1
|
Chávez M, Fernandez-Merino Á, Del Caño R, Sánchez-Obrero G, Madueño R, Blázquez M, Pineda T. Behind the Optimization of the Sensor Film: Bioconjugation of Triangular Gold Nanoparticles with Hemoproteins for Sensitivity Enhancement of Enzymatic Biosensors. BIOSENSORS 2023; 13:bios13040467. [PMID: 37185542 PMCID: PMC10136871 DOI: 10.3390/bios13040467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
Electrochemical biosensors are widely used in a multitude of applications, such as medical, nutrition, research, among other fields. These sensors have been historically used and have not undergone many changes in terms of the involved electrochemical processes. In this work, we propose a new approach on the immobilization and enhancement of the electrochemical properties of the sensing layers through the control and bioconjugation of hemoproteins (hemoglobin, myoglobin, and cytochrome C) on anisotropic gold nanoparticles (gold nanotriangles (AuNTs)). The hemeproteins and the AuNTs are mixed in a solution, resulting in stable bioconjugates that are deposited onto the electrode surface to obtain the biosensors. All the systems proposed herein exhibited direct well-defined redox responses, highlighting the key role of the AuNTs acting as mediators of such electron transfers. Several protein layers surrounding the AuNTs are electroactive, as demonstrated from the charge measured by cyclic voltammetry. The retention of the stability of the hemeproteins once they are part of the bioconjugates is evidenced towards the electrocatalytic reduction of hydrogen peroxide, oxygen, and nitrite. The parameters obtained for the proposed biosensors are similar or even lower than those previously reported for similar systems based on nanomaterials, and they exhibit attractive properties that make them potential candidates for the latest developments in the field of sensing devices.
Collapse
Affiliation(s)
- Miriam Chávez
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales, Ed. Marie Curie, E-14014 Córdoba, Spain
| | - Ángela Fernandez-Merino
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales, Ed. Marie Curie, E-14014 Córdoba, Spain
| | - Rafael Del Caño
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales, Ed. Marie Curie, E-14014 Córdoba, Spain
| | - Guadalupe Sánchez-Obrero
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales, Ed. Marie Curie, E-14014 Córdoba, Spain
| | - Rafael Madueño
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales, Ed. Marie Curie, E-14014 Córdoba, Spain
| | - Manuel Blázquez
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales, Ed. Marie Curie, E-14014 Córdoba, Spain
| | - Teresa Pineda
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales, Ed. Marie Curie, E-14014 Córdoba, Spain
| |
Collapse
|
2
|
Lopes RC, Rocha BG, Maçôas EM, Marques EF, Martinho JM. Combining metal nanoclusters and carbon nanomaterials: Opportunities and challenges in advanced nanohybrids. Adv Colloid Interface Sci 2022; 304:102667. [PMID: 35462268 DOI: 10.1016/j.cis.2022.102667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022]
Abstract
The development of functional materials with uniquely advanced properties lies at the core of nanoscience and nanotechnology. From the myriad possible combinations of organic and/or inorganic blocks, hybrids combining metal nanoclusters and carbon nanomaterials have emerged as highly attractive colloidal materials for imaging, sensing (optical and electrochemical) and catalysis, among other applications. While the metal nanoclusters provide extraordinary luminescent and electronic properties, the carbon nanomaterials (of zero, one or two dimensions) convey versatility, as well as unique interfacial, electronic, thermal, optical, and mechanical properties, which altogether can be put to use for the desired application. Herein, we present an overview of the field, for experts and non-experts, encompassing the basic properties of the building blocks, a systematic view of the chemical preparation routes and physicochemical properties of the hybrids, and a critical analysis of their ongoing and emerging applications. Challenges and opportunities, including directions towards green chemistry approaches, are also discussed.
Collapse
|
3
|
Abstract
Nowadays, the emerging photoelectrochemical (PEC) bioanalysis has drawn intensive interest due to its numerous merits. As one of its core elements, functional nanostructured materials play a crucial role during the construction of PEC biosensors, which can not only be employed as transducers but also act as signal probes. Although both chemical composition and morphology control of nanostructured materials contribute to the excellent analytical performance of PEC bioassay, surveys addressing nanostructures with different dimensionality have rarely been reported. In this review, according to classification based on dimensionality, zero-dimensional, one-dimensional, two-dimensional, and three-dimensional nanostructures used in PEC bioanalysis are evaluated, with an emphasis on the effect of morphology on the detection performances. Furthermore, using the illustration of recent works, related novel PEC biosensing patterns with promising applications are also discussed. Finally, the current challenges and some future perspectives in this field are addressed based on our opinions.
Collapse
|
4
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Szuwarzyński M, Wolski K, Kruk T, Zapotoczny S. Macromolecular strategies for transporting electrons and excitation energy in ordered polymer layers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Del Real Mata C, Siavash Moakhar R, Hosseini II, Jalali M, Mahshid S. A nanostructured microfluidic device for plasmon-assisted electrochemical detection of hydrogen peroxide released from cancer cells. NANOSCALE 2021; 13:14316-14329. [PMID: 34477715 DOI: 10.1039/d0nr07608b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Non-invasive liquid biopsies offer hope for a rapid, risk-free, real-time glimpse into cancer diagnostics. Recently, hydrogen peroxide (H2O2) was identified as a cancer biomarker due to its continued release from cancer cells compared to normal cells. The precise monitoring and quantification of H2O2 are hindered by its low concentration and the limit of detection (LOD) in traditional sensing methods. Plasmon-assisted electrochemical sensors with their high sensitivity and low LOD make a suitable candidate for effective detection of H2O2, yet their electrical properties need to be improved. Here, we propose a new nanostructured microfluidic device for ultrasensitive, quantitative detection of H2O2 released from cancer cells in a portable fashion. The fluidic device features a series of self-organized gold nanocavities, enhanced with graphene nanosheets having optoelectrical properties, which facilitate the plasmon-assisted electrochemical detection of H2O2 released from human cells. Remarkably, the device can successfully measure the released H2O2 from breast cancer (MCF-7) and prostate cancer (PC3) cells in human plasma. Briefly, direct amperometric detection of H2O2 under simulated visible light illumination showed a superb LOD of 1 pM in a linear range of 1 pM-10 μM. We thoroughly studied the formation of self-organized plasmonic nanocavities on gold electrodes via surface and photo-electrochemical characterization techniques. In addition, the finite-difference time domain (FDTD) simulation of the electric field demonstrates the intensity of charge distribution at the nanocavity structure edges under visible light illumination. The superb LOD of the proposed electrode combining gold plasmonic nanocavities and graphene sheets paves the way for the development of non-invasive plasmon-assisted electrochemical sensors that can effectively detect low concentrations of H2O2 released from cancer cells.
Collapse
|
7
|
Li L, Zhai L, Liu H, Li B, Li M, Wang B. A novel H2O2photoelectrochemical sensor based on ternary RGO/Ag-TiO2 nanotube arrays nanocomposite. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Ma S, Yang Q, Zhang W, Xiao G, Wang M, Cheng L, Zhou X, Zhao M, Ji J, Zhang J, Yue Z. Silver nanoclusters and carbon dots based light-addressable sensors for multichannel detections of dopamine and glutathione and its applications in probing of parkinson's diseases. Talanta 2020; 219:121290. [PMID: 32887032 DOI: 10.1016/j.talanta.2020.121290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) is a common neurological disease caused by nerve cells degradation which leads to extremely low level of dopamine (DA) in patients. Therefore, ultrasensitive DA detection is particularly important for the assessment and treatment of Parkinson's patients. In this research, photoelectrochemical (PEC) sensors based on Ag44(SR)30 nanoclusters (AgNCs) with 5-mercapto-2-nitrobenzoic acid (MNBA) ligands were first developed for ultrasensitive and selective detection of DA. Then, hybrid nanomaterials by introducing graphene oxide (GO) and silver nanoparticles (AgNPs) into AgNCs were used to enhance sensing properties. AgNCs/AgNPs/GO based PEC sensors achieved high sensitivity (7.476 nA/μM) and low limit of detection (LOD, S/N = 3, 53 nM) in the linear range 0.16-6 μM DA concentration. Besides DA, PD causes the concentration change of other analytes, such as glutathione (GSH). Multichannel detections of different analytes can provide more information in studying PD. Therefore, carbon dots (CDs) based PEC sensors were designed and achieved high sensing performances on GSH detection. Then, AgNCs/AgNPs/GO and CDs based PEC sensors were combined and extended into light-addressable sensors for multichannel detections of DA and GSH. Algorithms were used to solve interference problems to improve the measurement accuracy of DA and GSH in complex solution. Finally, PD biological model samples from mice were measured by light-addressable sensors. The relationships between the DA and GSH concentration and the PD stage were proved. Our designed light-addressable sensors exhibited advantages of multichannel detection, high sensitivity, fast response and so on. In the future, it can be expanded to detect more biological molecules to provide more information on studying PD.
Collapse
Affiliation(s)
- Song Ma
- Department of Microelectronics, Nankai University, Tianjin, 300350, China.
| | - Qiaochun Yang
- Department of Microelectronics, Nankai University, Tianjin, 300350, China.
| | - Wenwen Zhang
- Department of Life Science, Nankai University, Tianjin, 300071, China.
| | - Gang Xiao
- Department of Microelectronics, Nankai University, Tianjin, 300350, China.
| | - Mingliang Wang
- Department of Microelectronics, Nankai University, Tianjin, 300350, China.
| | - Linyang Cheng
- Department of Microelectronics, Nankai University, Tianjin, 300350, China.
| | - Xin Zhou
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Meng Zhao
- School of Electro-Mechanical Engineering, Xidian University, Xi'an, 710071, China.
| | - Jing Ji
- School of Electro-Mechanical Engineering, Xidian University, Xi'an, 710071, China.
| | - Jun Zhang
- Department of Life Science, Nankai University, Tianjin, 300071, China.
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, 300350, China.
| |
Collapse
|
9
|
Zhao S, Shi C, Hu H, Li Z, Xiao G, Yang Q, Sun P, Cheng L, Niu W, Bi J, Yue Z. ISFET and Dex-AgNPs based portable sensor for reusable and real-time determinations of concanavalin A and glucose on smartphone. Biosens Bioelectron 2020; 151:111962. [PMID: 31999575 DOI: 10.1016/j.bios.2019.111962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
In this paper, a portable real-time sensing device was built for Concanavalin A (Con A) and glucose detection using a smartphone. The ion-sensitive field-effect transistor (ISFET) functioning at a low working point was selected as a small-size, low-power transducer, and dextran-capped silver nanoparticles (Dex-AgNPs) served as sensitive nanoprobes on the ISFET gate. Using the affinity between Con A and carbohydrates, Con A can be captured, and thus directly detected by the ISFET/Dex-AgNPs unit; then glucose can be determined indirectly by removing Con A from the ISFET/Dex-AgNPs/Con A unit via competition with dextran. The mechanism of this competition does less harm to the sensor, allows the reusability of the sensing device, and overcomes the Debye screening of the FET device in saline solutions. Powered by a button cell, the handheld device attains excellent Con A (0.16 ng mL-1) and glucose (10 nM) detection limit, and can practically be used for at least 20 days.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Cong Shi
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Hongyang Hu
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China; Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 10010, PR China
| | - Zhengping Li
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Gang Xiao
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Qiaochun Yang
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Peng Sun
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Linyang Cheng
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Wencheng Niu
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China
| | - Jinshun Bi
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 10010, PR China.
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin, 300350, PR China; Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, 300350, PR China.
| |
Collapse
|
10
|
Zhao S, Caruso F, Dähne L, Decher G, De Geest BG, Fan J, Feliu N, Gogotsi Y, Hammond PT, Hersam MC, Khademhosseini A, Kotov N, Leporatti S, Li Y, Lisdat F, Liz-Marzán LM, Moya S, Mulvaney P, Rogach AL, Roy S, Shchukin DG, Skirtach AG, Stevens MM, Sukhorukov GB, Weiss PS, Yue Z, Zhu D, Parak WJ. The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Möhwald. ACS NANO 2019; 13:6151-6169. [PMID: 31124656 DOI: 10.1021/acsnano.9b03326] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Layer-by-layer (LbL) assembly is a widely used tool for engineering materials and coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr. Helmuth Möhwald, we discuss the developments and applications that are to come in LbL assembly, focusing on coatings, bulk materials, membranes, nanocomposites, and delivery vehicles.
Collapse
Affiliation(s)
- Shuang Zhao
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Lars Dähne
- Surflay Nanotec GmbH , 12489 Berlin , Germany
| | - Gero Decher
- CNRS Institut Charles Sadron, Faculté de Chimie , Université de Strasbourg, Int. Center for Frontier Research in Chemistry , Strasbourg F-67034 , France
- Int. Center for Materials Nanoarchitectonics , Ibaraki 305-0044 , Japan
| | - Bruno G De Geest
- Department of Pharmaceutics , Ghent University , 9000 Ghent , Belgium
| | - Jinchen Fan
- Department of Chemical Engineering and Biointerfaces Institute , University of Michigan , Ann Arbor , Michigan 48105 , United States
| | - Neus Feliu
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Yury Gogotsi
- Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Paula T Hammond
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02459 , United States
| | - Mark C Hersam
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208-3108 , United States
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Nicholas Kotov
- Department of Chemical Engineering and Biointerfaces Institute , University of Michigan , Ann Arbor , Michigan 48105 , United States
- Michigan Institute for Translational Nanotechnology , Ypsilanti , Michigan 48198 , United States
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia , Italian National Research Council , Lecce 73100 , Italy
| | - Yan Li
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Fred Lisdat
- Biosystems Technology, Institute for Applied Life Sciences , Technical University , D-15745 Wildau , Germany
| | - Luis M Liz-Marzán
- CIC biomaGUNE , San Sebastian 20009 , Spain
- Ikerbasque, Basque Foundation for Science , Bilbao 48013 , Spain
| | | | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP) , City University of Hong Kong , Kowloon Tong , Hong Kong SAR
| | - Sathi Roy
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Dmitry G Shchukin
- Stephenson Institute for Renewable Energy, Department of Chemistry , University of Liverpool , Liverpool L69 7ZF , United Kingdom
| | - Andre G Skirtach
- Nano-BioTechnology group, Department of Biotechnology, Faculty of Bioscience Engineering , Ghent University , 9000 Ghent , Belgium
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , United Kingdom
| | - Paul S Weiss
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry and Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Zhao Yue
- Department of Microelectronics , Nankai University , Tianjin 300350 , China
| | - Dingcheng Zhu
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
- CIC biomaGUNE , San Sebastian 20009 , Spain
| |
Collapse
|
11
|
Çakıroğlu B, Özacar M. A self-powered photoelectrochemical biosensor for H 2O 2, and xanthine oxidase activity based on enhanced chemiluminescence resonance energy transfer through slow light effect in inverse opal TiO 2. Biosens Bioelectron 2019; 141:111385. [PMID: 31185417 DOI: 10.1016/j.bios.2019.111385] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 11/19/2022]
Abstract
TiO2 inverse opal photonic crystals (IOPCs) were fabricated by using polystyrene template. TiO2 IOPCs based photoelectrochemical (PEC) biosensor was fabricated for the precise and stable detection of Heme without external irradiation. Then, the sensitization of TiO2 IOPCs was fulfilled with CdS quantum dots (QDs) by SILAR method to form ITO-TiO2 IOPCs-CdS:Mn electrode, which in turn was used to construct a PEC biosensor. The uniform porous structure of IOPCs with a large surface area is conducive to the excellent electronic transmission and QDs deposition. Also, the energy level matching between the conduction bands of CdS QDs and TiO2 IOPCs widened the range of light absorption, allowing for electron injection from excited CdS QDs to TiO2 upon luminol chemiluminescence, which enhanced the photocurrent. Furthermore, when the red edge of the photonic stop band of TiO2 IOPCs overlapped with the band gap of TiO2, and chemiluminescence emission of luminol, a substantial photocurrent increment was observed due in part to the slow light effect. The biosensor possesses a large linear detection range of 0.063-4 mM with a LOD of 19 μM for H2O2. Also, xanthine oxidase activity was determined with a linear measurement range of 0.01-15 mU/mL. Our strategy opens a new horizon to IOPCs based and QDs sensitized PEC sensing, which could be more sensitive, convenient and inexpensive for clinical and biological analysis. As far as we know, the largest photocurrent generation by luminol chemiluminescence was observed thanks to the use of semiconducting hybrid IOPCs material even at 0 V.
Collapse
Affiliation(s)
- Bekir Çakıroğlu
- (a)Sakarya University, Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), 54187, Sakarya, Turkey
| | - Mahmut Özacar
- (a)Sakarya University, Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), 54187, Sakarya, Turkey; Sakarya University, Science & Arts Faculty, Department of Chemistry, 54187, Sakarya, Turkey.
| |
Collapse
|
12
|
Dou J, Li D, Li H, Kang Q, Lu J, Shen D. A differential photoelectrochemical hydrogen peroxide sensor based on catalytic activity difference between two zeolitic imidazolate framework surface coatings. Talanta 2019; 197:138-144. [DOI: 10.1016/j.talanta.2018.12.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/13/2018] [Accepted: 12/25/2018] [Indexed: 12/26/2022]
|
13
|
Li Y, Li Z, Ye W, Zhao S, Yang Q, Ma S, Xiao G, Liu G, Wang Y, Yue Z. Gold nanorods and graphene oxide enhanced BSA-AgInS2 quantum dot-based photoelectrochemical sensors for detection of dopamine. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.121] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Khan F, Akhtar N, Jalal N, Hussain I, Szmigielski R, Hayat MQ, Ahmad HB, El-Said WA, Yang M, Janjua HA. Carbon-dot wrapped ZnO nanoparticle-based photoelectrochemical sensor for selective monitoring of H 2O 2 released from cancer cells. Mikrochim Acta 2019; 186:127. [PMID: 30684013 DOI: 10.1007/s00604-019-3227-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/04/2019] [Indexed: 11/30/2022]
Abstract
This study reports on a simple approach for the fabrication of an electrode modified with biocompatible C-dot wrapped ZnO nanoparticles for selective photoelectrochemical monitoring of H2O2 released from living cells. The biocompatibility of the ZnO nanoparticles was confirmed through in-vitro cellular testing using the MTT assay on Huh7 cell lines. The ZnO nanoparticles wrapped with dopamine-derived C-dots possess numerous catalytically active sites, excessive surface defects, good electrical conductivity, and efficient separation ability of photo-induced electrons and holes. These properties offer highly sensitive and selective non-enzymatic photo-electrochemical monitoring of H2O2 released from HeLa cells after stimulation with N-formylmethionyl-leucyl-phenylalanine. The sensor has a wide linear range (20-800 nM), low detection limit (2.4 nM), and reliable reproducibility, this implying its suitability for biological and biomedical applications. Graphical abstract Schematic of the fabrication of ZnO nanoparticles by using a plant extract as a reducing agent. Wrapping of ZnO with C-dots enhances the photoelectrocatalytic efficacy. Sensitive and selective photoelectrochemical monitoring of H2O2 released from cancer cells is demonstrated.
Collapse
Affiliation(s)
- Faria Khan
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science Technology (NUST), Islamabad, 44000, Pakistan.,Department of Plant Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science Technology (NUST), Islamabad, 44000, Pakistan.,Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Naeem Akhtar
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan. .,National Institute for Materials Science (NIMS), 1-2-1 Sengen, 305-0047, Tsukuba-shi, Ibaraki-ken, Japan.
| | - Nasir Jalal
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin Shi, 300072, China
| | - Irshad Hussain
- Department of Chemistry, SBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan
| | - Rafal Szmigielski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Muhammad Qasim Hayat
- Department of Chemistry, SBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan
| | - Hafiz B Ahmad
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Waleed A El-Said
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Minghui Yang
- Solid State Functional Materials Research Laboratory, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo, 315201, Zhejiang, China.
| | - Hussnain Ahmed Janjua
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science Technology (NUST), Islamabad, 44000, Pakistan.
| |
Collapse
|
15
|
Li Z, Zhang J, Li Y, Zhao S, Zhang P, Zhang Y, Bi J, Liu G, Yue Z. Carbon dots based photoelectrochemical sensors for ultrasensitive detection of glutathione and its applications in probing of myocardial infarction. Biosens Bioelectron 2018; 99:251-258. [DOI: 10.1016/j.bios.2017.07.065] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/16/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
16
|
Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with the layered MoS2-reduced graphene oxide and Prussian Blue. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2503-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Hierarchical C-N doped NiO with dual-head echinop flowers for ultrasensitive monitoring of epinephrine in human blood serum. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2498-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Core/shell microcapsules consisting of Fe3O4 microparticles coated with nitrogen-doped mesoporous carbon for voltammetric sensing of hydrogen peroxide. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2497-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Amperometric sensing of hydrogen peroxide via an ITO electrode modified with gold nanoparticles electrodeposited on a CoMn-layered double hydroxide. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2428-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|