL, which is close to that of the reference drug acarbose. Moreover, in vivo hypoglycemic assays revealed that the CNPs significantly reduced fasting blood-glucose levels in mice with diabetes induced by high-fat diet and streptozocin, lowering blood glucose after intragastric administration for 42 days. To the best of our knowledge, this is the first report of CNPs exhibiting α-glucosidase inhibition and a hypoglycemic effect in diabetic mice. These findings suggest the therapeutic potential of CNPs for diabetes.
Collapse
Affiliation(s)
- Taili Shao
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Pingchuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Lei Zhu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Honggang Xu
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Xichen Li
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Shuguang He
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Ping Li
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Guodong Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China.
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China.
| | - Kaoshan Chen
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China.
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China.
| |
Collapse
|
17
|
Wang D, Wang P, Liu D, Zhou Z. Fluorometric atrazine assay based on the use of nitrogen-doped graphene quantum dots and on inhibition of the activity of tyrosinase. Mikrochim Acta 2019; 186:527. [DOI: 10.1007/s00604-019-3648-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
|
18
|
Yarahmadi S, Azadbakht A, Derikvand RM. Hybrid synthetic receptor composed of molecularly imprinted polydopamine and aptamers for impedimetric biosensing of urea. Mikrochim Acta 2019; 186:71. [PMID: 30627876 DOI: 10.1007/s00604-018-3180-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
An electrochemical aptamer-based method is described for highly specific sensing of urea. Urea-imprinted polydopamine was obtained by electropolymerization of dopamine (DA). The molecularly imprinted polymer (MIP) also contains DNA aptamers on gold nanoparticles decorated with a carbon nanotube network (AuNP/CNT). The material was placed on a glassy carbon electrode (GCE). After removal of urea from the MIP cavities, the GCE display double recognition capability which makes it superior to conventional MIP-only or aptamer-only based assays. On exposure of the modified electrode to urea, the interfacial charge transfer of the redox probe hexacyanoferrate is traced, typically measured at a peak voltage of 0.22 V vs. Ag/AgCl. The change in charge transfer resistance depends on the urea concentration. The assay has a 900 fM detection limit, and response is the linear up to 500 nM urea concentrations. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Saeed Yarahmadi
- Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Azadeh Azadbakht
- Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran.
| | - Reza Mir Derikvand
- Department of Plant Breeding, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| |
Collapse
|
19
|
Zhuo S, Guan Y, Li H, Fang J, Zhang P, Du J, Zhu C. Facile fabrication of fluorescent Fe-doped carbon quantum dots for dopamine sensing and bioimaging application. Analyst 2019; 144:656-662. [DOI: 10.1039/c8an01741g] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile Fe-doped carbon quantum dot based fluorescent sensor for dopamine sensing and bioimaging was constructed.
Collapse
Affiliation(s)
- Shujuan Zhuo
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yuanyuan Guan
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Hui Li
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Jing Fang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ping Zhang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Jinyan Du
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Changqing Zhu
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
20
|
Mansouri R, Azadbakht A. Aptamer-Based Approach as Potential Tools for Construction the Electrochemical Aptasensor. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-1024-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Buccolieri A, Hasan M, Bettini S, Bonfrate V, Salvatore L, Santino A, Borovkov V, Giancane G. Ethane-Bridged Bisporphyrin Conformational Changes As an Effective Analytical Tool for Nonenzymatic Detection of Urea in the Physiological Range. Anal Chem 2018; 90:6952-6958. [PMID: 29727561 DOI: 10.1021/acs.analchem.8b01230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conformational switching induced in ethane-bridged bisporphyrins was used as a sensitive transduction method for revealing the presence of urea dissolved in water via nonenzymatic approach. Bisporphyrins were deposited on solid quartz slides by means of the spin-coating method. Molecular conformations of Zn and Ni monometalated bis-porphyrins were influenced by water solvated urea molecules and their fluorescence emission was modulated by the urea concentration. Absorption, fluorescence and Raman spectroscopies allowed the identification of supramolecular processes, which are responsible for host-guest interaction between the active layers and urea molecules. A high selectivity of the sensing mechanism was highlighted upon testing the spectroscopic responses of bis-porphyrin films to citrulline and glutamine used as interfering agents. Additionally, potential applicability was demonstrated by quantifying the urea concentration in real physiological samples proposing this new approach as a valuable alternative analytical procedure to the traditionally used enzymatic methods.
Collapse
Affiliation(s)
- Alessandro Buccolieri
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , Università del Salento , Via per Arnesano , 73100 Lecce , Italy
| | - Mohammed Hasan
- Department of Chemistry and Biotechnology , Tallinn University of Technology , Akadeemia tee 15 , 12618 Tallinn , Estonia
| | - Simona Bettini
- Department of Engineering for Innovation , University of Salento , Via Per Arnesano , 73100 Lecce , Italy.,UdR INSTM of Lecce University of Salento Via Monteroni , 73100 Lecce , Italy
| | - Valentina Bonfrate
- Department of Engineering for Innovation , University of Salento , Via Per Arnesano , 73100 Lecce , Italy
| | - Luca Salvatore
- Department of Engineering for Innovation , University of Salento , Via Per Arnesano , 73100 Lecce , Italy
| | - Angelo Santino
- Institute of Sciences of Food Production , C.N.R., Unit of Lecce, via Monteroni , 73100 Lecce , Italy
| | - Victor Borovkov
- Department of Chemistry and Biotechnology , Tallinn University of Technology , Akadeemia tee 15 , 12618 Tallinn , Estonia.,College of Chemistry and Materials Science , South-Central University for Nationalities , 182# Minzu RD , Hongshan District, Wuhan , Hubei Province 430074 , China
| | - Gabriele Giancane
- Department of Cultural Heritage , Università del Salento , Via D. Birago , 73100 Lecce , Italy.,UdR INSTM of Lecce University of Salento Via Monteroni , 73100 Lecce , Italy
| |
Collapse
|
22
|
Zhuo S, Gao L, Zhang P, Du J, Zhu C. Living cell imaging and sensing of hydrogen sulfide using high-efficiency fluorescent Cu-doped carbon quantum dots. NEW J CHEM 2018. [DOI: 10.1039/c8nj03654c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple Cu-doped carbon quantum dot-based fluorescent sensor for H2S sensing and intracellular bioimaging was constructed.
Collapse
Affiliation(s)
- Shujuan Zhuo
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Lingling Gao
- Anhui Xuancheng Product Quality Supervision and Inspection Institute
- Xuancheng
- P. R. China
| | - Ping Zhang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Jinyan Du
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Changqing Zhu
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo-Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
23
|
A glassy carbon electrode modified with carbon nanotubes and reduced graphene oxide decorated with platinum-gold nanoparticles for voltammetric aptasensing of urea. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Li Z, Zhang Q, Huang H, Ren C, Ouyang S, Zhao Q. L-noradrenaline functionalized near-infrared fluorescence CdSeTe probe for the determination of urea and bioimaging of HepG2 Cells. Talanta 2017; 171:16-24. [DOI: 10.1016/j.talanta.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 11/28/2022]
|
25
|
A Fe3O4@SiO2@graphene quantum dot core-shell structured nanomaterial as a fluorescent probe and for magnetic removal of mercury(II) ion. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2134-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Du J, Zhao Y, Chen J, Zhang P, Gao L, Wang M, Cao C, Wen W, Zhu C. Difunctional Cu-doped carbon dots: catalytic activity and fluorescence indication for the reduction reaction of p-nitrophenol. RSC Adv 2017. [DOI: 10.1039/c7ra05383e] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The reduction reaction ofp-nitrophenol was catalyzed and monitored using the fluorescence of Cu-doped CDs.
Collapse
Affiliation(s)
- Jinyan Du
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yun Zhao
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Juan Chen
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ping Zhang
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Lingling Gao
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Meiqin Wang
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Cong Cao
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Wu Wen
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Changqing Zhu
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
27
|
Zhou S, Xu H, Gan W, Yuan Q. Graphene quantum dots: recent progress in preparation and fluorescence sensing applications. RSC Adv 2016. [DOI: 10.1039/c6ra24349e] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This paper reviews recent activities in the preparation and fluorescence sensing applications of graphene quantum dots.
Collapse
Affiliation(s)
- Shenghai Zhou
- College of Chemistry and Chemical Engineering
- Hebei Normal University for Nationalities
- Chengde 067000
- China
- Laboratory of Environmental Science and Technology
| | - Hongbo Xu
- College of Chemistry and Chemical Engineering
- Hebei Normal University for Nationalities
- Chengde 067000
- China
- Laboratory of Environmental Science and Technology
| | - Wei Gan
- School of Natural Sciences and Humanities
- Harbin Institute of Technology
- Shenzhen 518055
- China
- Laboratory of Environmental Science and Technology
| | - Qunhui Yuan
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Shenzhen 518055
- China
- Laboratory of Environmental Science and Technology
| |
Collapse
|