1
|
López-Sánchez C, de Andrés F, Ríos Á. Implications of analytical nanoscience in pharmaceutical and biomedical fields: A critical view. J Pharm Biomed Anal 2024; 243:116118. [PMID: 38513499 DOI: 10.1016/j.jpba.2024.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
This review summarizes recent progress performed in the design and application of analytical tools and methodologies using nanomaterials for pharmaceutical analysis, and specifically new nanomedicines at distinct phases of development and translation from preclinical to clinical stages. Over the last 10-15 years, a growing number of studies have utilized various nanomaterials, including carbon-based, metallic nanoparticles, polymeric nanomaterials, materials based on biological molecules, and composite nanomaterials as tools for improving the analysis of pharmaceutical products. New and more complex nanomaterials are currently being explored to influence different stages of the analytical process. These materials provide unique properties to support the extraction of analytes in complex samples, increase the selectivity and efficiency of chromatographic separations, and improve the analytical properties of many sensor applications. Indeed, nanomaterials, including electrochemical detection approaches and biosensing, are expanding at a remarkable rate. Furthermore, the analytical performance of numerous approaches to determine drugs in different matrices can be significantly improved in terms of precision, detection limits, selectivity, and time of analysis. However, the quality control and metrological characterization of the currently synthesized nanomaterials still depend on the development of new and improved analytical methodologies, and the application of specific and improved instrumentation. Therefore, there is still much to explore about the properties of nanomaterials which need to be determined even more precisely and accurately.
Collapse
Affiliation(s)
- Claudia López-Sánchez
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain
| | - Fernando de Andrés
- Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Dr. José María Sánchez Ibáñez Av. s/n, Albacete 02071, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain.
| |
Collapse
|
2
|
Jiménez-Skrzypek G, Ortega-Zamora C, González-Sálamo J, Hernández-Borges J. Miniaturized green sample preparation approaches for pharmaceutical analysis. J Pharm Biomed Anal 2022; 207:114405. [PMID: 34653744 DOI: 10.1016/j.jpba.2021.114405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022]
Abstract
The development of green sample preparation procedures is an extremely important research field in which more and more applications are constantly being proposed in different areas, including pharmaceutical analysis. This review article is aimed at providing a general overview of the development of miniaturized green analytical sample preparation procedures in the pharmaceutical analysis field, with special focus on the works published between January 2017 and July 2021. Particular attention has been paid to the application of environmentally friendly solvents and sorbents as well as nanomaterials or high extraction capacity sorbents in which the solvent volumes and reagents amounts are drastically reduced, with their subsequent advantages from the sustainability point of view.
Collapse
Affiliation(s)
- Gabriel Jiménez-Skrzypek
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España
| | - Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España.
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España.
| |
Collapse
|
3
|
Aboras SI, Korany MA, Abdine HH, Ragab MAA, El Diwany A, Agwa MM. HPLC with fluorescence detection for the bioanalysis and pharmacokinetic study of Doxorubicin and Prodigiosin loaded on eco-friendly casein nanomicelles in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1187:123043. [PMID: 34837816 DOI: 10.1016/j.jchromb.2021.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
A rapid, efficient, and sensitive liquid chromatographic assay hyphenated to fluorometric detector (HPLC-FLD) was developed and validated for the determination of doxorubicin (DXR) and prodigiosin (PDG) in rat plasma. The sample pre-treatment involves a protein precipitation with acetonitrile with satisfying extraction efficiency (98% and 85% for DXR and PDG, respectively). The chromatographic separation was accomplished using stationary phase: Agilent Zorbax Eclipse plus-C18 analytical column (250 × 4.6 mm, 5 μm) and gradient eluting mobile phase of ammonium acetate (pH = 3), acetonitrile and methanol with programmed fluorescence detection. As the proposed method has been validated, it was subsequently implemented to evaluate DXR and PDG loaded on novel eco-friendly Casein nano drug delivery system after intravenous injection in healthy rats. A comparative pharmacokinetics' study was carried out in rats for DXR in free form, DXR alone entrapped in the nanomicelle and DXR with PDG entrapped in the nano micelle. After testing the differences in pharmacokinetic parameters of the different formulations using ANOVA, the results showed insignificant differences among the tested parameters. This indicates that the presented nanomicelle delivery system has succeeded to incorporate PDG and DXR in a hydrophilic, safe, and potent formulation. This novel nanomicelle has negligible effect on the distribution and elimination of DXR.
Collapse
Affiliation(s)
- Sara I Aboras
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Mohamed A Korany
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Heba H Abdine
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt.
| | - Ahmed El Diwany
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
4
|
Pinilla-Peñalver E, Soriano ML, Contento AM, Ríos Á. Cyclodextrin-modified graphene quantum dots as a novel additive for the selective separation of bioactive compounds by capillary electrophoresis. Mikrochim Acta 2021; 188:440. [PMID: 34845524 DOI: 10.1007/s00604-021-05098-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/09/2021] [Indexed: 11/26/2022]
Abstract
Highly reliable separation and determination of various biologically active compounds were achieved using capillary electrophoresis (CE) based on β-cyclodextrin-functionalized graphene quantum dots (βcd-GQDs) as the background electrolyte additive. βcd-GQDs improve the separation efficiency between peaks of all analytes. No addition of surfactants or organic solvents was needed in the running buffer containing βcd-GQDs. Up to eight consecutive runs were acquired with high precision for the separation of resveratrol, pyridoxine, riboflavin, catechin, ascorbic acid, quercetin, curcumin, and even of several of their structural analogs. Baseline separation was achieved within just 13 min as a result of the effective mobility of the analytes along the capillary owing to the differential interaction with the additive. The proposed analytical method displayed a good resolution of peaks for all species selecting two absorption wavelengths in the diode array detector. Detection limits lower than 0.28 µg mL-1 were found for all compounds and precision values were in the range of 2.1-4.0% in terms of the peak area of the analytes. The usefulness of the GQD-assisted selectivity-enhanced CE method was verified by the analysis of food and dietary supplements. The applicability to such complex matrices and the easy and low-cost GQD preparation open the door for routine analyses of food and natural products. The concept of using such a dual approach (macromolecules and nanotechnology) has been explored to tackle the separation of various bioactive compounds in nutritional supplements and food. Schematic illustration of the electrophoretic separation of the bioactive molecules in the capillary which is filled with the running solution without (top) and with βcd-GQDs (bottom). The fused silica capillary with negatively ionizable silanol groups at the wall. The voltage is applied at positive polarity at the outlet. R, riboflavin; r, resveratrol; P, pyridoxine; C, catechin; c, curcumin; A, ascorbic acid; Q, quercetin.
Collapse
Affiliation(s)
- Esther Pinilla-Peñalver
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Avenue Camilo José Cela s/n 13004, Ciudad Real, Spain
- Regional Institute for Applied Chemistry Research, IRICA, Avenue Camilo José Cela s/n 13004, Ciudad Real, Spain
| | - M Laura Soriano
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Avenue Camilo José Cela s/n 13004, Ciudad Real, Spain
- Department of Analytical Chemistry, University of Córdoba, Campus of Rabanales, Marie Curie, E-14071, Córdoba, Spain
| | - Ana M Contento
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Avenue Camilo José Cela s/n 13004, Ciudad Real, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Avenue Camilo José Cela s/n 13004, Ciudad Real, Spain.
| |
Collapse
|
5
|
Du BW, Tien LT, Lin CC, Ko FH. Use of curcumin-modified diamond nanoparticles in cellular imaging and the distinct ratiometric detection of Mg 2+/Mn 2+ ions. NANOSCALE ADVANCES 2021; 3:4459-4470. [PMID: 36133469 PMCID: PMC9419351 DOI: 10.1039/d1na00298h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/22/2021] [Indexed: 06/16/2023]
Abstract
An intrinsically luminescent curcumin-modified nanodiamond derivative (ND-Cur) has been synthesized as an effective probe for cell imaging and sensory applications. DLS data allowed the particle size of ND-Cur to be estimated (170.6 ± 46.8 nm) and the zeta potential to be determined. The photoluminescence signal of ND-Cur was observed at 536 nm, with diverse intensities at excitation wavelengths of 350 to 450 nm, producing yellow emission with a quantum yield (Φ) of 0.06. Notably, the results of the MTT assay and cell imaging experiments showed the low toxicity and biocompatibility of ND-Cur. Subsequently, investigations of the selectivity towards Mg2+ and Mn2+ ions were performed by measuring intense fluorescence peak shifts and "Turn-off" responses, respectively. In the presence of Mg2+, the fluorescence peak (536 nm) was shifted and then displayed two diverse peaks at 498 and 476 nm. On the other hand, for Mn2+ ions, ND-Cur revealed a fluorescence-quenching response at 536 nm. Fluorescence studies indicated that the nanomolar level detection limits (LODs) of Mg2+ and Mn2+ ions were approximately 423 and 367 nM, respectively. The sensing mechanism, ratiometric changes and binding site were established through PL, FTIR, Raman, SEM, TEM, DLS and zeta potential analyses. Furthermore, the effective determination of Mg2+ and Mn2+ ions by ND-Cur has been validated through cell imaging experiments.
Collapse
Affiliation(s)
- Bo-Wei Du
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Le Trong Tien
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Ching-Chang Lin
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo Japan
| | - Fu-Hsiang Ko
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| |
Collapse
|
6
|
Safaei M, Shishehbore MR. A review on analytical methods with special reference to electroanalytical methods for the determination of some anticancer drugs in pharmaceutical and biological samples. Talanta 2021; 229:122247. [PMID: 33838767 DOI: 10.1016/j.talanta.2021.122247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
It is widely accepted that cancer, the second leading cause of death, is a morbidity with big impacts on the global health. In the last few years, chemo-therapeutic treatment continually induces alone most lengthy consequents, which is extremely harmful for the physiological and psychological health of the patients. In the present research, we discuss the recent techniques for employed for extraction, and quantitative determination of such compounds in pharmaceutical, and biological specimens. In the frame of this information, this review aims to provide basic principles of chromatography, spectroscopy, and electroanalytical methods for the analysis of anticancer drugs published in the last three years. The review also describes the recent developments regarding enhancing the limit of detection (LOD), the linear dynamic range, and so forth. The results show that the LOD for the chromatographic techniques with the UV detector was obtained equaled over the range 2.0 ng mL-1-0.2 μg mL-1, whereas the LOD values for analysis by chromatographic technique with the mass spectrometry (MS) detector was found between 10.0 pg mL-1-0.002 μg mL-1. The biological fluids could be directly injected to capillary electrophoresis (CE) in cases where the medicine concentration is at the contents greater than mg L-1 or g L-1. Additionally, electrochemical detection of the anticancer drugs has been mainly conducted by the voltammetry techniques with diverse modified electrodes, and lower LODs were estimated between 3.0 ng mL-1-0.3 μg mL-1. It is safe to say that the analyses of anticancer drugs can be achieved by employing a plethora of techniques such as electroanalytical, spectroscopy, and chromatography techniques.
Collapse
Affiliation(s)
- Mohadeseh Safaei
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
| | | |
Collapse
|
7
|
Tran VA, Lee SW. pH-triggered degradation and release of doxorubicin from zeolitic imidazolate framework-8 (ZIF8) decorated with polyacrylic acid. RSC Adv 2021; 11:9222-9234. [PMID: 35423461 PMCID: PMC8695245 DOI: 10.1039/d0ra10423j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 02/02/2023] Open
Abstract
Zeolite imidazolate framework-8 (ZIF8) represents a class of highly porous materials with a very high surface area, large pore volume, thermal stability, and biocompatibility. In this study, ZIF8-based nanostructures demonstrated a high loading capacity for doxorubicin (62 mg Dox per g ZIF8) through the combination of π-π stacking, hydrogen bonding, and electrostatic interactions. Dox-loaded ZIF8 was subsequently decorated with polyacrylic acid (PAA) (ZIF8-Dox@PAA) that showed good dispersity, fluorescent imaging capability, and pH-responsive drug release. The stable localization and association of Dox in ZIF8@PAA were investigated by C13 nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy. The NMR chemical shifts suggest the formation of hydrogen bonding interactions and π-π stacking interactions between the imidazole ring of ZIF8 and the benzene ring of Dox that can significantly improve the storage of Dox in the ZIF8 nanostructure. Additionally, the release mechanism of ZIF8-Dox@PAA was discussed based on the detachment of the PAA layer, enhanced solubility of Dox, and destruction of ZIF8 at different pH conditions. In vitro release test of ZIF8-Dox@PAA at pH 7.4 showed the low release rate of 24.7% even after 100 h. However, ZIF8-Dox@PAA at pH 4.0 exhibited four stages of release profiles, significantly enhanced release rate of 84.7% at the final release stage after 30 h. The release kinetics of ZIF8-Dox@PAA was analyzed by the sigmoidal Hill, exponential Weibull, and two-stage BiDoseResp models. The ZIF8-Dox@PAA nanocarrier demonstrated a promising theranostic nanoplatform equipped with fluorescent bioimaging, pH-responsive controlled drug release, and high drug loading capacity.
Collapse
Affiliation(s)
- Vy Anh Tran
- Department of Chemical and Biological Engineering, Gachon University 1342 Seongnamdaero, Sujeong-gu Seongnam-si 13120 Republic of Korea
- Institute of Research and Development, Duy Tan University Danang 550000 Vietnam
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University 1342 Seongnamdaero, Sujeong-gu Seongnam-si 13120 Republic of Korea
| |
Collapse
|
8
|
Koreshkova AN, Gupta V, Peristyy A, Hasan CK, Nesterenko PN, Paull B. Recent advances and applications of synthetic diamonds in solid-phase extraction and high-performance liquid chromatography. J Chromatogr A 2021; 1640:461936. [PMID: 33548824 DOI: 10.1016/j.chroma.2021.461936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Since the advent of diamond-based adsorbents in the late 1960s, the interest in their use for solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) has steadily increased. This is primarily due to their unique properties, such as extreme chemical and thermal stability, high mechanical strength and biocompatibility, and complex mixed-mode retention mechanisms. Currently, the most commonly used synthetic diamonds in SPE and HPLC are detonation nanodiamonds (DND), high-pressure high-temperature (HPHT) diamonds, and chemical vapour deposition (CVD) diamonds. These diamonds have been either used as individual particles (in both modified and unmodified forms), or for surface modification, or entrapped within composites and core-shell particles to develop new diamond-based adsorbents. These diamond-based adsorbents have been used for a variety of applications, including streamlined proteome analysis; extraction of anions, cations, actinides, uranium, lanthanides, alkaline earth metals, transition metals, and post-transition metals; and development of reversed-phase, normal phase, hydrophilic interaction, ion chromatography, and mixed-mode liquid chromatography columns, to name but a few. These varied applications of different types of diamonds are typically governed by their specific properties. This review discusses the various surface and bulk properties of DND, HPHT diamonds, and CVD diamonds that facilitate or limit their use in different SPE and HPLC based applications.
Collapse
Affiliation(s)
- Aleksandra N Koreshkova
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, TAS 7001, Australia
| | - Vipul Gupta
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, TAS 7001, Australia; ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia
| | - Anton Peristyy
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, TAS 7001, Australia
| | - Chowdhury K Hasan
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, TAS 7001, Australia; School of Environment and Life Sciences, Independent University, Bangladesh, Dhaka, Bangladesh
| | - Pavel N Nesterenko
- Chemistry Department, Physical Chemistry Division, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991, Moscow, Russian Federation
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, TAS 7001, Australia; ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia.
| |
Collapse
|
9
|
Homogeneous liquid liquid extraction using salt as mass separating agent for the ultra high pressure liquid chromatographic determination of doxorubicin in human urine. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Ding Y, Song X, Chen J. Analysis of Pesticide Residue in Tomatoes by Carbon Nanotubes/β-Cyclodextrin Nanocomposite Reinforced Hollow Fiber Coupled with HPLC. J Food Sci 2019; 84:1651-1659. [PMID: 31107549 DOI: 10.1111/1750-3841.14640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 11/27/2022]
Abstract
For addressing the issues of pesticide residue analysis characterized by the trace levels of target analytes and the complexity of sample matrices, a selective extracting material, carbon nanotubes (CNTs)/β-cyclodextrin (β-CD) nanocomposite reinforced hollow fiber (HF), was developed. CNTs were chemically modified with β-CD and then the resultant nanocomposite was immobilized into the wall pores and lumen of HF by sol-gel technology. The reinforced HF was applied to direct-immersion mode of solid phase microextraction for the determination of carbaryl and 1-naphthol in tomatoes, coupled with high performance liquid chromatography. The proposed method provided 240- and 215-fold enrichment factors, good linearity in the range of 0.6 to 600 ng/g and 0.2 to 600 ng/g, good repeatability with RSDs of 4.5% and 6.9%, and batch-to-batch reproducibility with RSDs of 7.4% and 8.3% for 1-naphthol and carbaryl, respectively. Moreover, the low limits of detection at 0.05 and 0.15 ng/g for 1-naphthol and carbaryl, respectively, along with the high recovery in the range of 84.2% to 108.9% were obtained. The results showed that the material combined the respective advantages of CNTs, β-CD, and HF, thus, exhibiting efficient adsorption property, outstanding molecular recognition performance, and excellent sample clean-up effect, and it is applicable for pesticide residue analysis in complex matrices. PRACTICAL APPLICATION: The developed extracting material can be used for pesticide residue analysis of tomatoes. Pesticides, carbaryl, and 1-naphthol were detected in tomatoes, the most popular vegetable grown and consumed globally. The results supported the necessity to monitor pesticide residue for public health.
Collapse
Affiliation(s)
- Yawen Ding
- School of pharmacy, Lanzhou Univ., Lanzhou, 730000, P. R. China
| | - Xinyue Song
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Linyi Univ., Linyi, 276005, P. R. China
| | - Juan Chen
- School of pharmacy, Lanzhou Univ., Lanzhou, 730000, P. R. China
| |
Collapse
|
11
|
Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:913-931. [DOI: 10.1016/j.msec.2018.12.073] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
|
12
|
Nanodiamond based surface modified screen-printed electrodes for the simultaneous voltammetric determination of dopamine and uric acid. Mikrochim Acta 2019; 186:200. [PMID: 30796537 PMCID: PMC6394810 DOI: 10.1007/s00604-019-3315-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/11/2019] [Indexed: 11/05/2022]
Abstract
The electroanalytical detection of the neurotransmitter dopamine (DA) in the presence of uric acid (UA) is explored for the first time using commercially procured nanodiamonds (NDs). These are electrically wired via surface modification upon screen-printed graphite macroelectrodes (SPEs). The surface coverage of the NDs on the SPEs was explored in order to optimize electroanalytical outputs to result in well-resolved signals and in low limits of detection. The (electro)analytical outputs are observed to be more sensitive than those achieved at bare (unmodified) SPEs. Such responses, previously reported in the academic literature have been reported to be electrocatalytic and have been previously attributed to the presence of surface sp2 carbon and oxygenated species on the surface of the NDs. However, XPS analysis reveals the commercial NDs to be solely composed of nonconductive sp3 carbon. The low/negligible electroconductivity of the NDs was further confirmed when ND paste electrodes were fabricated and found to exhibit no electrochemical activity. The electroanalytical enhancement, when using NDs electronically wired upon SPEs, is attributed not to the NDs themselves being electrocatalytic, as reported previously, but rather changes in mass transport where the inert NDs block the underlying electroactive SPEs and create a random array of graphite microelectrodes. The electrode was applied to simultaneous sensing of DA and UA at pH 5.5. Figures of merit include (a) low working potentials of around 0.27 and 0.35 V (vs. Ag/AgCl); and (b) detection limits of 5.7 × 10−7 and 8.9 × 10−7 M for DA and UA, respectively. The electroanalytical enhancement of screen-printed electrodes modified with inert/non-conductive nanodiamonds is due to a change in mass transfer where the inert nanodiamonds facilitate the production of a random microelectrode array. ![]()
Collapse
|