1
|
Li X, Han D, Li X, Zhou C, Shen B, Wei H, Lou Q, Liu C, Chen T. PdPtCu mesoporous nanocube-based electrochemical sandwich immunosensor for detection of HIV-p24. Bioelectrochemistry 2025; 161:108819. [PMID: 39307075 DOI: 10.1016/j.bioelechem.2024.108819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 12/08/2024]
Abstract
The construction of simple, stable, low-cost and reproducible enzyme-free electrochemical biosensors can effectively avoid the problem of signal attenuation caused by enzyme inactivation. Hererin, we prepared a novel nanoenzymes PdPtCu mesoporous nanocubes (MNCs) to construct a label-free sandwich electrochemical immunosensor for the highly sensitivity detection of HIV-p24. PdPtCu MNCs have excellent peroxidase activity against hydrogen peroxide (H2O2) due to their synergistic ternary composition, large surface area and ability to penetrate mesoporous channels. Moreover, highly conductive and biocompatible gold nanoparticles@graphene oxide (AuNPs@GO) was introduced as a substrate to modify a glassy carbon electrode (GCE). Owing to the excellent electrochemical performance of the PdPtCu MNCs and AuNPs@GO, the developed immunosensors exhibited a good linear response from 0.04 pg/mL to 100 ng/mL with a low detection limit of 20 fg/mL. In addition, the established method exhibited excellent practical performance in human serum. This novel strategy provides a promising platform for ultrasensitive detection of the HIV-p24 in the field of clinical diagnostics.
Collapse
Affiliation(s)
- Xin Li
- Department of Laboratory Medicine, Chongqing Jiangjin District Hospital of Traditional Chinese Medicine, Chongqing 402284, China; Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Daobin Han
- Department of Laboratory Medicine, Second Hospital of Shandong University, Shandong 250033, China
| | - Xinmin Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Chunjie Zhou
- Department of Laboratory Medicine, Chongqing Jiangjin District Hospital of Traditional Chinese Medicine, Chongqing 402284, China
| | - Bo Shen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Honglu Wei
- Department of Laboratory Medicine, The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Qian Lou
- Department of Laboratory Medicine, The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Changjin Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Department of Laboratory Medicine, The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Wang X, Qin Z, Zhang F, Li C, Yuan X, Yang J, Yang H. Label-free electrochemical biosensor based on dual amplification of gold nanoparticles and polycaprolactones for CEA detection. Talanta 2024; 278:126468. [PMID: 38963975 DOI: 10.1016/j.talanta.2024.126468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Carcinoembryonic Antigen (CEA), an acidic glycoprotein with human embryonic antigen properties, is found on the surface of cancer cells that have differentiated from endodermal cells. This paper presents a label-free electrochemical immunoassay for the dual amplification detection of CEA using gold nanoparticles loaded with polypyrrole polydopamine (Au/PPy-PDA) and polymerized polycaprolactone (Ng-PCL) prepared by ring-opening polymerization (ROP). First, the composite Au/PPy-PDA was adhered to the electrode surface. Then, gold nanoparticles form a Au-S bond with the sulfhydryl group in Apt1 to secure it on the electrode surface. Subsequently, the non-specific binding sites on the electrodes surface are closed by bovine serum albumin (BSA). Next, CEA is dropped onto the electrode surface, which is immobilized by antigen-antibody specific recognition, and the carboxyl-functionalized Apt2 forms a "sandwich structure" of antibody-antigen-antibody by specific recognition. Polymeric Ng-PCL is adhered to the electrode surface, leading to an increase in the electrochemical impedance signal, resulting in a complete chain of signal analysis. Finally, the response signal is detected by electrochemical impedance spectroscopy (EIS). Under optimal experimental conditions, the method has the advantages of high sensitivity and wide linear range (1 pg mL-1∼100 ng mL-1), and the lower limit of detection (LOD) is 0.234 pg mL-1. And it has the same high sensitivity, selectivity and interference resistance for the real samples detection. Thus, it provides a new way of thinking about biomedical and clinical diagnosis.
Collapse
Affiliation(s)
- Xia Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Zhe Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Fei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Chong Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Xianxian Yuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Jing Yang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Huaixia Yang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| |
Collapse
|
3
|
Xia N, Gao F, Zhang J, Wang J, Huang Y. Overview on the Development of Electrochemical Immunosensors by the Signal Amplification of Enzyme- or Nanozyme-Based Catalysis Plus Redox Cycling. Molecules 2024; 29:2796. [PMID: 38930860 PMCID: PMC11206384 DOI: 10.3390/molecules29122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Enzyme-linked electrochemical immunosensors have attracted considerable attention for the sensitive and selective detection of various targets in clinical diagnosis, food quality control, and environmental analysis. In order to improve the performances of conventional immunoassays, significant efforts have been made to couple enzyme-linked or nanozyme-based catalysis and redox cycling for signal amplification. The current review summarizes the recent advances in the development of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling for signal amplification. The special features of redox cycling reactions and their synergistic functions in signal amplification are discussed. Additionally, the current challenges and future directions of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling are addressed.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiwen Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaqiang Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yaliang Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
4
|
Khan S, Cho WC, Sepahvand A, Haji Hosseinali S, Hussain A, Nejadi Babadaei MM, Sharifi M, Falahati M, Jaragh-Alhadad LA, ten Hagen TLM, Li X. Electrochemical aptasensor based on the engineered core-shell MOF nanostructures for the detection of tumor antigens. J Nanobiotechnology 2023; 21:136. [PMID: 37101280 PMCID: PMC10131368 DOI: 10.1186/s12951-023-01884-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
It is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development of sensing platforms, metal-organic frameworks (MOFs) have received considerable attention as potential porous crystalline nanostructures. Core-shell MOF nanoparticles (NPs) have shown different diversities, complexities, and biological functionalities, as well as significant electrochemical (EC) properties and potential bio-affinity to aptamers. As a result, the developed core-shell MOF-based aptasensors serve as highly sensitive platforms for sensing cancer biomarkers with an extremely low limit of detection (LOD). This paper aimed to provide an overview of different strategies for improving selectivity, sensitivity, and signal strength of MOF nanostructures. Then, aptamers and aptamers-modified core-shell MOFs were reviewed to address their functionalization and application in biosensing platforms. Additionally, the application of core-shell MOF-assisted EC aptasensors for detection of several tumor antigens such as prostate-specific antigen (PSA), carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA-125), cytokeratin 19 fragment (CYFRA21-1), and other tumor markers were discussed. In conclusion, the present article reviews the advancement of potential biosensing platforms toward the detection of specific cancer biomarkers through the development of core-shell MOFs-based EC aptasensors.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| | - Afrooz Sepahvand
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Haji Hosseinali
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands
| | | | - Timo L. M. ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands
| | - Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Wang Z, Guo Y, Xianyu Y. Applications of self-assembly strategies in immunoassays: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Azam T, Bukhari SH, Liaqat U, Miran W. Emerging Methods in Biosensing of Immunoglobin G-A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:676. [PMID: 36679468 PMCID: PMC9862834 DOI: 10.3390/s23020676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Human antibodies are produced due to the activation of immune system components upon exposure to an external agent or antigen. Human antibody G, or immunoglobin G (IgG), accounts for 75% of total serum antibody content. IgG controls several infections by eradicating disease-causing pathogens from the body through complementary interactions with toxins. Additionally, IgG is an important diagnostic tool for certain pathological conditions, such as autoimmune hepatitis, hepatitis B virus (HBV), chickenpox and MMR (measles, mumps, and rubella), and coronavirus-induced disease 19 (COVID-19). As an important biomarker, IgG has sparked interest in conducting research to produce robust, sensitive, selective, and economical biosensors for its detection. To date, researchers have used different strategies and explored various materials from macro- to nanoscale to be used in IgG biosensing. In this review, emerging biosensors for IgG detection have been reviewed along with their detection limits, especially electrochemical biosensors that, when coupled with nanomaterials, can help to achieve the characteristics of a reliable IgG biosensor. Furthermore, this review can assist scientists in developing strategies for future research not only for IgG biosensors but also for the development of other biosensing systems for diverse targets.
Collapse
Affiliation(s)
- Tehmina Azam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Syed Hassan Bukhari
- College of Computational Sciences and Natural Sciences, Minerva University, San Francisco, CA 94103, USA
| | - Usman Liaqat
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Waheed Miran
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
7
|
Nanoparticle-antibody conjugate-based immunoassays for detection of CKD-associated biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
8
|
Mohammadpour-Haratbar A, Zare Y, Rhee KY. Electrochemical biosensors based on polymer nanocomposites for detecting breast cancer: Recent progress and future prospects. Adv Colloid Interface Sci 2022; 309:102795. [DOI: 10.1016/j.cis.2022.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022]
|
9
|
Lai YR, Lai JT, Wang SSS, Kuo YC, Lin TH. Silver nanoparticle-deposited whey protein isolate amyloid fibrils as catalysts for the reduction of methylene blue. Int J Biol Macromol 2022; 213:1098-1114. [PMID: 35688277 DOI: 10.1016/j.ijbiomac.2022.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/05/2022]
Abstract
The unique structural characteristics and superior biocompatibility make the protein nanofibers promising immobilization platforms/substrates for catalysts/enzymes. Metal nanoparticles have been employed as the catalysts in industries due to their excellent catalytic activity and stability, whereas their high surface energy leads to nanoparticle aggregation, thereby hampering their catalytic performance. Here, amyloid fibril (AF) derived from whey protein isolate (WPI) was chosen as the support of silver nanoparticles (AgNP) and utilized for the catalytic reduction of methylene blue (MB). The one-dimensional amyloid-based hybrid materials (AgNP/WPI-AF) were first synthesized via chemical or photochemical route. The characterization of AgNP/WPI-AF by UV-vis spectrophotometry and electron microscopy revealed that the sizes of AgNP on WPI-AF's surface ranged from 2 to 30 nm. Next, the catalytic performances of AgNP/WPI-AF prepared by various routes for MB degradation were investigated. Additionally, the kinetic data were analyzed using two different models and the apparent rate constants and thermodynamic parameters were further determined accordingly. Moreover, the reusability of AgNP/WPI-AF was assessed by monitoring the percentage removal of MB over consecutive filtering cycles. Our results indicated that Langmuir-Hinshelwood-type mechanism better described the catalytic MB reduction using AgNP/WPI-AF. This work provides a nice example of application of nanoparticle-amyloid fibril composite materials for catalysis.
Collapse
Affiliation(s)
- You-Ren Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jinn-Tsyy Lai
- Food Industry Research and Development Institute, Hsinchu 300, Taiwan; HeySong Corporation, 178, Zhongyuan Rd., Zhongli Dist., Taoyuan City 320021, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Ta-Hsien Lin
- Laboratory of Nuclear Magnetic Resonance, Medical Research Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
10
|
Enzyme-free sandwich-type electrochemical immunosensor based on high catalytic binary PdCu mesoporous metal nanoparticles and conductive black phosphorous nanosheets for ultrasensitive detection of pro-SFTPB in non-small cell lung cancer. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Enhancing the electrocatalytic activity of palladium nanocluster tags by selective introduction of gold atoms: Application for a wound infection biomarker detection. Biosens Bioelectron 2022; 200:113926. [PMID: 34990956 DOI: 10.1016/j.bios.2021.113926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/11/2021] [Accepted: 12/25/2021] [Indexed: 11/23/2022]
Abstract
In this work, an unprecedented study exploring the role that slight changes into the Pd/Au proportion have in the electrocatalytic activity of bimetallic Pd-AuNPs toward the oxygen reduction reaction (ORR) is conducted. In particular, a careful control of the amount of Au atoms introduced in the cluster and the evaluation of the optimum Pd:Au ratio for getting the maximum catalytic activity is performed for the first time. First, PdNPs are synthesized by alcohol reduction in the presence of polyvinylpyrrolidone, and gold atoms are selectively introduced on vertex or corner positions of the cluster in different amounts following a galvanic substitution procedure. Average elemental analysis done relying on EDX spectroscopy allows to evaluate the Pd:Au ratio in the Pd-AuNPs obtained. Lineal sweep voltammetry and chronoamperometry are used for the evaluation of the Pd-AuNPs electrocatalytic activity toward ORR at a neutral pH compared to PdNPs and AuNPs alone. Our results indicate that, the synergy between both metals is strongly enhanced when the amount of gold is controlled and occupies the more reactive positions of the cluster, reaching a maximum activity for the NPs containing a 30% of gold, while an excess of this metal leads to a decrease in such activity, as a shelter of the PdNPs is achieved. Chronoamperometric analysis allows the quantification of the optimal Pd-AuNPs at over 6 × 109 NPs/mL levels. Such optimal Pd-AuNPs were used as tags, taking advantage of the bio-functionalities of gold present in the cluster, in a proof-of-concept electrochemical immunosensor for the detection of hyaluronidase wound infection biomarker, using magnetic beads as platforms. Hyaluronidase was detected at levels as low as 50 ng/mL (0.02 U/mL; 437 U/mg) with good reproducibility (RSD below 8%) and selectivity (evaluated against bovine serum albumin, immunoglobulin G and lysozyme). The low matrix effects inherent to the use of magnetic bead platforms allowed us to discriminate between wound exudates with both sterile and infected ulcers without sample pre-treatment. This novel electrocatalytic immunoassay has the advantage, over common methods for NP tags electrochemical detection, of the signal generation in the same neutral medium where the immunoassay takes place (10 mM PBS pH 7.4), avoiding the use of additional and hazardous reagents, bringing it closer to their use as point-of-care devices. Overall, our findings may be of great interest not only for biosensing, but also for applications such as energy converting on fuel cells, in which the ORR has a pivotal role.
Collapse
|
12
|
Surucu O, Öztürk E, Kuralay F. Nucleic Acid Integrated Technologies for Electrochemical Point‐of‐Care Diagnostics: A Comprehensive Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ozge Surucu
- Department of Chemistry Faculty of Science Ege University 35040 Izmir Turkey
| | - Elif Öztürk
- Department of Chemistry Faculty of Science Hacettepe University 06800 Ankara Turkey
| | - Filiz Kuralay
- Department of Chemistry Faculty of Science Hacettepe University 06800 Ankara Turkey
| |
Collapse
|
13
|
Scala-Benuzzi ML, Soler-Illia GJ, Raba J, Battaglini F, Schneider RJ, Pereira SV, Messina GA. Immunosensor based on porous gold and reduced graphene platform for the determination of EE2 by electrochemical impedance spectroscopy. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Graphene Decorated with Silver Nanoparticles as Electrocatalytic Labels in Non-Enzymatic Bisphenol-A Immunosensor. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Wehmeyer KR, White RJ, Kissinger PT, Heineman WR. Electrochemical Affinity Assays/Sensors: Brief History and Current Status. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:109-131. [PMID: 34314225 DOI: 10.1146/annurev-anchem-061417-125655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The advent of electrochemical affinity assays and sensors evolved from pioneering efforts in the 1970s to broaden the field of analytes accessible to the selective and sensitive performance of electrochemical detection. The foundation of electrochemical affinity assays/sensors is the specific capture of an analyte by an affinity element and the subsequent transduction of this event into a measurable signal. This review briefly covers the early development of affinity assays and then focuses on advances in the past decade. During this time, progress on electroactive labels, including the use of nanoparticles, quantum dots, organic and organometallic redox compounds, and enzymes with amplification schemes, has led to significant improvements in sensitivity. The emergence of nanomaterials along with microfabrication and microfluidics technology enabled research pathways that couple the ease of use of electrochemical detection for the development of devices that are more user friendly, disposable, and employable, such as lab-on-a-chip, paper, and wearable sensors.
Collapse
Affiliation(s)
- Kenneth R Wehmeyer
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA; , ,
| | - Ryan J White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA; , ,
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221-0030, USA
| | - Peter T Kissinger
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA;
| | - William R Heineman
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA; , ,
| |
Collapse
|
16
|
Prospects and challenges of using electrochemical immunosensors as an alternative detection method for SARS-CoV-2 wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146239. [PMCID: PMC7934662 DOI: 10.1016/j.scitotenv.2021.146239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 05/22/2023]
Abstract
Given its potential applications in confronting the COVID-19 pandemic, wastewater-based epidemiology (WBE) has attracted tremendous attention. Developing a fast, cost-effective, and practical method for SARS-CoV-2 detection in wastewater is of great significance to facilitate future WBE development. By now, the PCR-based approach serves as the reference method and “gold standard” to detect the virus in wastewater. However, we found a trend that the PCR-based method becomes almost an unshakable choice as more and more studies were published regarding SARS-CoV-2 WBE. Of note, the importance of exploring new, alternative approaches for SARS-CoV-2 detection in wastewater should not be underestimated. In this context, the prospect of using electrochemical immunosensors as the alternative detection method was investigated in this survey. Based on the previous efforts towards different virus immunoassay studies and newly published PCR-based COVD-19 WBE works, this survey provides new insights into the electrochemical immunoassay that have been widely adopted in body fluids virus detection, along with an extensive discussion of the detection mechanism, detection performance, past performances, current efforts, and potential challenges with wastewater detection. In the end, this survey concludes that using electrochemical immunosensors to analyze SARS-CoV-2 in wastewater samples quantitatively may have better feasibility and practicability than using the conventional PCR-based approach, especially when considering its fast detection, ease of miniaturization, and potential on-site measurement.
Collapse
|
17
|
Ma X, Deng D, Xia N, Hao Y, Liu L. Electrochemical Immunosensors with PQQ-Decorated Carbon Nanotubes as Signal Labels for Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1757. [PMID: 34361143 PMCID: PMC8308108 DOI: 10.3390/nano11071757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
Nanocatalysts are a promising alternative to natural enzymes as the signal labels of electrochemical biosensors. However, the surface modification of nanocatalysts and sensor electrodes with recognition elements and blockers may form a barrier to direct electron transfer, thus limiting the application of nanocatalysts in electrochemical immunoassays. Electron mediators can accelerate the electron transfer between nanocatalysts and electrodes. Nevertheless, it is hard to simultaneously achieve fast electron exchange between nanocatalysts and redox mediators as well as substrates. This work presents a scheme for the design of electrochemical immunosensors with nanocatalysts as signal labels, in which pyrroloquinoline quinone (PQQ) is the redox-active center of the nanocatalyst. PQQ was decorated on the surface of carbon nanotubes to catalyze the electrochemical oxidation of tris(2-carboxyethyl)phosphine (TCEP) with ferrocenylmethanol (FcM) as the electron mediator. With prostate-specific antigen (PSA) as the model analyte, the detection limit of the sandwich-type immunosensor was found to be 5 pg/mL. The keys to success for this scheme are the slow chemical reaction between TCEP and ferricinum ions, and the high turnover frequency between ferricinum ions, PQQ. and TCEP. This work should be valuable for designing of novel nanolabels and nanocatalytic schemes for electrochemical biosensors.
Collapse
Affiliation(s)
- Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
| | - Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
| | - Lin Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| |
Collapse
|
18
|
Abstract
Electrochemical immunosensors are affinity-based biosensors characterized by several useful features such as specificity, miniaturizability, low cost and simplicity, making them very interesting for many applications in several scientific fields. One of the significant issues in the design of electrochemical immunosensors is to increase the system’s sensitivity. Different strategies have been developed, one of the most common is the use of nanostructured materials as electrode materials, nanocarriers, electroactive or electrocatalytic nanotracers because of their abilities in signal amplification and biocompatibility. In this review, we will consider some of the most used nanostructures employed in the development of electrochemical immunosensors (e.g., metallic nanoparticles, graphene, carbon nanotubes) and many other still uncommon nanomaterials. Furthermore, their diagnostic applications in the last decade will be discussed, referring to two relevant issues of present-day: the detection of tumor markers and viruses.
Collapse
|
19
|
Yang Q, Wang P, Ma E, Yu H, Zhou K, Tang C, Ren J, Li Y, Liu Q, Dong Y. A sandwich-type electrochemical immunosensor based on Au@Pd nanodendrite functionalized MoO 2 nanosheet for highly sensitive detection of HBsAg. Bioelectrochemistry 2020; 138:107713. [PMID: 33291003 DOI: 10.1016/j.bioelechem.2020.107713] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
In this work, a sandwich-type electrochemical immunosensor was fabricated to the effective detection of hepatitis B surface antigen (HBsAg). The designed electrochemical immunosensor was based on Au core and Pd shell nanodendrites loaded on amino functionalized molybdenum dioxide nanosheets (Au@Pd NDS/NH2-MoO2 NSs) as the secondary antibody (Ab2) label and silver nanoparticles were loaded by electrodeposited (D-Ag NPs) on the surface of electrode as the platform. Because of the synergistic effect and abundant catalytic activity sites provided by surface dendrite structure, Au@Pd NDs were more effective than single gold and palladium nanoparticles in catalytic reduction of hydrogen peroxide (H2O2). MoO2 had the good catalytic capacity for reduction of H2O2 and favourable electrical conductivity. Hence, the obtained Au@Pd NDS/NH2-MoO2 NSs were more effective than Au@Pd NDs and NH2-MoO2 NSs in catalytic reduction of hydrogen peroxide attribute to a synergistic effect. Also, Ag NPs with admirable electrical conductivity and biocompatibility were used as sensing platforms and primary antibodies (Ab1) carriers, which can accelerate the electron transfer and improve the sensitivity of the immunosensor. Here, the proposed electrochemical immunosensor offered a wide linear interval from 10 fg mL-1 to 100 ng mL-1 and the lower limit of detection of 3.3 fg mL-1 (S/N = 3) for detection of HBsAg under optimal experimental conditions. Furthermore, the accuracy of the actual serum sample analysis was satisfactory, which showed that the electrochemical immunosensor possessed a good application prospect in clinical detection.
Collapse
Affiliation(s)
- Qingshan Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China.
| | - Enhui Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Haoxuan Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Kaiwei Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Chunyuan Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Jie Ren
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, PR China
| |
Collapse
|
20
|
Rana S, Bharti A, Singh S, Bhatnagar A, Prabhakar N. Gold-silver core-shell nanoparticle–based impedimetric immunosensor for detection of iron homeostasis biomarker hepcidin. Mikrochim Acta 2020; 187:626. [DOI: 10.1007/s00604-020-04599-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/10/2020] [Indexed: 01/20/2023]
|
21
|
Hartati YW, Gaffar S, Alfiani D, Pratomo U, Sofiatin Y, Subroto T. A voltammetric immunosensor based on gold nanoparticle - Anti-ENaC bioconjugate for the detection of epithelial sodium channel (ENaC) protein as a biomarker of hypertension. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
22
|
Xu D, Sun ZH, Hua X, Han HX, Ma W, Long YT. Plasmon-Induced Photoreduction System Allows Ultrasensitive Detection of Disease Biomarkers by Silver-Mediated Immunoassay. ACS Sens 2020; 5:2184-2190. [PMID: 32571009 DOI: 10.1021/acssensors.0c00799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Current strategies for the detection of disease biomarkers often require enzymatic assays that may have limited sensitivity due to inferior stability and vulnerable catalytic activity of the enzyme. A new enzyme-free amplification method for identifying suitable biomarkers is necessary to lower the limit of detection and improve many critical diagnosis applications. Here, we presented an enzyme-free amplified plasmonic immunoassay that enhanced the detection sensitivity of disease biomarkers by combining a novel plasmon-induced silver photoreduction system with a silver nanoparticle (AgNP)-linked immunoassay. The key step to achieving ultrasensitivity was to use Ag+ from dissolved AgNPs that control the growth rate of the silver coating on plasmonic nanosensors under visible light illumination. We demonstrated the outstanding sensitivity and robustness of this assay by detecting the disease biomarker alpha-fetoprotein (AFP) at a low concentration of 3.3 fg mL-1. The detection of AFP was further confirmed in the sera of hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Duo Xu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Ze-Hui Sun
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xin Hua
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Huan-Xing Han
- Aliex Technology Group Co., Ltd., No. 152, Lane 468, North Hengshahe Road, Shanghai 201108, P. R. China
| | - Wei Ma
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
23
|
Iglesias-Mayor A, Amor-Gutiérrez O, Novelli A, Fernández-Sánchez MT, Costa-García A, de la Escosura-Muñiz A. Bifunctional Au@Pt/Au core@shell Nanoparticles As Novel Electrocatalytic Tags in Immunosensing: Application for Alzheimer’s Disease Biomarker Detection. Anal Chem 2020; 92:7209-7217. [DOI: 10.1021/acs.analchem.0c00760] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alba Iglesias-Mayor
- NanoBioAnalysis Group- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Olaya Amor-Gutiérrez
- NanoBioAnalysis Group- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Antonello Novelli
- Department of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain
- University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Doctor Fernando Bongera s/n, 33006, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Hospital Universitario s/n, 33011, Oviedo, Spain
| | - María-Teresa Fernández-Sánchez
- University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Doctor Fernando Bongera s/n, 33006, Oviedo, Spain
- Department of Biochemistry and Molecular Biology, University of Oviedo, Doctor Fernando Bongera s/n, 33006, Oviedo, Spain
| | - Agustín Costa-García
- NanoBioAnalysis Group- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Alfredo de la Escosura-Muñiz
- NanoBioAnalysis Group- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
24
|
Liu X, Yue T, Qi K, Qiu Y, Guo X. Porous graphene based electrochemical immunosensor using Cu 3(BTC) 2 metal-organic framework as nonenzymatic label. Talanta 2020; 217:121042. [PMID: 32498912 DOI: 10.1016/j.talanta.2020.121042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
An electrochemical immunosensor for highly sensitive detection of cancer biomarkers has been developed based on the combination of a sensing platform of polydopamine modified porous graphene and a nonenzymatic label of metal-organic framework (MOF) conjugated secondary antibody. This approach achieves a wide range of linear response from 0.1 to 10 ng/mL, low detection limit of 0.025 ng/mL (at a signal to noise ratio of 3), good reproducibility and selectivity for the detection of prostate specific antigen (PSA) as a model analyte. The high performance of the immunosensor is attributed to the high surface area from porous graphene and the strong adhesion of polydopamine, allowing a high load of the primary antibody of PSA, as well as the highly electrocatalytic activity of the Cu3(BTC)2 (BTC = benzene-1,3,5-tricarboxylic acid) MOF toward H2O2 to provide greatly amplified sensitivity. In this respect, the MOF-based nonenzymatic label shows promising application for the point-of-care detection of different cancer biomarkers in clinical diagnostics.
Collapse
Affiliation(s)
- Xiaobang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Ting Yue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Kai Qi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China.
| | - Yubing Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Xingpeng Guo
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| |
Collapse
|
25
|
Deng L, Lai G, Fu L, Lin CT, Yu A. Enzymatic deposition of gold nanoparticles at vertically aligned carbon nanotubes for electrochemical stripping analysis and ultrasensitive immunosensing of carcinoembryonic antigen. Analyst 2020; 145:3073-3080. [PMID: 32142088 DOI: 10.1039/c9an02633a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Herein we combine the sandwich immunoreaction at a vertically aligned single-walled carbon nanotube (SWCNT)-based immunosensor and the enzymatically catalytic deposition of gold nanoparticles (Au NPs) by a gold nanoprobe to develop a novel electrochemical immunosensing method. The vertically arranged nanostructure was prepared through the covalent linking of terminally carboxylated SWCNTs at an aryldiazonium-modified electrode. It not only provides an excellent platform for the high density immobilization of antibodies to obtain the immunosensor but also serves as useful molecular wires to accelerate electron transfer during the electrochemical immunosensing process. Meanwhile, the enzymatic reaction of the nanoprobe prepared by surface functionalization of the nanocarrier of Au NPs by high-content glucoamylases can catalyze the deposition of a large number of Au NPs at the immunosensor. The electrochemical stripping analysis of these nanoparticles enabled the convenient signal transduction of the method. Due to the sensitive gold stripping analysis at the vertically aligned SWCNTs and the multi-enzyme signal amplification of the nanoprobe, the electrochemical signal response was greatly enhanced. Thus, the method can be used for the ultrasensitive detection of the tumor biomarker of carcinoembryonic antigen in a wide linear range of 5 orders of magnitude with a low detection limit of 0.48 pg mL-1. Considering its obvious performance superiorities, this immunosensing method exhibits an extensive prospect for practical applications.
Collapse
Affiliation(s)
- Liling Deng
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, China.
| | | | | | | | | |
Collapse
|
26
|
Cysteine-assisted photoelectrochemical immunoassay for the carcinoembryonic antigen by using an ITO electrode modified with C3N4-BiOCl semiconductor and CuO nanoparticles as antibody labels. Mikrochim Acta 2019; 186:633. [DOI: 10.1007/s00604-019-3706-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/21/2019] [Indexed: 01/10/2023]
|
27
|
Nguyen DM, Bach LG, Bui QB. Novel urchin-like FeCo oxide nanostructures supported carbon spheres as a highly sensitive sensor for hydrazine sensing application. J Pharm Biomed Anal 2019; 172:243-252. [PMID: 31071649 DOI: 10.1016/j.jpba.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 11/29/2022]
Abstract
Herein, we successfully fabricated a novel nanostructure based on hierarchical urchin-like FeCo oxide supported carbon spheres (FeCo Oxide/CSs) via a two-step hydrothermal method followed by a simple annealing step at 300 °C under air. It was found that such urchin-like FeCo Oxide/CSs structure exhibited superior catalytic activity towards hydrazine oxidation to CSs, Fe Oxide/CSs, Co Oxide/CSs, and FeCo Hydroxide/CSs material. In this regard, the FeCo Oxide/CSs displayed a wide linear detection range of 0.1-516.6 μM, low detection limit of 0.1 μM, and long-term stability. The material also showed good selectivity towards hydrazine detection in the presence of various interferences, such as uric acid, ascorbic acid, urea, dopamine, Na+, SO42-, K+, and Cl-. The excellent sensing performance of the FeCo Oxide/CSs was assumed to the unique hierarchical urchin structure with the high density and uniformity of nano-sized FeCo Oxide nanoneedles, which produced massive electroactive sites and enhanced charge transfer ability. The achieved results implied that the FeCo Oxide/CSs may be a great candidate for sensitive hydrazine detection.
Collapse
Affiliation(s)
- D M Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - L G Bach
- Center of Excellence for Green Energy and Environmental Nanomaterials, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Q B Bui
- Sustainable Developments in Civil Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
28
|
Sandwich-type electrochemical immunosensor based on Au@Pt DNRs/NH2-MoSe2 NSs nanocomposite as signal amplifiers for the sensitive detection of alpha-fetoprotein. Bioelectrochemistry 2019; 128:140-147. [DOI: 10.1016/j.bioelechem.2019.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/19/2022]
|
29
|
Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, Patra HK. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun (Camb) 2019; 55:6964-6996. [DOI: 10.1039/c9cc01741k] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging properties of noble metal nanoparticles are attracting huge interest from the translational scientific community. In this feature article, we highlight recent advances in the adaptation of noble metal nanomaterials and their biomedical applications in therapeutics, diagnostics and sensing.
Collapse
Affiliation(s)
- Mohammad Azharuddin
- Department of Clinical and Experimental Medicine
- Linkoping University
- Linkoping
- Sweden
| | - Geyunjian H. Zhu
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge
- UK
| | - Debapratim Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Erdogan Ozgur
- Hacettepe University
- Faculty of Science
- Department of Chemistry
- Ankara
- Turkey
| | - Lokman Uzun
- Hacettepe University
- Faculty of Science
- Department of Chemistry
- Ankara
- Turkey
| | | | - Hirak K. Patra
- Department of Clinical and Experimental Medicine
- Linkoping University
- Linkoping
- Sweden
- Department of Chemical Engineering and Biotechnology
| |
Collapse
|
30
|
Pei F, Wang P, Ma E, Yu H, Gao C, Yin H, Li Y, Liu Q, Dong Y. A sandwich-type amperometric immunosensor fabricated by Au@Pd NDs/Fe2+-CS/PPy NTs and Au NPs/NH2-GS to detect CEA sensitively via two detection methods. Biosens Bioelectron 2018; 122:231-238. [DOI: 10.1016/j.bios.2018.09.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 01/08/2023]
|
31
|
Nonenzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with graphene oxide, a polyamidoamine dendrimer, and with polyaniline deposited by the Fenton reaction. Mikrochim Acta 2018; 185:569. [PMID: 30506518 DOI: 10.1007/s00604-018-3089-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
A highly sensitive electrochemical sensor is described for the determination of H2O2. It is based on based on the use of polyaniline that was generated in-situ and within 1 min on a glassy carbon electrode (GCE) with the aid of the Fe(II)/H2O2 system. Initially, a 2-dimensional composite was prepared from graphene oxide and polyamidoamine dendrimer through covalent interaction. It was employed as a carrier for Fe(II) ions. Then, the nanocomposite was drop-coated onto the surface of the GCE. When exposed to H2O2, the Fe(II) on the GCE is converted to Fe(III), and free hydroxy radicals are formed. The Fe(III) ions and the hydroxy radicals catalyze the oxidation of aniline to produce electroactive polyaniline on the GCE. The resulting sensor, best operated at a working potential as low as 50 mV (vs. SCE) which excludes interference by dissolved oxygen, has a linear response in the 500 nM to 2 mM H2O2 concentration range, and the detection limit is 180 nM. The sensor was successfully applied to the determination of H2O2 in spiked milk and fetal bovine serum samples. Graphical abstract Schematic presentation of a sensitive electrochemical sensor employed for detection of H2O2 in sophisticated matrices by using graphene oxide-PAMAM dendrimer as initiator container and Fe2+/H2O2 system as signal enhancer.
Collapse
|
32
|
Zhu F, Zhao G, Dou W. Electrochemical sandwich immunoassay for Escherichia coli O157:H7 based on the use of magnetic nanoparticles and graphene functionalized with electrocatalytically active Au@Pt core/shell nanoparticles. Mikrochim Acta 2018; 185:455. [PMID: 30215173 DOI: 10.1007/s00604-018-2984-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
A highly sensitive electrochemical sandwich immunoassay is described for determination of Escherichia coli O157:H7 (E. coli O157:H7). Silica coated magnetite nanoparticles (Fe3O4) were modified with primary antibody to capture E. coli O157:H7. Gold-platinum core/shell nanoparticles (Au@Pt NPs) with different Pt shell thicknesses were prepared via changing the molar ratio of H2PtCl6 to HAuCl4 in the precursor solution. The optimized Au@Pt NPs exhibit enhanced activity in the electrocatalytic reduction of hydrogen peroxide (H2O2). The Au@Pt NPs were modified with graphene that was functionalized with Neutral Red, and then used as an electrochemical label for secondary antibodies and horseradish peroxidase (HRP). The sandwich immunocomplexes were magnetically absorbed on a 4-channel screen printed carbon electrode. Due to the catalysis of the Au@Pt NPs and HRP, the signal is strongly amplified in the presence of H2O2 when using thionine as the electron mediator. Under optimal conditions, the immunoassay has a linear response in the 4.0 × 102 to 4.0 × 108 CFU·mL-1 concentration range, with a limit of detection of 91 CFU·mL-1 (at an S/N ratio of 3). Graphical abstract Preparation of Au@Pt core/shell nanoparticles with different Pt shell thickness (A), rGO-NR (B), rGO-NR-Au@Pt-Ab2-HRP (C) and the preparation and the detection process of the immunoassay (D). rGO: reduced graphene oxide, GO: graphene oxide, NR: Neutral Red, HRP: horseradish peroxidase, AuNPs: gold nanoparticles, Fe3O4@SiO2: Silica coated magnetite nanoparticles, 4-SPCE: 4-channel screen printed carbon electrode.
Collapse
Affiliation(s)
- Fanjun Zhu
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
33
|
Zhu F, Zhao G, Dou W. A non-enzymatic electrochemical immunoassay for quantitative detection of Escherichia coli O157:H7 using Au@Pt and graphene. Anal Biochem 2018; 559:34-43. [PMID: 30144412 DOI: 10.1016/j.ab.2018.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 10/28/2022]
Abstract
Herein, a non-enzymatic sandwich-type electrochemical immunoassay was fabricated for quantitative monitoring of Escherichia coli O157:H7 (E. coli O157:H7). Silica coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) were modified with mouse anti-E. coli O157:H7 monoclonal antibody (Ab1) to act as capture probes to reduce detection time and increase the sensitivity of the immunoassay. The Au@Pt nanoparticles were loaded on neutral red (NR) functionalized graphene to form composite complex rGO-NR-Au@Pt. rGO-NR-Au@Pt has high specific surface area and good biocompatibility. rGO-NR-Au@Pt was used as the carriers of detection antibodies (Ab2). Au@Pt catalyzed the reduction of hydrogen peroxide (H2O2) to detection of E. coli O157:H7 with the thionine (TH) as electron mediator to effectually amply the current signal. Under the optimized conditions, a linear relationship between the reduction peak current change (ΔIpc) and the logarithm of the E. coli O157:H7 concentration is obtained in the range from 4.0 × 103 to 4.0 × 108 CFU mL-1 and the limit of detection (LOD) is 4.5 × 102 CFU mL-1 at a signal-to-noise ratio of 3. The immunoassay exhibits acceptable specificity, reproducibility and stability on the detection of E. coli O157:H7. Furthermore, the immunoassay showed good performance in pork and milk samples. The results suggest that this immunoassay will be promising in the food safety area.
Collapse
Affiliation(s)
- Fanjun Zhu
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
34
|
Qin Z, Xu W, Chen S, Chen J, Qiu JF, Li CR. Electrochemical immunoassay for the carcinoembryonic antigen based on the use of a glassy carbon electrode modified with an octahedral Cu2O-gold nanocomposite and staphylococcal protein for signal amplification. Mikrochim Acta 2018; 185:266. [DOI: 10.1007/s00604-018-2747-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
|
35
|
Chen J, Yu C, Gao R, Geng Y, Zhao Y, Niu Y, Zhang L, Yu Y, He J. A palladium-platinum bimetal nanodendritic melamine network for signal amplification in voltammetric sensing of DNA. Mikrochim Acta 2018; 185:138. [PMID: 29594436 DOI: 10.1007/s00604-018-2690-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/18/2018] [Indexed: 01/05/2023]
Abstract
A sandwich-type electrochemical DNA sensor is described for the detection of oligonucleotides typical for MECP2 gene mutations. Palladium nanoparticles (PdNPs) and platinum nanoparticles (PtNPs) were used to synthesize flower-like PdPt nanodendrites (NDs) by a one-pot method. The PdPt NDs possess a high specific surface area and excellent catalytic capabilities. They served as the carrier for the signal DNA probe (SP) and simultaneously catalyze the reduction of hydrogen peroxide (H2O2). The PdPt NDs were modified with melamine, and this results in the formation of a PdPt-melamine network through stable interactions between the PdPt NDs and the three amino groups of each melamine molecule. The network exhibits excellent catalytic ability in enhancing the current signal response in the voltammetric detection of MECP2 gene mutation, best measured at -0.4 V vs. SCE and using H2O2 as the electrochemical probe. In addition, gold nanoflowers were electrodeposited on the electrode interface in order to accelerate electron transfer and to capture the capture probe. The sensor is stable and can detect MECP2 gene mutations in the 1 fmol·L-1 to 1 nmol·L-1 concentration range, with a 0.33 fmol·L-1 lower detection limit at an S/N ratio of 3. Graphical abstract Schematic presentation of electrodes for the determination of the X-linked gene methyl-CpG-binding protein 2 (MECP2). The sensor is based on the electrooxidation of added H2O2 by using the melamine modified palladium platinum bimetal nanodendrites as network signal amplification strategy. This versatile platform expands studies on the detection of monogenic disease.
Collapse
Affiliation(s)
- Jun Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197#, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197#, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197#, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Yilin Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yazhen Niu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lei Zhang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197#, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Yujie Yu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197#, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197#, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
36
|
Tang Z, Ma Z. Multiple functional strategies for amplifying sensitivity of amperometric immunoassay for tumor markers: A review. Biosens Bioelectron 2017; 98:100-112. [DOI: 10.1016/j.bios.2017.06.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
|
37
|
A nanocomposite containing Prussian Blue, platinum nanoparticles and polyaniline for multi-amplification of the signal of voltammetric immunosensors: highly sensitive detection of carcinoma antigen 125. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2470-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
38
|
Duplex voltammetric immunoassay for the cancer biomarkers carcinoembryonic antigen and alpha-fetoprotein by using metal-organic framework probes and a glassy carbon electrode modified with thiolated polyaniline nanofibers. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2437-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2223-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
Enzyme-free amperometric glucose sensor using a glassy carbon electrode modified with poly(vinyl butyral) incorporating a hybrid nanostructure composed of molybdenum disulfide and copper sulfide. Mikrochim Acta 2017. [DOI: 10.1007/s00604-016-2061-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Liu L, Du R, Zhang Y, Yu X. A novel sandwich-type immunosensor based on three-dimensional graphene–Au aerogels and quaternary chalcogenide nanocrystals for the detection of carcino embryonic antigen. NEW J CHEM 2017. [DOI: 10.1039/c7nj02253k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu2ZnSnS4 nanocrystals were firstly used as electrocatalysts in H2O2 reduction for ultrasensitive detection of carcino embryonic antigen.
Collapse
Affiliation(s)
- Lei Liu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| | - Ruifeng Du
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| | - Xuelian Yu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| |
Collapse
|
42
|
Meng A, Sheng L, Zhao K, Li Z. A controllable honeycomb-like amorphous cobalt sulfide architecture directly grown on the reduced graphene oxide–poly(3,4-ethylenedioxythiophene) composite through electrodeposition for non-enzyme glucose sensing. J Mater Chem B 2017; 5:8934-8943. [DOI: 10.1039/c7tb02482g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A facile, controllable two-step electrodeposition route was developed, whereby a honeycomb-like amorphous CoxSy architecture was obtained via direct growth on rGO–PEDOT/GCE as an electrode for glucose detection.
Collapse
Affiliation(s)
- Alan Meng
- State Key Laboratory Base of Eco-chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Liying Sheng
- Key Laboratory of Polymer Material Advanced Manufacturing Technology of Shandong Provincial
- College of Electromechanical Engineering
- College of Sino-German Science and Technology
- Qingdao University of Science and Technology
- Qingdao 266061
| | - Kun Zhao
- State Key Laboratory Base of Eco-chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Zhenjiang Li
- Key Laboratory of Polymer Material Advanced Manufacturing Technology of Shandong Provincial
- College of Electromechanical Engineering
- College of Sino-German Science and Technology
- Qingdao University of Science and Technology
- Qingdao 266061
| |
Collapse
|
43
|
Amperometric sandwich immunoassay for the carcinoembryonic antigen using a glassy carbon electrode modified with iridium nanoparticles, polydopamine and reduced graphene oxide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2010-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Dutta G, Nagarajan S, Lapidus LJ, Lillehoj PB. Enzyme-free electrochemical immunosensor based on methylene blue and the electro-oxidation of hydrazine on Pt nanoparticles. Biosens Bioelectron 2016; 92:372-377. [PMID: 27829560 DOI: 10.1016/j.bios.2016.10.094] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/21/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022]
Abstract
Enzyme-free electrochemical sensors enable rapid, high sensitivity measurements without the limitations associated with enzyme reporters. However, the performance of non-enzymatic electrochemical sensors tends to suffer from slow electrode kinetics and poor signal stability. We report a new enzyme-free electrochemical immunosensor based on a unique competitive detection scheme using methylene blue (MB), hydrazine and platinum nanoparticles (Pt NPs). This scheme is coupled with a robust immunosandwich format employing a MB-labelled detection antibody as a non-enzymatic reporter. In the presence of the target antigen, surface-immobilized MB consumes interfacial hydrazine thereby diminishing the electro-oxidation of hydrazine on Pt NPs. Thus, the concentration of the antigen is directly proportional to the reduction in the electrochemical signal. For proof-of-concept, this sensor was used to detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2), an important malaria biomarker, in unadulterated human saliva samples. Chronocoulometric measurements showed that this platform exhibits pM-range sensitivity, high specificity and good reproducibility, making it well suited for many biosensing applications including noninvasive diagnostic testing.
Collapse
Affiliation(s)
- Gorachand Dutta
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sureshbabu Nagarajan
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA; Centre for Drug Discovery and Development, Sathyabama University, Chennai, Tamil Nadu 600119, India
| | - Lisa J Lapidus
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
45
|
Shan J, Ma Z. Simultaneous detection of five biomarkers of lung cancer by electrochemical immunoassay. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1941-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Rama EC, Costa-García A. Screen-printed Electrochemical Immunosensors for the Detection of Cancer and Cardiovascular Biomarkers. ELECTROANAL 2016. [DOI: 10.1002/elan.201600126] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Estefanía Costa Rama
- Departamento de Química Física y Analítica, Facultad de Química; Universidad de Oviedo; 33006 Oviedo Spain
| | - Agustín Costa-García
- Departamento de Química Física y Analítica, Facultad de Química; Universidad de Oviedo; 33006 Oviedo Spain
| |
Collapse
|
47
|
Arduini F, Cinti S, Scognamiglio V, Moscone D. Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1858-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
48
|
Wang L, Rong Q, Ma Z. Construction of Electrochemical Immunosensing Interface for Multiple Cancer Biomarkers Detection. ELECTROANAL 2016. [DOI: 10.1002/elan.201600122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Liyuan Wang
- Department of Chemistry; Capital Normal University; 100048 Beijing
| | - Qinfeng Rong
- Department of Chemistry; Capital Normal University; 100048 Beijing
| | - Zhanfang Ma
- Department of Chemistry; Capital Normal University; 100048 Beijing
| |
Collapse
|
49
|
Liang W, Fan C, Zhuo Y, Zheng Y, Xiong C, Chai Y, Yuan R. Multiparameter Analysis-Based Electrochemiluminescent Assay for Simultaneous Detection of Multiple Biomarker Proteins on a Single Interface. Anal Chem 2016; 88:4940-8. [DOI: 10.1021/acs.analchem.6b00878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wenbin Liang
- Key
Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, PR China
- Department
of Clinical Biochemistry, Laboratory Sciences, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba
District, Chongqing 400038, PR China
| | - Chenchen Fan
- Key
Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying Zhuo
- Key
Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, PR China
| | - Yingning Zheng
- Key
Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, PR China
| | - Chengyi Xiong
- Key
Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key
Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key
Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
50
|
DNA-based electrochemical determination of mercury(II) by exploiting the catalytic formation of gold amalgam and of silver nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1813-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|