1
|
Mohammad‐Rezaei R, Abbas‐Zadeh J, Golmohammadpour M, Hosseinzadeh E. Simultaneous Electrodeposition of Reduced Graphene Quantum Dots/Copper Oxide Nanocomposite on the Surface of Carbon Ceramic Electrode for the Electroanalysis of Adenine and Guanine. ELECTROANAL 2021. [DOI: 10.1002/elan.202100256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rahim Mohammad‐Rezaei
- Electrochemistry Research Lab. Faculty of Basic Sciences Azarbaijan Shahid Madani University Tabriz Iran
| | - Javad Abbas‐Zadeh
- Electrochemistry Research Lab. Faculty of Basic Sciences Azarbaijan Shahid Madani University Tabriz Iran
| | - Mahdi Golmohammadpour
- Electrochemistry Research Lab. Faculty of Basic Sciences Azarbaijan Shahid Madani University Tabriz Iran
| | - Elyas Hosseinzadeh
- Department of Laboratory Sciences Sirjan School of Medical Sciences 7816883333 Sirjan Iran
| |
Collapse
|
2
|
Bao M, Chen Q, Xu Z, Jensen EC, Liu C, Waitkus JT, Yuan X, He Q, Qin P, Du K. Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sens 2021; 6:2497-2522. [PMID: 34143608 DOI: 10.1021/acssensors.1c00530] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeats, CRISPR, has recently emerged as a powerful molecular biosensing tool for nucleic acids and other biomarkers due to its unique properties such as collateral cleavage nature, room temperature reaction conditions, and high target-recognition specificity. Numerous platforms have been developed to leverage the CRISPR assay for ultrasensitive biosensing applications. However, to be considered as a new gold standard, several key challenges for CRISPR molecular biosensing must be addressed. In this paper, we briefly review the history of biosensors, followed by the current status of nucleic acid-based detection methods. We then discuss the current challenges pertaining to CRISPR-based nucleic acid detection, followed by the recent breakthroughs addressing these challenges. We focus upon future advancements required to enable rapid, simple, sensitive, specific, multiplexed, amplification-free, and shelf-stable CRISPR-based molecular biosensors.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Qun Chen
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Zhiheng Xu
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Erik C. Jensen
- HJ Science & Technology Inc., San Leandro, California 94710, United States
| | - Changyue Liu
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Jacob T. Waitkus
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Xi Yuan
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Qian He
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Peiwu Qin
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
3
|
A Simple, Fast and Portable Method for Electrochemical Detection of Adenine Released by Ricin Enzymatic Activity. Toxins (Basel) 2021; 13:toxins13040238. [PMID: 33810228 PMCID: PMC8066795 DOI: 10.3390/toxins13040238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
International authorities classify ricin toxin present in castor seed as a potential agent for use in bioterrorism. Therefore, the detection, identification, and characterization of ricin in various sample matrices are considered necessary actions for risk assessment during a suspected exposure. This study reports a portable electrochemical assay for detecting active ricin based on the adenine electro-oxidation released from herring sperm DNA substrate by its catalytic action. Also, kinetic parameters were calculated, and the values were Km of 3.14 µM and Kcat 2107 min−1. A linear response was found in optimized experimental conditions for ricin concentrations ranging from 8 to 120 ng/mL, and with a detection limit of 5.14 ng/mL. This proposed detection strategy emphasizes the possibility of field detection of active ricin in food matrices and can be applied to other endonucleolytic activities.
Collapse
|
4
|
Zhang S, Zhuang X, Chen D, Luan F, He T, Tian C, Chen L. Simultaneous voltammetric determination of guanine and adenine using MnO 2 nanosheets and ionic liquid-functionalized graphene combined with a permeation-selective polydopamine membrane. Mikrochim Acta 2019; 186:450. [PMID: 31197566 DOI: 10.1007/s00604-019-3577-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Abstract
Guanine and adenine in blood samples can be detected by using an electrochemical sensor based on the use of manganese dioxide (MnO2) nanosheets and ionic liquid functionalized graphene (IL-GR) bound to a polydopamine (PDA) membrane. Both guanine and adenine undergo a redox reaction on the surface of the modified electrode. Cyclic voltammetry and differential pulse voltammetry were used to evaluate the electrochemical behavior of a glassy carbon electrode (GCE) modified with PDA/MnO2/IL-GR. The sensor allows for individual as well as simultaneous determination of guanine and adenine. The working voltage of differential pulse voltammetry at which data were acquired to establish the calibration plot: 0.6-1.2 V for guanine, 0.8-1.4 V for adenine, 0.4-1.4 V for mixture of guanine and adenine. A wide detection range (10-300 μM), low detection limits (guanine: 0.25 μM; adenine: 0.15 μM), selectivity and reproducibility are demonstrated. The modified GCE was successfully applied to the analysis of guanine and adenine in spiked fetal bovine serum and mouse whole blood samples. Graphical abstract An electrochemical sensor is presented for the determination of guanine (G) and adenine (A) based on MnO2 nanosheets, ionic liquid functionalized graphene (IL-graphene) and polydopamine membrane.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Dandan Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Tao He
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Lingxin Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China. .,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
5
|
Sharma S. Glassy Carbon: A Promising Material for Micro- and Nanomanufacturing. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1857. [PMID: 30274225 PMCID: PMC6213281 DOI: 10.3390/ma11101857] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
When certain polymers are heat-treated beyond their degradation temperature in the absence of oxygen, they pass through a semi-solid phase, followed by the loss of heteroatoms and the formation of a solid carbon material composed of a three-dimensional graphenic network, known as glassy (or glass-like) carbon. The thermochemical decomposition of polymers, or generally of any organic material, is defined as pyrolysis. Glassy carbon is used in various large-scale industrial applications and has proven its versatility in miniaturized devices. In this article, micro and nano-scale glassy carbon devices manufactured by (i) pyrolysis of specialized pre-patterned polymers and (ii) direct machining or etching of glassy carbon, with their respective applications, are reviewed. The prospects of the use of glassy carbon in the next-generation devices based on the material's history and development, distinct features compared to other elemental carbon forms, and some large-scale processes that paved the way to the state-of-the-art, are evaluated. Selected support techniques such as the methods used for surface modification, and major characterization tools are briefly discussed. Barring historical aspects, this review mainly covers the advances in glassy carbon device research from the last five years (2013⁻2018). The goal is to provide a common platform to carbon material scientists, micro/nanomanufacturing experts, and microsystem engineers to stimulate glassy carbon device research.
Collapse
Affiliation(s)
- Swati Sharma
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76334 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
6
|
A gold-nanoparticle/horizontal-graphene electrode for the simultaneous detection of ascorbic acid, dopamine, uric acid, guanine, and adenine. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4019-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Wang M, Cui M, Liu W, Liu X, Xu B. Facile Synthesis of Cyclodextrin Functionalized Reduced Graphite Oxide with the Aid of Ionic Liquid for Simultaneous Determination of Guanine and Adenine. ELECTROANAL 2018. [DOI: 10.1002/elan.201700715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Meiling Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education; Taiyuan University of Technology, Taiyuan; Shanxi 030024 China
- Research Center on Advanced Materials Science and Technology; Taiyuan University of Technology, Taiyuan; Shanxi 030024 China
| | - Mingzhu Cui
- Institute of Crystalline Materials; Shanxi University, Taiyuan; Shanxi 030006 China
| | - Weifeng Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education; Taiyuan University of Technology, Taiyuan; Shanxi 030024 China
- Research Center on Advanced Materials Science and Technology; Taiyuan University of Technology, Taiyuan; Shanxi 030024 China
| | - Xuguang Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education; Taiyuan University of Technology, Taiyuan; Shanxi 030024 China
- Research Center on Advanced Materials Science and Technology; Taiyuan University of Technology, Taiyuan; Shanxi 030024 China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education; Taiyuan University of Technology, Taiyuan; Shanxi 030024 China
- Research Center on Advanced Materials Science and Technology; Taiyuan University of Technology, Taiyuan; Shanxi 030024 China
| |
Collapse
|
8
|
He S, He P, Zhang X, Zhang X, Dong F, Jia L, Du L, Lei H. Simultaneous voltammetric determination of guanine and adenine by using a glassy carbon electrode modified with a composite consisting of carbon quantum dots and overoxidized poly(2-aminopyridine). Mikrochim Acta 2018; 185:107. [PMID: 29594700 DOI: 10.1007/s00604-017-2636-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
A composite consisting of carbon quantum dots (CQDs) and overoxidized poly(2-aminopyridine) (PAPox) was deposited on a glassy carbon electrode (GCE) through electrochemical polymerization and electrochemical oxidation. The modified GCE was used for the simultaneous determination of guanine and adenine. Electrochemical responses to guanine and adenine were investigated by cyclic voltammetry and differential pulse voltammetry. Owing to the synergistic effect of CQDs and PAPox, two oxidation peaks can be observed, with peaks at 0.81 and 1.13 V (vs. SCE) for guanine and adenine, respectively. The current at the respective peaks has a linear dependence on the concentrations of guanine in the range from 1.0 to 65 μM, and of adenine in the range from 2.0 to 70 μM. The respective detection limits are 0.51 and 0.39 μM (at an S/N ratio of 3). The modified GCE is selective, reproducible and stable. Graphical abstract Schematic of the preparation of a glassy carbon electrode modified with carbon quantum dots and overoxidized poly(2-aminopyridine (CQD/PAPox/GCE), and its application for the simultaneous determination of guanine and adenine.
Collapse
Affiliation(s)
- Shaoying He
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Ping He
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China. .,Mianyang Kingtiger New Energy Technology Co. Ltd., Mianyang, 621000, Sichuan, People's Republic of China.
| | - Xiaojuan Zhang
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Xingquan Zhang
- Center of Analysis and Test, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Lingpu Jia
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Licheng Du
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Hong Lei
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| |
Collapse
|
9
|
Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review. Mikrochim Acta 2018; 185:89. [PMID: 29594390 DOI: 10.1007/s00604-017-2626-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022]
Abstract
This review (with 210 references) summarizes recent developments in the design of voltammetric chemical sensors and biosensors based on the use of carbon nanomaterials (CNMs). It is divided into subsections starting with an introduction into the field and a description of its current state. This is followed by a large section on various types of voltammetric sensors and biosensors using CNMs with subsections on sensors based on the use of carbon nanotubes, graphene, graphene oxides, graphene nanoribbons, fullerenes, ionic liquid composites with CNMs, carbon nanohorns, diamond nanoparticles, carbon dots, carbon nanofibers and mesoporous carbon. The third section gives conclusion and an outlook. Tables are presented on the application of such sensors to voltammetric detection of neurotransmitters, metabolites, dietary minerals, proteins, heavy metals, gaseous molecules, pharmaceuticals, environmental pollutants, food, beverages, cosmetics, commercial goods and drugs of abuse. The authors also describe advanced approaches for the fabrication of robust functional carbon nano(bio)sensors for voltammetric quantification of multiple targets. Graphical Abstract Featuring execellent electrical, catalytic and surface properies, CNMs have gained enormous attention for designing voltammetric sensors and biosensors. Functionalized CNM-modified electrode interfaces have demonstrated their prominent role in biological, environmental, pharmaceutical, chemical, food and industrial analysis.
Collapse
|
10
|
Dhanjai, Sinha A, Lu X, Wu L, Tan D, Li Y, Chen J, Jain R. Voltammetric sensing of biomolecules at carbon based electrode interfaces: A review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Zhan F, Liao X, Gao F, Qiu W, Wang Q. Electroactive crown ester-Cu 2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s. Biosens Bioelectron 2017; 92:589-595. [PMID: 27829553 DOI: 10.1016/j.bios.2016.10.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/10/2016] [Accepted: 10/19/2016] [Indexed: 01/01/2023]
Abstract
A novel electrochemical DNA biosensor has been facilely constructed by in-situ assembly of electroactive 4'-aminobenzo-18-crown-6-copper(II) complex (AbC-Cu2+) on the free terminal of the hairpin-structured molecule beacon. The 3'-SH modified molecule beacon probe was first immobilized on the gold electrode (AuE) surface through self-assembly chemistry of Au-S bond. Then the crow ester of AbC was covalently coupled with 5'-COOH on the molecule beacon, and served as a platform to attach the Cu2+ by coordination with ether bond (-O-) of the crown cycle. Thus, an electroactive molecule beacon-based biosensing interface was constructed. In comparison with conventional methods for preparation of electroactive molecule beacon, the approach presented in this work is much simpler, reagent- and labor-saving. Selectivity study shows that the in-situ fabricated electroactive molecule beacon remains excellent recognition ability of pristine molecule beacon probe to well differentiate various DNA fragments. The target DNA can be quantatively determined over the range from 0.10pM to 0.50nM. The detection limit of 0.060pM was estimated based on signal-to-noise ratio of 3. When the biosensor was applied for the detection cauliflower mosaic virus 35s (CaMV 35s) in soybean extraction samples, satisfactory results are achieved. This work opens a new strategy for facilely fabricating electrochemical sensing interface, which also shows great potential in aptasensor and immurosensor fabrication.
Collapse
Affiliation(s)
- Fengping Zhan
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Xiaolei Liao
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Feng Gao
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Weiwei Qiu
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qingxiang Wang
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|